Magnetic Effects in Matter

Consider the following, semi-classical model of an atom. An unpaired electron follows a circular orbit around the nucleus with a speed v (Figure 1). An external field \vec{B} is applied perpendicular to the place of the electron's orbit (Figure 2).

- 1. What is the magnetic moment associated with the orbital motion before the external field is turned on in terms of e, R, and m_e ?
- 2. What is it after the external field is turned on?
- 3. What is the magnetic susceptibility of metals in this model? Use the results in the table for comparison.

Material	Susceptibility
Bismuth	-16×10^{-5}
Gold	-3.4×10^{-5}
Silver	-2.4×10^{-5}
Copper	-0.97×10^{-5}
Hydrogen	-0.0002×10^{-5}

$\textbf{Linear} \rightarrow \textbf{Rotational Quantities}$

Linear Quantity	Connection	Rotational Quantity
S	$s = r\theta$	$\theta = \frac{s}{r}$
v	$v = r\omega$	$\omega = \frac{v}{r} = \frac{d\theta}{dt}$
a	$a = r\alpha$	$\alpha = \frac{a}{r} = \frac{d\omega}{dt}$
$KE = \frac{1}{2}mv^2$		$KE_R = \frac{1}{2}I\omega^2$
$dW = \vec{F} \cdot d\vec{s}$		$dW = \vec{\tau} \cdot d\vec{\theta}$
$\vec{F} = m\vec{a}$	$\vec{N} = \vec{\tau} = \vec{r} \times \vec{F} = r\vec{F}_{\perp}$	$\vec{\tau} = I\vec{\alpha}$
	$I = \int r^2 dm = \int r^2 \rho d\tau$	

Torque - Rotational Equivalent of Force

© 2006 Brooks/Cole - Thomson

Moments of Inertia

Torque on a Rectangular Current Loop

The rectangular current loop shown below is immersed in a uniform magnetic field $B = B_0 \hat{z}$ with current *I* flowing through it in the direction shown. The loop has width *a* and length *b*.

- 1. What is the force on each straight section of the loop?
- 2. What is the torque exerted on each section of the loop?
- 3. What is the net torque?

Magnetic Effects in Matter

Consider the following, semi-classical model of an atom. An unpaired electron follows a circular orbit around the nucleus with a speed v (Figure 1). An external field \vec{B} is applied perpendicular to the place of the electron's orbit (Figure 2).

- 1. What is the magnetic moment associated with the orbital motion before the external field is turned on in terms of e, R, and m_e ?
- 2. What is it after the external field is turned on?
- 3. What is the magnetic susceptibility of metals in this model? Use the results in the table for comparison.

Material	Susceptibility
Bismuth	-16×10^{-5}
Gold	-3.4×10^{-5}
Silver	-2.4×10^{-5}
Copper	-0.97×10^{-5}
Hydrogen	-0.0002×10^{-5}

Figure 2.

Vector Identities from Griffith's Inside Cover

$$(2) \qquad \vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$

$$(3) \qquad \vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$

$$(4) \qquad \nabla(fg) = f\nabla g + g\nabla f$$

$$(5) \qquad \nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + \vec{B} \times (\nabla \times \vec{A}) + (\vec{A} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{A}$$

$$(6) \qquad \nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + (\vec{A} \cdot (\nabla f))$$

$$(7) \qquad \nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

$$(8) \qquad \nabla \times (f\vec{A}) = f(\nabla \times \vec{A}) - \vec{A} \times (\nabla f)$$

$$(9) \qquad \nabla \times (\vec{A} \times \vec{B}) = (\vec{B} \cdot \nabla)\vec{A} - (\vec{A} \cdot \nabla)\vec{B} + \vec{A}(\nabla \cdot \vec{B}) - \vec{B}(\nabla \cdot \vec{A})$$

$$(10) \qquad \nabla \cdot (\nabla \times \vec{A}) = 0$$

$$(11) \qquad \nabla \times (\nabla f) = 0$$

$$(12) \qquad \nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^{2}\vec{A}$$

Magnetic Effects in Matter

Material	χ_m (measured)	χ_m (calculated)
Bismuth	-16×10^{-5}	-4.3×10^{-5}
Gold	-3.4×10^{-5}	-4.6×10^{-5}
Silver	-2.4×10^{-5}	-4.6×10^{-5}
Copper	-0.97×10^{-5}	-5.2×10^{-5}
Hydrogen	-0.0002×10^{-5}	-8.5×10^{-5}

Magnetic Effects in Matter (and Electric)

Material	χ_m (measured)	χ_m (calculated)
Bismuth	-16×10^{-5}	-4.3×10^{-5}
Gold	-3.4×10^{-5}	-4.6×10^{-5}
Silver	-2.4×10^{-5}	-4.6×10^{-5}
Copper	-0.97×10^{-5}	-5.2×10^{-5}
Hydrogen	-0.0002×10^{-5}	-8.5×10^{-5}
Gas	χ_e^\dagger (measured)	χ_e (calculated)
Hydrogen	2.5×10^{-4}	2.3×10^{-4}
Helium	0.65×10^{-4}	0.71×10^{-4}
Neon	1.3×10^{-4}	1.4×10^{-4}
Argon	5.2×10^{-4}	5.6×10^{-4}

[†] For 1 atm, 20° C.