Physics 305 Test 2


I pledge that I have neither given nor received unauthorized assistance during the completion of this work.


Signature height0pt depth1pt width3in


Instructions:

Multiple-Choice Questions (5 pts. apiece) Clearly circle the best answer among the different choices.

  1. A capacitor is constructed of two square metal plates of area $L^2$ separated by a distance $d$. One half of the space between the plates is filled with a substance of dielectric constant $\kappa_1$. The other half is filled with another dielectric substance with constant $\kappa_2$. Calculate the capacitance of the device assuming the free space capacitance is $C_0$.

    A. $0.5 C_0 \kappa_1\kappa_2/(\kappa_1 + \kappa_2)$ D. $2 C_0 \kappa_1\kappa_2/(\kappa_1 + \kappa_2)$
    B. $(\kappa_1 + \kappa_2)C_0$ E. $(\kappa_1 + \kappa_2)C_0/2$
    C. $\kappa_1\kappa_2 C_0/(\kappa_1 + \kappa_2)$    


    \includegraphics[height=1.0in]{f1.eps}

  2. Use the fundamental concepts of electromagnetism to determine the electric field of an electric dipole $\vec p$ at a distance $\vec r = r \hat r$.

    A. $k(3\hat r \cdot \vec p \hat r - \vec p)/r^3$ D. $k(3\hat r \cdot \vec p \hat r - \vec p)/r^2$
    B. $k\hat r \cdot \vec p /r^3$ E. $k(2\hat r \cdot \vec p \hat r - \vec p)/r^3$
    C. $k\hat r \cdot \vec p /r^2$    


    \includegraphics[height=1.0in]{f2.eps}

  3. The electric potential of a grounded conducting sphere of radius $a$ in a uniform electric field is given as $\phi(r,\theta) = -E_0 r[1 - (a/r)^3]\cos\theta$. Find the surface charge distribution on the sphere.

    A. $\epsilon_0 E_0\sin\theta$ D. $3\epsilon_0 E_0\cos\theta$
    B. $\epsilon_0 E_0\cos\theta$ E. $2\epsilon_0 E_0\sin\theta$
    C. $2\epsilon_0 E_0\cos\theta$    


    \includegraphics[height=0.9in]{f3.eps}

Problems. Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 10 pts. A sphere of radius $R$, centered at the origin, carries charge density

\begin{displaymath}
\rho (r,\theta) = k\frac{R}{r^2} (R-2r)\sin\theta
\end{displaymath}

where $k$ is a constant, and $r$, $\theta$, are the usual spherical coordinates. Find the approximate potential in the dipole approximation for points on the $z$ axis, far from the sphere.
2. 10 pts. A thick spherical shell (inner radius $a$, outer radius $b$) is made of dielectric material with a `frozen-in' polarization

\begin{displaymath}
\vec P(\vec r) = \frac{k}{r} \hat r
\end{displaymath}

where $k$ is a constant and $r$ is the distance from the center (see figure). There is no free charge in the problem. Find the electric field in all three regions using the expression

\begin{displaymath}
\oint \vec D \cdot d\vec A = Q_{f_{enc}}
\end{displaymath}

to find $\vec D$ and then get $\vec E$ from the following.

\begin{displaymath}
\vec D \equiv \epsilon_0 \vec E +\vec P
\end{displaymath}


\includegraphics[height=1.5in]{f5.eps}

3. 15 pts. Find an infinite series for the electric potential in the infinite slot shown below if the boundary at $x=0$ consists of two metal strips: one from $y=0$ to $y=a/2$, is held at a constant potential $V_0$, and the other, from $y=a/2$ to $y=a$, is at potential $-V_0$. In other words, get the general solution for this problem and apply the boundary conditions to obtain an infinite series for the electric potential with a single, unknown coefficient for each term in the series. You do NOT need to determine the unknown coefficient.

\includegraphics[height=1.1in]{f6.eps}

Various and Sundry Equations and Constants



\begin{displaymath}
\int \frac{1}{x}dx = \log x \quad
\int \frac{1}{\sqrt{a^2 + ...
... ) \quad
\int \frac{x}{\sqrt{a^2 + x^2}} dx = \sqrt{a^2 + x^2}
\end{displaymath}


\begin{displaymath}
\int \frac{1}{\left ( a^2 + x^2 \right )^{3/2}} dx = \frac{x...
...a^2 + x^2 \right )^{3/2}} dx = -\frac{1}{\sqrt{a^2+x^2}} \quad
\end{displaymath}


\begin{displaymath}
\int \frac{1}{x^2 + y^2 + (z - z^\prime)^2}dz^\prime = -\fra...
...x^2+y^2}} \quad
\int \cos x \sin^2 x dx = \frac{\sin ^3(x)}{3}
\end{displaymath}


\begin{displaymath}
P_0(x) = 1 \quad P_1(x) = x \quad P_2(x) = \frac{1}{2}\left ...
...1 \right ) \quad P_3(x) = \frac{1}{2}\left ( 5x^3 - 3x\right )
\end{displaymath}


\begin{displaymath}
\frac{\partial^2 X(x)}{\partial x^2} = k^2 X(x) \quad \Rightarrow \quad X(x) = Ae^{kx} + Be^{-kx}
\end{displaymath}


\begin{displaymath}
\frac{\partial^2 Y(y)}{\partial y^2} = -k^2 Y(y) \quad \Rightarrow \quad Y(y) = C\sin(ky) + D\cos(ky)
\end{displaymath}

Speed of Light ($c$) $2.9979\times 10^8~m/s$ proton/neutron mass $1.67\times 10^{-27}~kg$
$R$ $8.31J/K-mole$ $g$ $9.8~m/s^2$
Gravitation constant $6.67 \times 10^{-11}~N-m^2/kg^2$ Earth's radius $6.37\times 10^6~m$
Earth-Moon distance $3.84\times 10^8~m$ Electron mass $9.11\times 10^{-31}~kg$


Physics Equations


\begin{displaymath}
\vec E = \frac{\sigma}{\epsilon_0} \hat n \quad
\sigma = -\...
...c p \equiv \int \vec r^\prime \rho (\vec r^\prime)d\tau^\prime
\end{displaymath}


\begin{displaymath}
V(\vec r) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^\infty \frac...
...prime)^n P_n(\cos\theta^\prime)\rho(\vec r^\prime)d\tau^\prime
\end{displaymath}


\begin{displaymath}
\sigma_b = \vec P\cdot \hat n \qquad \rho_b = -\nabla\cdot \vec P
\end{displaymath}


\begin{displaymath}
\vec D = \epsilon_0\vec E + \vec P \qquad \nabla \times \vec...
... \qquad
\epsilon_r = 1 + \chi_e = \frac{\epsilon}{\epsilon_0}
\end{displaymath}

\includegraphics{coordinates1.ps}

\includegraphics{theorems1.ps}

\includegraphics[height=9.25in]{vectors1.ps}