Physics 131-2 Test 2

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature _____

Questions (10 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

- 1. Can a string support a lateral force? Explain.
- 2. Given an object with a mass equal to the standard kilogram, how would you determine if a force applied to it has a magnitude equal to one newton? Ignore friction.
- 3. Two masses are hung by strings draped over pulleys and connected by a spring scale as shown in the figure. The spring scale in the figure reads twice the mass m. Is this correct? Explain?

- 4. What is Kepler's First Law? What is your evidence that it is correct or incorrect?
- 5. A coin lies on a turntable whose speed is gradually raised from zero. What happens to the magnitude of the friction force on the coin as the speed is increased to a large value?

Problems. Clearly show all reasoning for full credit. Use a separate sheet to show your work.

- 1. 15 pts. How far from Earth must a space probe be along a line toward the Sun so that the Sun's gravitational pull on the probe balances the Earth's pull?
- 2. 15 pts. A 2.0-kg block is pushed along a horizontal floor by a force $|\vec{F}| = 10 N$ at an angle $\theta = 45^{\circ}$ with the horizontal as shown in the figure. The coefficient of kinetic friction between the block and the floor is $\mu = 0.2$.
 - 1. What does the free-body diagram look like for this block?
 - 2. What is the frictional force exerted on the block?

- 3. 20 pts. You are asked to design bumpers for the walls of a parking garage. The specifications are that a 1200-kg car moving at 0.50 m/s can compress the bumper no more than 0.05 m before bringing the car to a halt. The bumpers obey Hooke's Law.
 - 1. Sketch the force exerted by the bumper as its is compressed a distance x_1 . Label the endpoints of your curve with their x - y values in terms of x_1 and k the spring constant.
 - 2. What is the work done by the bumper when it is compressed? Explain your answer using the figure you made above.
 - 3. What is the required spring constant of the bumper?

Some constants.

Acceleration of gravity (g)	9.8 m/s^2	Gravitational constant	$6.67 \times 10^{-11} N - m^2/kg^2$
Earth-Sun distance	$1.5 imes 10^{11} m$	Earth mass	$6 \times 10^{24} \ kg$
Sun mass	$2 \times 10^{30} \ kg$		