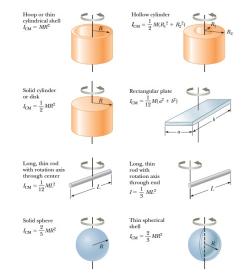

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this gas is

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^{2}}$$
Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2} N_A k_B = \frac{3}{2} R$$
Is this right?
 $N -$ number of particles $V = \ell^3$
 $k_B -$ Boltzmann constant $m -$ atomic mass
 $N_A -$ Avogadro's number $V_{total} -$ atom's speed

The Results

Rotational Kinetic Energy


3

Classically

$$E_{rot} = rac{\mathcal{L}^2}{2\mathcal{I}}$$

where

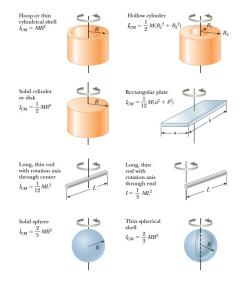
$$\mathcal{I}=\sum mr_i^2=\int r^2dm$$

Rotational Kinetic Energy

4

Classically

$$E_{rot} = rac{\mathcal{L}^2}{2\mathcal{I}}$$


where

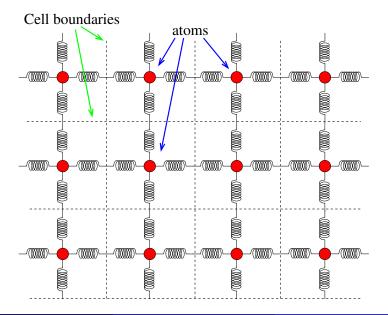
$$\mathcal{I} = \sum mr_i^2 = \int r^2 dm$$

Quantum mechanically

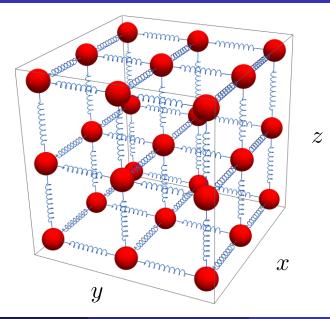

$$E_{rot}^{qm} = \ell(\ell+1)\frac{\hbar^2}{2\mathcal{I}}$$

where *I* is the angular momentum quantum number.

- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- The particles' collisions are elastic.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.


A Hint of Quantum Mechanics

Solid	Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)
Lead	26.4	22 ± 6
Zinc	25.4	36 ± 14
Aluminum	26.4	21 ± 9
Copper	24.5	25 ± 9
Tin	27.0	64 ± 47
Gold	25.4	
Silver	25.4	
Iron	25.0	


Solid	Molar Specific Heat	Our Results	3 <i>R</i>
	(J/K-mole)	(J/K-mole)	(J/K-mole)
Lead	26.4	22 ± 6	24.9434
Zinc	25.4	36 ± 14	24.9434
Aluminum	26.4	21 ± 9	24.9434
Copper	24.5	25 ± 9	24.9434
Tin	27.0	64 ± 47	24.9434
Gold	25.4		24.9434
Silver	25.4		24.9434
Iron	25.0		24.9434

The Einstein Solid



g

The Einstein Solid

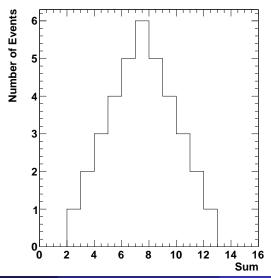
The Einstein Solid

$E_{atom} = n_x \hbar \omega + n_y \hbar \omega + n_z \hbar \omega$ The n_i are integers and \hbar and ω are constants.

An Einstein solid is made of N, three-dimensional harmonic oscillators containing q quanta of energy.

- What is the multiplicity of a single Einstein solid?
- What is the multiplicity of two Einstein solids in thermal contact?
- How would you determine the most likely microstate of the system?
- How is entropy related to temperature?
- I How is the energy related to temperature?
- What is the molar specific heat of an elemental solid?

Solid	Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)
Lead	26.4 ± 0.7	22 ± 6
Zinc	25.4 ± 0.6	36 ± 14
Aluminum	26.4 ± 0.2	21 ± 9
Copper	24.5 ± 0.6	25 ± 9
Tin	27.0 ± 0.6	64 ± 47
Gold	25.4 ± 0.6	
Silver	25.4 ± 0.6	
Iron	25.0 ± 0.6	

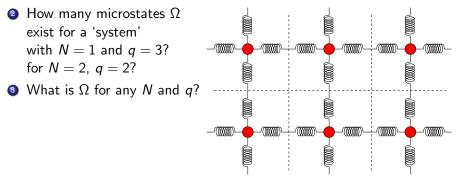

Rolling Dice

Total	Combinations	No. of combos
2	1-1	1
3	1-2,2-1	2
4	1-3,2-2,3-1	3
5	1-4,2-3,3-2,4-1	4
6	1-5,2-4,3-3,4-2,5-1	5
7	1-6,2-5,3-4,4-3,5-2,6-1	6
8	2-6,3-5,4-4,5-3,6,2	5
9	3-6,4-5,5-4,6-3	4
10	4-6,5-5,6-4	3
11	5-6,6-5	2
12	6-6	1

Total	Combinations	No. of combos
2	1-1	1
3	1-2,2-1 micros	tates 2
macr	ostate 1-3,2-2,3-1 /	3
5	1-4,2-3,3-2,4-1	4
6	1-5,2-4,3-3,4-2,5-1	5
7	1-6,2-5,3-4,4-3,5-2,6-1	6
8	2-6,3-5,4-4,5-3,6,2	5
9	3-6,4-5,5-4,6-3	4
10	4-6,5-5,6-4	3
11	5-6,6-5	2
12	6-6	1

Throwing Dice

Jerry Gilfoyle


Einstein Solid

de of *N*, three-dimensional harmonic oscillators

18

An Einstein solid is made of N, three-dimensional harmonic oscillators containing q quanta of energy as shown below.

• What is the energy of a single oscillator? of N oscillators?

Microstates for $N_A = 2$, $q_A = 2$

n_1	<i>n</i> ₂	n ₃	<i>n</i> ₄	<i>n</i> 5	n ₆		<i>n</i> ₁	<i>n</i> ₂	<i>n</i> 3	n ₄	n ₅	r
						1						
						1						

Microstates for $N_A = 2$, $q_A = 2$

		IVITO	cros	lales	s ior	11	A =	2, q	A =	4	52	= <1
n_1	n_2	n_3	n_4	n_5	n_6		n_1	n_2 .	n_3	n_4	n_5	n_6
.1	1						1. A. A.	* Z - 1	° 1		2 - 2 2	1
` L *		. (Τ.,	1	
ł		3 × 1	Ú.				3 4			i I.		.]
1	e.			· (1	T
(-		(2					
	I	(2				÷
	(ι						2			
	ſ			ι		1				2		
	1		÷.,		, (Z	
		1	T.	1		1						г
		1				1						

Summary So Far

$$E_{int} = (n_x + n_y + n_z)\hbar\omega = \sum_{i=1}^{3N} n_i\hbar\omega$$
 for N atoms

multiplicity (Ω)	number of microstates
macrostate	configuration of a solid defined by bulk proper-
	ties like N and E/U .
microstate	one of the configurations of quanta consistent
	with the macrostate.

$$\Omega(N_A, q_A) = \frac{(q_A + 3N_A - 1)!}{q_A!(3N_A - 1)!}$$

$$\Omega_{AB} = \Omega_A \Omega_B$$
 v

where Ω_{AB} - multiplicity of combined state $\Omega_{A,B}$ - individual multiplicities.

Summary So Far

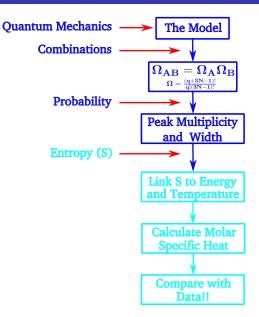
					211			
	St.	atMec	h				- O ×	
Eint	File	Edit (Options GraphTy	pe				oms
Lint	A Ato		5	Total U: 25				0115
	A ALU	ms.	_	TUTAT 0. [25		Table	Calculate	
	B Ato	ms:	3	Max Rows: 20		Graph		
				1				
multiplicit			toms in System					
			toms in System ned system ene	B = 3 rgy = 25 units.				
macrostat								lk proper-
macrostat	U(A)	U(B)	Omega(A)	Omega(B)	Omega(AB)	Fraction of states		in proper
				omega(b)		01 504065		
	0	25	1	13,884,155	13,884,155	4.48e-7		
	1 2	24	15	10,518,300 7,888,725	157,774,500	5.10e-5 3.05e-5		
microstate	2	22	580	5,852,925	3.980e+9	0.00013*		consistent
	4	21	3,050	4,292,145	1.313e+10	0.00042*		
	5	20	11,628	3,108,105	3.514e+10	0.00117*		
	6	19	38,760	2,220,075	8.505e+10	0.00278*		
	7	18	115,280	1,562,275	1.817e+11	0.00587*		
	8	17	319,770	1,081,575	3.459e+11	0.01117*		
	9	16	817,190	735,471	5.010e+11	0.01941*		
	10	15	1,961,256	490,314	9.515e+11	0.03105*		
	11	14	4,457,400	319,770	1.425e+12	0.04604*		
	12	13	9,657,700	203,490	1.955e+12	0.05348*		
	13	12	20,058,300	125,970	2.527e+12	0.08152*		
	14	11	40,116,600	75,582 43,758	3.032e+12	0.09794*		
	16	10	77,558,760	24,310	3.394e+12 3.535e+12	0.10953*		
	17	8	265,182,525	12,870	3.413e+12	0.11024*		
	18	7	471,435,600	6,435	3.034e+12	0.09799*		
	19	6	818,809,200	3,003	2.459e+12	0.07943*		
	20	5	1.392e+9	1,287	1.791e+12	0.05787*		
	21	4	2.320e+9	495	1.148e+12	0.03710*		
	22	3	3.796e+9	155	5.254e+11	0.02023*		
	23	2	5.107e+9	45	2.748e+11	0.00888*		ubined state
0	24	1		9	8.703e+10	0.00281*		IDINEU SLALE
Ω_{AB}	25	0	1.508e+10	1	1.508e+10	0.00049*		
				of microstates:				icities.
			iotal number	or microstates:	0.03D6+T3			1010100.
	-							

Einstein Solid

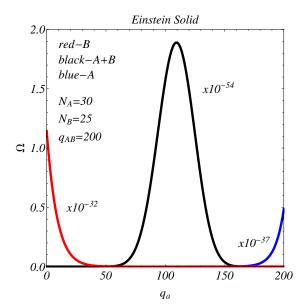
An Einstein solid is made of N, three-dimensional harmonic oscillators containing q quanta of energy.

- What is the multiplicity of a single Einstein solid?
- What is the multiplicity of two Einstein solids in thermal contact?
- How would you determine the most likely microstate of the system?
- How is entropy related to temperature?

Jerry Gilfoyle

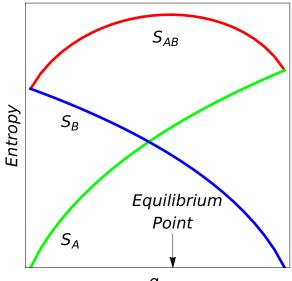

- I How is the energy related to temperature?
- What is the molar specific heat of an elemental solid?

Solid

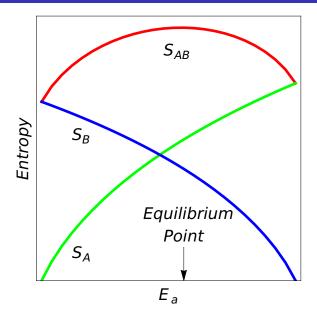

olar	specific	neat	C
		Einste	eiı

Solid	Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)
Lead	26.4 ± 0.7	22 ± 6
Zinc	25.4 ± 0.6	36 ± 14
Aluminum	26.4 ± 0.2	21 ± 9
Copper	24.5 ± 0.6	25 ± 9
Tin	27.0 ± 0.6	64 ± 47
Gold	25.4 ± 0.6	
Silver	25.4 ± 0.6	
Iron	25.0 ± 0.6	

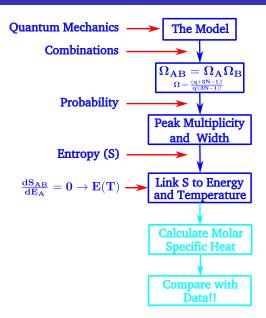
The Plan

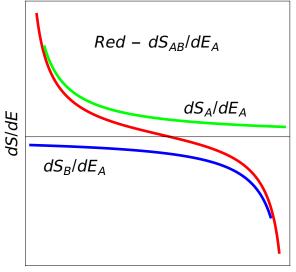


Multiplicity and Number of Quanta

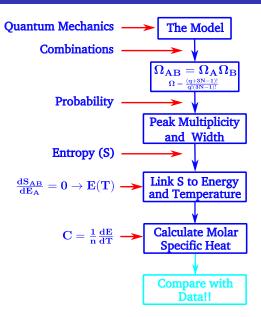


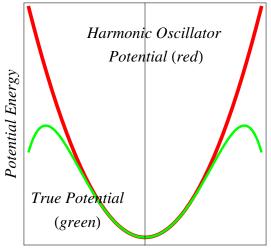
Product Rule $\log(xy) = \log x + \log y$ Quotient Rule $\log(\frac{x}{y}) = \log x - \log y$ Power Rule $\log(x^p) = p \log x$ Equality Rule If $\log x = \log y$, then x = y


Entropy of Two Einstein Solids

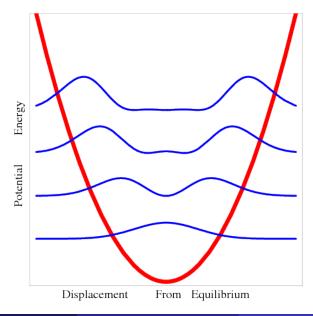


Entropy of Two Einstein Solids in Energy Terms 28


The Plan


Jerry Gilfoyle

The Plan


Solid	Measured Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)	Our Calculation (J/K-mole)
Lead	26.4 ± 0.7	22 ± 8	24.9
Zinc	25.4 ± 0.6	$36\pm~14$	24.9
Aluminum	26.4 ± 0.2	$21\pm~9$	24.9
Copper	24.5 ± 0.6	$25\pm~9$	24.9
Tin	27.0 ± 0.6	$64\pm~47$	24.9
Gold	25.4 ± 0.6		24.9
Silver	25.4 ± 0.6		24.9
Iron	25.0 ± 0.6		24.9

Imagine that the entropy of a certain substance as a function of N and E is given by the formula $S = \alpha N k_b E^3$. Using the definition of temperature, find an expression for the thermal energy E of this substance in terms of its temperature T, the number of particles N, and any other necessary constants. Use this result to calculate the molar specific heat. Are these results well behaved?

Displacement From Equilibrium

Quantum Oscillator

Go to the website

https://www.pasco.com/downloads/capstone

and select the free trial for your platform (Windows or Mac). The installer will be downloaded to your machine.

- 2 Launch the installer you just downloaded.
- Accept defaults.
- On first launch, enter the license key listed below. 19F5C-S10o2-4o0m0-ppip3-40gr8-ece1h
- The capstone files for each lab will be linked to the lab schedule on the course website at the following location.

https://facultystaff.richmond.edu/~ggilfoyl/genphys.html

Installing *statmech.exe*

- Go to: http://www.physics.pomona.edu/sixideas/old/sicpr.html
- Scroll down to the section entitled "For Use With Unit T:".
- Scroll down to the paragraph that starts with "statmech 2.7".
- Scroll down to "Download for:" and right click on "Windows" or "Mac OSX" and save it to your Desktop.
- On your desktop double click on the folder entitled "statmech.exe.zip". You should see a list of the contents of the folder.
- Olick the "Extract All" button and then choose the Desktop (it it's not already set) to place the files.
- Ouble click on "statmech.exe" and you will now see the contents of the folder with the application.
- Ouble click on "statmech.exe". You will get a GUI like the one shown here.
- You're off.

🗱 StatMech					-		×
File Edit	Options	GraphType Help					
A Atoms: B Atoms:	þ 1	Total U: Max Rows:	6 ×	 Table Graph 	Cal	culate	

- Go to: http://www.physics.pomona.edu/sixideas/old/sicpr.html
- Scroll down to the section entitled "For Use With Unit T:".
- Scroll down to the paragraph that starts with "Equilib 2.1".
- Scroll down to "Download for:" and right click on "Windows" and save it to your Desktop.
- Double click on the folder entitled "Equil.exe.zip". You should see a list of the contents of the folder.
- Ouble click on "Equilib.exe". You should get a GUI telling you the application may depend on other compressed files in the folder. Click the "Extract All" button and then choose the Desktop to place the files.
- Ouble click on "Equilib.exe" and you will now see the contents of the folder with the application.
- **(3)** Double click on *"Equilib.exe"*. You will get a GUI worrying about the publisher.
- Olick "Run" and you're off.