# Why Is $CO_2$ a Greenhouse Gas?

The Earth is warming and the likely cause is the increase in greenhouse gases like carbon dioxide ( $CO_2$ ) in the atmosphere. Carbon dioxide is a linear, triatomic molecule with a central carbon atom. The harmonic vibrations of  $CO_2$  give it its absorption properties.

The vibrations of  $CO_2$  can be described by a small set of 'normal modes' shown here. If a normal mode distorts the symmetry of the charge distribution of the molecule, then it will acquire an electric dipole moment and can absorb light in the infrared range - preventing that light from passing through the atmosphere.



# $\mathrm{CO}_2$ Absorption Spectrum

The CO<sub>2</sub> absorption spectrum shown below has a prominent absorption peak at  $k = 2350 \text{ cm}^{-1}$ .

The peak is located at the frequency of light that is absorbed as the  $CO_2$ molecule makes the transition from one quantized energy state to a higher one. The energy of the light is  $E_{\gamma} = hf$  where *h* is Planck's constant.

The atoms vibrate in the asymmetric mode shown here. This particular mode gives  $CO_2$  its greenhouse gas properties.



# $\mathrm{CO}_2$ Absorption Spectrum

The CO<sub>2</sub> absorption spectrum shown below has a prominent absorption peak at  $k = 2350 \text{ cm}^{-1}$ .

The peak is located at the frequency of light that is absorbed as the  $CO_2$ molecule makes the transition from one quantized energy state to a higher one. The energy of the light is  $E_{\gamma} = hf$  where *h* is Planck's constant.

The atoms vibrate in the asymmetric mode shown here. This particular mode gives  $CO_2$  its greenhouse gas properties.





How hard do the atoms vibrate?

(b)

# The Harmonic Oscillator Approximation



Displacement From Equilibrium

#### **(**) The Force: $F_s = -kx$ where x is the displacement from equilibrium.

# The Force: F<sub>s</sub> = -kx where x is the displacement from equilibrium. The Potential Energy: V<sub>s</sub>(x) = <sup>1</sup>/<sub>2</sub>kx<sup>2</sup>

- The Force: F<sub>s</sub> = -kx where x is the displacement from equilibrium.
   The Potential Energy: V<sub>s</sub>(x) = <sup>1</sup>/<sub>2</sub>kx<sup>2</sup>
- Measurements:



- The Force:  $F_s = -kx$  where x is the displacement from equilibrium. • The Potential Energy:  $V_s(x) = \frac{1}{2}kx^2$
- Measurements:



• The Solution:  $x(t) = A\cos(\omega t + \phi)$ 

- The Force:  $F_s = -kx$  where x is the displacement from equilibrium. • The Potential Energy:  $V_s(x) = \frac{1}{2}kx^2$
- Measurements:



The Solution: x(t) = A cos (ωt + φ)
Parameters:

$$\omega = \sqrt{rac{k}{m}}$$
  $T = rac{2\pi}{\omega}$   $f = rac{1}{T}$   $A$  and  $\phi$  are initial conditions.

#### How Do you Weigh a Weightless Person?

To weigh astronauts on the International Space Station NASA uses a chair of mass  $m_c$  mounted on a spring of spring constant  $k_c = 605.6 \ N/m$  that is anchored to the spacecraft. The period of the oscillation of the empty chair is  $T_c = 0.90149 \ s$ . When an astronaut is sitting in the chair the new period is  $T_a = 2.12151 \ s$ . What is the mass of the astronaut?



# Atomic Vibrations

The force law describing the interaction between hydrogen and chlorine atoms is HCl is

$$F_h = -a \left[ \left(\frac{b}{r}\right)^2 - \left(\frac{c}{r}\right)^3 \right]$$

where  $F_h$  is the force acting on the hydrogen atom, *a* is a constant with units of force, *b* and *c* are constants with units of length, and *r* is the distance of the hydrogen atom from the chlorine. Chlorine is much heavier than hydrogen so we can consider it fixed.

- What is the equilibrium position  $r_0$  for the hydrogen atom in HCI?
- 2 Let  $x \equiv r r_0$  and show that for small x the force resembles the harmonic oscillator force.
- What is the frequency of small oscillations of the hydrogen atom in terms of its mass *m*, and the constants *a*, *b*, and *c*.



# The Harmonic Oscillator Approximation



Displacement From Equilibrium

## More Atomic Vibrations

The force law describing the interaction between the carbon and oxygen atoms in CO is the Lennard-Jones form

$$F_{CO} = \frac{\alpha}{r^{13}} - \frac{\beta}{r^7}$$

where  $F_{CO}$  is the force acting between the carbon and oxygen,  $\alpha$  and  $\beta$  are adjustable constants, and r is the distance between the atoms. Carbon and oxygen are similar in mass so we cannot consider one of them fixed.

- What mass goes in the harmonic oscillator expressions?
- **②** What is the equilibrium separation  $r_0$  for the atoms in CO in terms of  $\alpha$  and  $\beta$ ?
- How are  $\alpha$  and  $\beta$  related to k?
- The effective spring constant of the CO bond is k<sub>CO</sub> = 1860 N/m. What is the frequency of small oscillations of the CO molecule?



# The Center of Mass Frame of Reference



# **Taylor Polynomials**

#### An Application: Potential Energy of Diatomic <u>Molecules</u>

#### **Molecular vibration video**



# $CO_2$ Absorption Spectrum

The  $CO_2$  absorption spectrum shown below has a prominent absorption peak at 2350  $cm^{-1}$  or a frequency  $f = 7.05 \times 10^{13}$  Hz.

The peak is located at the frequency of light that is absorbed as the  $CO_2$  molecule makes the transition from one quantized energy state to a higher one. The energy of the light is  $E_{\gamma} = hf$  where h is Planck's constant.

The atoms vibrate in the asymmetric mode shown here. This particular mode gives  $CO_2$  its greenhouse gas properties.





How hard do the atoms vibrate?

(b)

# $\mathrm{CO}_2$ Absorption Spectrum

The  $CO_2$  absorption spectrum shown below has a prominent absorption peak at 2350 cm<sup>-1</sup> or a frequency  $f = 7.05 \times 10^{13}$  Hz.

The peak is located at the frequency of light that is absorbed as the  $\mathrm{CO}_2$  molecule makes the transition from one quantized energy state to a higher one.



# WHY ARE THE ENERGIES QUANTIZED?

How hard do the atoms vibrate?

# Clouds Over Classical Physics

 Mini solar system model - Moving charges radiate energy so electrons death spiral into nucleus.

• Specific heat freeze-out - Where did the other degrees of freedom go?







Black-body radiation - the ultraviolet catastrophe.

# Postulates of Quantum Mechanics

- The quantum state of a particle is characterized by a wave function Ψ(r, t), which contains all the information about the system an observer can possibly obtain.
- **②** The square of the magnitude of the wave function  $|\Psi(\vec{r}, t)|^2$  is the probability or probability density for the particle's position.
- The things we measure (*e.g.* energy, momentum) are called observables. Each observable has a corresponding mathematical object called an operator that does 'something' to the wave function Ψ(*r*, *t*) to generate the value of the observable.
- The x dependence of the wave function in one dimension \u03c6(x) is governed by the energy operator which generates the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)+V(x)\psi(x)=E\psi(x)$$

where  $\hbar$  is Planck's constant, *m* is the mass of the particle, and *V* is the potential energy of the particle.

# Postulates of Quantum Mechanics

- The quantum state of a particle is characterized by a wave function Ψ(r, t), which contains all the information about the system an observer can possibly obtain.
- Solution The square of the magnitude of the wave function  $|\Psi(\vec{r}, t)|^2$  is the probability or probability density for the particle's position.
- The things we measure (*e.g.* energy, momentum) are called observables. Each observable has a corresponding mathematical object called an operator that does 'something' to the wave function Ψ(*r*, *t*) to generate the value of the observable.
- The x dependence of the wave function in one dimension ψ(x) is governed by the energy operator which generates the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

where  $\hbar$  is Planck's constant, *m* is the mass of the particle, and *V* is the potential energy of the particle.

#### The Harmonic Oscillator is All Over

**1** The Force:  $F_s = -kx$  where x is the displacement from equilibrium.

## The Harmonic Oscillator is All Over

The Force: F<sub>s</sub> = -kx where x is the displacement from equilibrium.
 The Potential Energy: V<sub>s</sub>(x) = <sup>1</sup>/<sub>2</sub>kx<sup>2</sup>

# The Harmonic Oscillator is All Over

- The Force: F<sub>s</sub> = -kx where x is the displacement from equilibrium.
   The Potential Energy: V<sub>s</sub>(x) = <sup>1</sup>/<sub>2</sub>kx<sup>2</sup>
- Sometimes is a set of the set



# $\mathrm{CO}_2$ Absorption Spectrum - 1

The CO<sub>2</sub> absorption spectrum shown below has a prominent absorption peak at  $k = 2350 \text{ cm}^{-1}$ .

The peak is located at the frequency of light that is absorbed as the  $CO_2$ molecule makes the transition from one quantized energy state to a higher one. The energy of the light is  $E_{\gamma} = hf$  where *h* is Planck's constant.

The atoms vibrate in the asymmetric mode shown here. This particular mode gives  $CO_2$  its greenhouse gas properties.





How hard do the atoms vibrate?

(b)

## How hard do $CO_2$ atoms vibrate? - 1

**()** What is the frequency of the light in the  $2350 \text{ cm}^{-1}$  peak?

What is the frequency of the light in the 2350 cm<sup>-1</sup> peak?
What is the energy of the light in the 2350 cm<sup>-1</sup> peak?

- What is the frequency of the light in the  $2350 \text{ cm}^{-1}$  peak?
- 2 What is the energy of the light in the  $2350 \text{ cm}^{-1}$  peak?
- What is the energy of the ground state of the CO<sub>2</sub> molecule in terms of the separation between successive energy states (Hint: Recall lab results.)?

- What is the frequency of the light in the  $2350 \text{ cm}^{-1}$  peak?
- 2 What is the energy of the light in the  $2350 \text{ cm}^{-1}$  peak?
- What is the energy of the ground state of the CO<sub>2</sub> molecule in terms of the separation between successive energy states (Hint: Recall lab results.)?
- The relationship among the frequency f, the spring constant k, and the masses for the simple harmonic oscillator is

$$f = \frac{1}{2\pi}\omega = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

For the  $CO_2$  molecule it is

$$f = \sqrt{\frac{2m_o + m_C}{m_O m_C}k}$$

where  $m_O$  and  $m_C$  are the oxygen and carbon masses respectively. What is the spring constant of the  $CO_2$  oscillator in this mode?

The relationship among the potential energy, the positions of the atoms in CO<sub>2</sub> and the spring constant is also more complex here than for the simple harmonic oscillator. The potential energy is

$$V(x_{O}) = \frac{2m_{O} + m_{C}}{2m_{C}} 4kx_{O}^{2}$$

where  $x_O$  is the displacement of the oxygen atoms from equilibrium. What is the classical turning point of the oxygen atoms when the  $CO_2$  molecule is in the ground state?

- How does your answer compare with the C - O bond length in carbon dioxide of 1.16 Å?
- What is the maximum acceleration of the oxygen?



# Periodic Chart

| 1         |          |           | B = Solids Hg = |                    | = Liquids  |           | Kr = Gases |           | Pm = Not found in nature |                       |           |           |           |                |           | 18         |          |
|-----------|----------|-----------|-----------------|--------------------|------------|-----------|------------|-----------|--------------------------|-----------------------|-----------|-----------|-----------|----------------|-----------|------------|----------|
| H         |          |           |                 |                    |            |           |            |           |                          |                       |           |           |           |                |           |            | He       |
| 1.00794   | 2        |           |                 |                    |            |           |            |           |                          |                       |           | 13        | 14        | 15             | 16        | 17         | 4.002602 |
| 3         | 4        |           |                 |                    |            |           |            |           |                          |                       |           | 5         | -         | 7              | 8         | 9          | 10       |
| Li        | Be       |           |                 |                    |            |           |            |           |                          |                       |           | В         | C         | N              | 0         | F          | Ne       |
| 6.941     | 9.012182 |           |                 |                    |            |           |            |           |                          |                       |           | 10.811    | 12.0107   | 14.00674       | 15.9994   | 18.9984032 | 20.1/9/  |
| 11        | 12       |           |                 |                    |            |           |            |           |                          |                       |           | 13        | 14        | 15             | 16        | 17         | 18       |
| Na        | IVIG     | 3         | 4               | 5                  | 6          | 7         | 8          | 9         | 10                       | 11                    | 12        | AI        | SI        | P<br>30.973761 | 32.066    | 25 45 27   | Ar       |
| 10        | 24.3030  | 21        | 22              | 22                 | 24         | 25        | 26         | 27        | 20                       | 20                    | 20        | 20.381338 | 20.0000   | 22             | 32.000    | 35,4527    | 33.540   |
| K         | Ĉa       | Śc        | Ťi              | <sup>25</sup><br>V | Cr         | Mn        | Fo         | ć         | Ňi                       | <i>Ĉ</i> <sup>1</sup> | Zn        | Ga        | GA        | Δc             | 54        | Br         | Kr Kr    |
| 39.0983   | 40.078   | 44.955910 | 47.867          | 50.9415            | 51.9961    | 54.938049 | 55.845     | 58.933200 | 58.6534                  | 63.545                | 65.39     | 69.723    | 72.61     | 74.92160       | 78.96     | 79.504     | 83.80    |
| 37        | 38       | 39        | 40              | 41                 | 42         | 43        | 44         | 45        | 46                       | 47                    | 48        | 49        | 50        | 51             | 52        | 53         | 54       |
| Rb        | Sr       | Y         | Zr              | Nb                 | Mo         | Tc        | Ru         | Rh        | Pd                       | Ag                    | Cd        | In        | Sn        | Sb             | Te        |            | Xe       |
| 85.4678   | 87.62    | 88.90585  | 91.224          | 92.90638           | 95.94      | (98)      | 101.07     | 102.90550 | 106.42                   | 196.56655             | 112.411   | 114.818   | 118.710   | 121.760        | 127.60    | 126.90447  | 131.29   |
| 55        | 56       | 71        | 72              | 73                 | 74         | 75        | 76         | 77        | 78                       | 79                    | 80        | 81        | 82        | 83             | 84        | 85         | 86       |
| Cs        | Ba       | Lu        | Hf              | Та                 | W          | Re        | Os         | l Ir      | Pt                       | Au                    | Hg        | TI        | Pb        | Bi             | Po        | At         | Rn       |
| 132.90545 | 137.327  | 174.967   | 178.49          | 180.94.79          | 183.84     | 186.207   | 190.23     | 192.217   | 195.078                  | 196.56655             | 200.59    | 204.3833  | 207.2     | 208.58038      | (209)     | (210)      | (222)    |
| 87        | 88       | 103       | 104             | 105                | 106        | 107       | 108        | 109       | 110                      | 111                   | 112       | 113       | 114       | 115            | 116       |            | 118      |
| Fr        | Ra       | Lr        | Rt              | Db                 | Sg         | Bh        | Hs         | Mt        | Ds                       | Rg                    | Cn        | Uut       | Uuq       | Uup            | Uuh       |            | Uuo      |
| (223)     | (226)    | (262)     | (261)           | (262)              | (263)      | (262)     | (265)      | (266)     | (269)                    | (272)                 | (277)     | (277)     | (277)     | (277)          | (277)     | 1 1        | (277)    |
|           |          |           | 57              | 58                 | 50         | 60        | 61         | 62        | 63                       | 64                    | 65        | 66        | 67        | 68             | 69        | 70         |          |
|           |          |           | 12              | Č                  | Dr         | Nd        | Pm         | Sm        | Eu                       | Gd                    | Th        | Dv        | Ho        | Er             | Tm        | Yh         |          |
|           |          |           | 138.9055        | 140.116            | 140.50765  | 144.24    | (145)      | 150.36    | 151.964                  | 157.25                | 158.92534 | 162.50    | 164.93032 | 167.26         | 168.93421 | 173.04     |          |
|           |          |           | 89              | 90                 | 91         | 92        | 93         | 94        | 95                       | 96                    | 97        | 98        | 99        | 100            | 101       | 102        |          |
|           |          |           | Ac              | Th                 | Pa         | U         | Np         | Pu        | Am                       | Cm                    | Bk        | Cf        | Es        | Fm             | Md        | No         |          |
|           |          |           | 232.0381        | 232.0381           | 231.035888 | 238.0289  | (237)      | (244)     | (243)                    | (247)                 | (247)     | (251)     | (252)     | (257)          | (258)     | (259)      |          |