• Name:

- How many semesters of physics?
- How many semesters of calculus?
- Year at UR (first, sophpomore, ...)?

- The periodic chart orders the chemical elements according to their properties.
- It provides clues to the underlying atomic structure.
- The 'fundamental particles' of the periodic chart are the atoms.
- What is an element?

H					Per	iodi	c Ta	ble (of th	ie El	eme	ents					He
i Li	Be											B	C	N	- 0 H	F	Ne Ne Ne
Na	Mg											1) A	Si Jam	P	S Store	CI	Ar
K	Ca	Sc sc	Ti	D V	Cr.	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	As	Cd	n In In	Sn	50 50 111.000	Te	1 2011	Xe
Cs	Ba	10.11	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg		Pb	Bi	Po	At	Rn
Fr	Ra	15300	Rf	Db Db States	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	E.	Mc	Lv	Ts	Og
		2	a	e i	Pr N	Id P	m S	m	Eu	Sd	rb C	Dy H		Er T	îm Î	(b	u
			C IS	h				Pu A	in C	in it	Bk and	Cf I	ES F	m	Ad f		.C

- The periodic chart orders the chemical elements according to their properties.
- It provides clues to the underlying atomic structure.
- The 'fundamental particles' of the periodic chart are the atoms.
- What is an element?
- Webster's Dictionary: The simplest principles of a subject of study.

H					Per	iodi	c Ta	ble (of th	ne El	eme	ents					He
1	Be											B	C .	2 N N N	- 0 H	F	Ne
Na	Mg											A	SI	P Mark	S Store	CI	Ar
K	Ca	Sc sc	Ti	None	Cr.	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	As	Cd	o In Historica	Sn	Sb unw	Te	1 2011	Xe
CS	Ba	10.11	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	a TI Maria	Pb	Bi	Po	At	Rn
Fr	Ra	15.50	Rf	Db Db States	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	E.	Mc	Lv	Ts	Og
			a		Pr N	id P	m S	m		Sd Sd	rb i	Dy	Ho	Er 1	im i	/b 1	u
				h			Ip I	u A	m	in i	sk.	Cf	Es F	m	Ad 1		ar Ar

- The periodic chart orders the chemical elements according to their properties.
- It provides clues to the underlying atomic structure.
- The 'fundamental particles' of the periodic chart are the atoms.
- What is an element?
- Webster's Dictionary: The simplest principles of a subject of study.
- What are the fundamental particles of the elements?

H	Periodic Table of the Elements											He					
1	Be											B	C	N	10	F	Ne
Na	Mg											Al	SI	P	S	CI	Ar
K	Ca	Sc Halles	Ti	None	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As As Auto Hote	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	As	Cd	n In	Sn	Sb unw	Te	10 1 1200	Xe
CS	Ba	10.11	Hf	Ta	W	Re	Os Internet	Ir	Pt	Au	Hg	u TI Xan	Pb	Bi	Po	At	Rn
Fr	Ra	10.200	Rf	Db Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
			a (Pr N	id P	m (9	m		Sd 1		Dy i		Er	Îm în		u
				h			IP.		im C	in E	Sk Sa	Cf .	Es F	im f	Ad P		an a

- The periodic chart orders the chemical elements according to their properties.
- It provides clues to the underlying atomic structure.
- The 'fundamental particles' of the periodic chart are the atoms.
- What is an element?
- Webster's Dictionary: The simplest principles of a subject of study.
- What are the fundamental particles of the elements?
- Protons and neutrons.

H					Per	iodi	c Ta	ble	of th	ne El	em	ents					He
	Be											B	C	N	- 0 H	F	Ne
Na	Mg											Al	SI	P	IS See	CI	Ar
P.K.I	Ca	Sc.	Ti	Notes	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	TC TC Manual	Ru	Rh	Pd	As	Cd	In	Sn	Sb utree	Te	10 	Xe
Cs In m	Ba	8511	Hf	Та	W	Re	Os	ir Her	Pt	Au	Hg	i H	Pb	Bi	No.	At	Rn
Fr	Ra	15 3 20	Rf	Db Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	F	Mc	Lv	Ts	Og
		L	a	e	Pr 1	Nd P	m S	m	iu d	Gd	rb	Dy	Ho	Er 1	îm 1	/b	u
				h	Pa		P.	u A	m	in i	Bk and	Cf	Es	m	Ad 1		LT.

- The periodic chart orders the chemical elements according to their properties.
- It provides clues to the underlying atomic structure.
- The 'fundamental particles' of the periodic chart are the atoms.
- What is an element?
- Webster's Dictionary: The simplest principles of a subject of study.
- What are the fundamental particles of the elements?
- Protons and neutrons.

What is inside protons and neutrons?

H					Per	iodi	c Tal	ble d	of th	ie El	eme	ents					He
1	Be											B	C	N	-0	F	Ne Ne Ne
Na	Mg												SI	P Max	S S S S S S S S S S S S S S S S S S S	CI	Ar
² K	Ca	Sc sc	Ti	None None	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	El Tc State	Ru	Rh	Pd	As	Cd	° In H	Sn	Sb use	Te	1 2011	Xe
ST. CS Internet	Ba	10.11	Hf	Та	W	Re	Os	TIT IT	Pt	Au	Hg		Pb	Bi	Po	At	Rn
Fr	Ra	15300	Rf	Db Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
		24 10 10	a	e ~	Pr N	d P	m S	mE	iu (Sd 1	ib iii	y H		Er	Îm Î	(b	u
			C IS	h	ja ji	_ 12 1 → 12		u la	im C	im is	sk in	f i	ES F JA	m d	vid i		

The Frontiers of Matter (now)

• The Universe is made of quarks and leptons and the force carriers.

	BOSONS force carriers spin = 0, 1, 2,											
Unified Ele	ectroweak :	spin = 1		Strong (color) spin =1								
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge						
γ photon	0	0		gluon	0	0						
W	80.39	-1										
W ⁺	80.39	+1										
W bosons	91.188	0										
Z boson												

- The atomic nucleus is made of protons and neutrons bound by the strong or color force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,										
Lep	tons spin =1/	2		Quark	S spin	=1/2					
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge					
𝒫L lightest neutrino*	(0-0.13)×10 ⁻⁹	0		u up	0.002	2/3					
e electron	0.000511	-1		d down	0.005	-1/3					
$\mathcal{V}_{M} \hspace{0.1 cm} \stackrel{\text{middle}}{\underset{\text{neutrino}^{\star}}{}} \hspace{0.1 cm}$	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3					
μ muon	0.106	-1		S strange	0.1	-1/3					
$\mathcal{V}_{H} \xrightarrow{\text{heaviest}}_{\text{neutrino}^{*}}$	(0.04-0.14)×10 ⁻⁹	0		🚺 top	173	2/3					
τ tau	1.777	-1		bottom	4.2	-1/3					

8

An electron strikes the quark bound inside a nucleon that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity $\vec{v_o}$ and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the quark make it out of the nucleus?

g

time (t)

10

time (t)

	<u></u>	c .	
lerr\	/ (- 1)	tow	Ie.
JCIT	,	109	· C


```
Jerry Gilfoyle
```


16

time (t)

17

time (t)

18

Hunting for Quarks

19

time (t)

An elevator in the world's tallest building, the Burj Khalifa in Dubai, United Arab Emirates, is moving and its vertical position is described by the following equation

 $x(t) = A + Bt + Ct^2$

where A = 5.0 m, B = 2.1 m/s, and $C = -4.9 \text{ m/s}^2$. What is the instantaneous velocity at any time t? What is the average velocity between two times $t_0 = 0.0 \text{ s}$ and $t_1 = 1.0 \text{ s}$?

Jerry Gilfoyle

Hunting for Quarks

Captain Kirk's Bad Day

The starship Enterprise has lost power and is plunging straight into the heart of a black hole. Its velocity as a function of time is described by

v(t)=F+Gt

where $F = 2.0 \times 10^7 \ m/s$ and $G = 9.0 \times 10^{10} \ m/s^2$.

What is the instantaneous acceleration?

Do the velocity and acceleration versus time plots make sense?

Catching Up

24

At the instant a traffic light turns green, a 'car' starts with a constant acceleration $a = 2.2 \ m/s^2$. At the same instant a truck is 5.0 m behind the car and traveling with a constant speed $v_t = 9.5 \ m/s$. How far does the car travel before overtaking the truck? What do the position versus time plots look like for the car and the truck?

Catching Up

25

At the instant a traffic light turns green, a 'car' starts with a constant acceleration $a = 2.2 \ m/s^2$. At the same instant a truck is 5.0 m behind the car and traveling with a constant speed $v_t = 9.5 \ m/s$. How far does the car travel before overtaking the truck? What do the position versus time plots look like for the car and the truck?

Jerry Gilfoyle

EEEEKKK!!

26

Two trains, one traveling at 20 m/s and the other at 40 m/s, are headed toward one another along a straight, level track. When they are 950 m apart, each engineer sees the other's train and instantly applies the brakes. The slow-moving train stops. The brakes decelerate each train at a rate of 1.0 m/s^2 . Is there a collision? If so, how long after the brakes are applied?

EEEEKKK!!

27

Two trains, one traveling at 20 m/s and the other at 40 m/s, are headed toward one another along a straight, level track. When they are 950 m apart, each engineer sees the other's train and instantly applies the brakes. The slow-moving train stops. The brakes decelerate each train at a rate of 1.0 m/s^2 . Is there a collision? If so, how long after the brakes are applied?

A window washer named Chris Sagger is reported to have fallen (assume starting from rest) 67 meters from a building where he was working, landed on a car, and lived. Suppose the roof of the car was compressed 1.45 m. Ignoring air resistance what is his speed just before hitting the car? Treating his acceleration as constant, how long did it take him to come to a stop after he made contact with the box? What was his acceleration?

Measurement and Uncertainty

Average and Standard Deviation

29

Jerry Gilfoyle

Precision versus Accuracy

30

Jerry Gilfoyle

24 / 41

Understanding some Statistics

Average and Standard Deviation

Understanding some Statistics

Average and Standard Deviation

32

Jerry Gilfoyle

Understanding some Statistics

Average and Standard Deviation

33

Jerry Gilfoyle

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity $\vec{v_o}$ and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the quark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity \vec{v}_o and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the guark make it out of the nucleus?

Changing Motion

Changing Motion

Changing Motion

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity $\vec{v_o}$ and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the quark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity $\vec{v_o}$ and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the quark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the guark an initial velocity \vec{v}_o and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the guark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity \vec{v}_o and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the guark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity \vec{v}_o and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the guark make it out of the nucleus?

An electron strikes the quark bound inside a proton that is a constituent of a lead nucleus in the configuration shown in the figure. The quark is near the surface of the nucleus. The collision gives the quark an initial velocity $\vec{v_o}$ and an acceleration \vec{a} as it moves through the nuclear medium. See below for numbers. Does the quark make it out of the nucleus?

