
Physics 131-01 Final Exam

I pledge that I have neither given nor received unauthorized assistance during the completion
of this work.

Signature

Questions (4 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces
provided.

1. You are riding on a flat surface in a cart at a velocity ~vlauncher î which is much less than
the speed of light. A stationary observer is nearby. At t = 0 your coordinate systems
coincide. At t > 0 you fire a toy cannon at an angle of about 45◦ from the moving
cart. Consider a point ~r = xî+ yĵ on the ball’s trajectory in the stationary observer’s
reference frame. What would the moving observer measure for the position ~r′ in terms
of the stationary observer’s values?

2. A paradox is defined in the Merriam-Webster online dictionary as ‘an argument that
apparently derives self-contradictory conclusions by valid deduction from acceptable
premises’. What is paradoxical about the twins paradox?

3. Suppose Ashley and Ryan each throw darts at targets as shown below. Each of them
is trying very hard to hit the bulls eye each time. Which one is better? Explain in
terms of the average value and uncertainty of their hits.

Ashley Ryan

Do not write below this line.
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4. Suppose you have a dynamics cart sitting on a track with a motion sensor at one end.
The opposite end of the track is tilted upward. You give the cart a shove up the track,
remove your hand, and start the motion sensor. Sketch the acceleration versus time
graph you would observe until the cart comes to a stop. Explain your reasoning.
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5. Use Newton’s law of universal gravitation to show that the magnitude of the accelera-
tion due to gravity on an object of mass m at a height h above the surface of the earth
is given by the following expression

GMe

(Re + h)2

where Me and Re are the Earth’s mass and radius. Hint: Because of the spherical
symmetry of the Earth you can treat the mass of the Earth as if it were all concentrated
at a point at the Earth’s center.

6. Recall the laboratory on the conservation of angular momentum. You studied a ro-
tational ‘collision’ when you dropped a weight on a rotating disk and determined the
angular momentum before and after the collision. Would the procedure you followed
change if the weight was moving horizontally at a constant velocity when you dropped
it? If it changed, what would be different? Explain your reasoning.

7. Describe a procedure to measure the spring constant of a spring.

Do not write below this line.
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8. A person riding a Ferris wheel at an amusement park moves through the positions at
(a) the top, (b) the bottom, and (c) midheight. Rank the three positions according to
the magnitude of the net centripetal force on the person. Explain your reasoning.

9. In some motorcycle races, the riders drive over small hills and become airborne for
short periods of time. If the motorcycle racer keeps the throttle open (i.e. keeps the
engine running as maximum power) while leaving the hill and going into the air, the
motorcycle tends to nose upward. Why?

10. Consider a rocket in free space with no forces acting on it. After the rocket engine
is turned on does the center-of-mass of the system accelerate? Can the speed of the
rocket exceed the exhaust speed of the fuel? Explain.

Problems. Clearly show all reasoning for full credit. Use a separate sheet for your work.

1. 8 pts. A Klingon spacecraft moves away from the Earth at a speed of 0.8c (see figure)
relative to the Earth. The starship Enterprise pursues the Klingons at a high
speed. Observers on the Klingon ship measure the Enterprise overtaking them
at a relative speed of 0.4c. What is the speed of the Enterprise as measured
by observers on the Earth?

2. 8 pts. A supertrain (proper length lp = 120 m) travels at a speed v = 0.90c as it
passes through a tunnel of proper length lt = 50 m. As seen by a trackside
observer, is the train ever completely within the tunnel? If so, with how much
space to spare? If not, by how much does it miss?
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Problems (continued). Clearly show all reasoning for full credit.

3. 8 pts. An amusement park ride called the Rotor is made of a large vertical cylinder
that spins fast enough so the people inside are pinned against the wall when
the floor drops away as shown in the figure. Let µs be the coefficient of static
friction between a person and wall, and the radius of the cylinder is R. (a)
Using Newton’s Laws show the maximum period of revolution T necessary

to keep a person from falling is T = 2π
√
µsR/g. (b) What is the value of

T assuming that R = 3.7 m and µs = 0.50. (c) How many revolutions per
minute does the cylinder make?

4. 9 pts. A neutron in a nuclear reactor makes an elastic head-on collision with a carbon
nucleus initially at rest. (a) Starting from the appropriate conservation laws
determine the fraction of the neutron’s initial kinetic energy that remains after
the collision with the carbon nucleus? (b) Assume the initial kinetic energy of
the neutron is 1.5×10−13 J . Find its final kinetic energy and the kinetic energy
of the carbon nucleus after the collision. The mass of the carbon nucleus is
nearly 12.0 times the mass of the neutron.

5. 9 pts. In the figure below a solid cylinder attached to a horizontal spring (k =
3.0 N/m) rolls without slipping along a horizontal surface. If the system
is released from rest when the spring is stretched by x1 = 0.250 m, find (a)
the translational kinetic energy and (b) the rotational kinetic energy of the
cylinder as it passes through the equilibrium position. (c) Show that under
these conditions the cylinder’s center of mass executes simple harmonic motion
with period

T = 2π

√
3M

2k

where M is the cylinder mass.
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Problems (continued). Clearly show all reasoning for full credit.

6. 9 pts. During a volcanic eruption chunks of rock are blasted out of the volcano. These
projectiles are called volcanic bombs. Consider the figure below of Mount Fuji
in Japan. A volcanic bomb is launched with an initial speed v0 = 257 m/s
at an angle θ0 from point A in the figure and it eventually lands at point B.
The mouth of the volcano is a distance h = 3.3 × 103 m above the landing
spot which is a distance d = 9.4 × 103 m downrange from the mouth of the
volcano. Starting from the equations of motion (i.e. x(t), vx(t), y(t), vy(t) for
uniformly accelerated motion) find the launch angle θ0.

7. 9 pts. Global warming is a cause for concern because even small changes in the
Earth’s temperature can have significant consequences. For example, if the
Earth’s polar ice caps were to melt entirely, the resulting additional water in
the oceans would flood many coastal cities. Would it appreciably change the
length of a day? In other words, would we notice the day getting longer or
shorter? Model each polar ice cap as a flat disk of mass mi = 1.15× 1019 kg,
radius Ri = 6× 105 m, and centered on the axis of rotation of the rest of the
Earth. Treat the rest of the Earth as a uniform sphere of mass and radius
given in the table of constants. An approximate representation of an Arctic
polar cap of these dimensions is shown as the white disk at the top of the Earth
in the figure below. In our model, there is also a second, Antarctic polar cap
that is not visible because of the curve of the Earth, but assume it has the
same mass as the Arctic ice cap. After melting assume the water is evenly
spread around all the Earth (ignore the continents). The additional depth is
small compared to the radius of the Earth.
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Physics 131-1 Final Exam Equations and Constants

∆~r = ~rfinish − ~rstart 〈~v〉 =
∆~r

∆t
~v =

d~r

dt
= lim

∆t→0

∆~r

∆t
= lim

∆t→0

~r(t+ ∆t)− ~r(t)
∆t

∆~v = ~vfinish − ~vstart 〈~a〉 =
∆~v

∆t
~a =

d~v

dt
= lim

∆t→0

∆~v

∆t
= lim

∆t→0

~v(t+ ∆t)− ~v(t)

∆t

x(t) =
1

2
at2 + v0t+ y0 v = at+ v0 a = −g ac =

v2

r
(~vc ⊥ ~rc ~vc ⊥ ~ac)

~A = Axî+ Ay ĵ ~A+ ~B = (Ax +Bx)̂i+ (Ay +By)ĵ ~A · ~B = | ~A|| ~B| cos θ = AxBx + AyBy

~Fnet =
∑
i

~Fi = m~a =
d~p

dt
~FAB = −~FBA ~p =

∑
mi~vi ~pi = ~pf

|~Fk| = µkN |~Fs| ≤ µsN |~Fc| = m
v2

r
|~FG| =

Gm1m2

r2
~Fs(x) = −kxî ~Fg(y) = −mgĵ

W =
∫
~F · d~s =

∫
|~F | |~ds| cos θ = ∆KE = −∆U KE =

1

2
mv2 KEi = KEf (elastic)

KEi+Ui = KEf+Uf KE = KEcm+KErot KErot =
1

2
Iω2 Us(x) =

1

2
kx2 Ug(y) = mgy

dRoche =

(
12M

πρ

)1/3

ρ =
m

V
~J =

∫ t2

t1

~Fdt = ∆~p

θ =
s

r
ω =

v⊥
r

=
dθ

dt
α =

a⊥
r

=
dω

dt
I =

∑
mir

2
i = Icm +Md2 ~rcm =

∑
mi~ri∑
mi

~τ = rF sinφ θ̂ = I~α =
d~L

dt
~L =

∑
Ii~ωi

~Li = ~Lf vcm = rω

x(t) = A cos(ωt+ φ) ω2 =
k

m
T =

2π

ω
=

1

f
PE =

1

2
kx2 ME =

1

2
kA2

∆t =
∆t′p√
1− v2

c2

L′ = Lp

√
1− v2

c2
v′i =

vi − v
1− v′iv

c2

v′i = vi − v x′ = x− vt y′ = y

dA

dt
= 0

dt

dt
= 1

dt2

dt
= 2t

d

dθ
cos θ = − sin θ

d

dθ
sin θ = cos θ

df(x)

du
=
df(x)

dx

dx

du

∫
f(x)dx = lim

∆x→0

∑
f(xi)∆x

∫
dx = x+ c

∫
xdx =

x2

2
+ c

(
1− v2

c2

)±1/2

≈ 1∓ 1

2

v2

c2

sin θ =
opp

hyp
cos θ =

adj

hyp
tan θ =

opp

adj
cos2 θ+sin2 θ = 1 x2+y2+z2 = R2 V =

4

3
πr3

x =
−b±

√
b2 − 4ac

2a
C = 2πr Area = πr2 Area =

1

2
bh Area = 4πr2 V = πr2 l
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Speed of Light (c) 2.9979× 108 m/s proton/neutron mass 1.67× 10−27 kg

R 8.31J/K −mole g 9.8 m/s2

Gravitation constant 6.67× 10−11 N −m2/kg2 Earth radius 6.37× 106 m

Earth-Moon distance 3.84× 108 m Earth mass 5.9742× 1024 kg

Electron mass 9.11× 10−31 kg Moon mass 7.3477× 1022 kg

1 newton 0.2248 lbs− force Moon radius 1.74× 106 m

Solar radius 6.96× 108 m Solar mass 1.99× 1030 kg

Earth-Sun distance 1.50× 1011 m 1 u 1.661× 10−27 kg

Moments of Inertia

7


