Let There Be Light!

We now finish our introduction to electromagnetism by completing the list of Maxwell's equations and deriving the properties of light.

1. Show that Maxwell's Equations in a charge-free vacuum give rise to separate differential equations for \vec{E} and \vec{B}.
2. Show the solutions to those differential equations are waves.
3. What is the speed of those waves?
4. What constraints are imposed by Maxwell's equations?

$$
\begin{gathered}
\nabla \cdot \overrightarrow{\mathbf{D}}=\rho \\
\nabla \cdot \overrightarrow{\mathbf{B}}=0 \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\nabla \times \overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{J}}+\frac{\partial \overrightarrow{\mathbf{D}}}{\partial t}
\end{gathered}
$$

Let. Thore Se Llight

Faraday’s Law

A conducting bar moves on two frictionless, parallel rails in a uniform magnetic field directed into the plane. The bar has length l and initial velocity \vec{v}_{i} to the right. What is the electric potential across the bar using the magnetic force law $\vec{F}_{\text {mag }}=Q \vec{v} \times \vec{B}$? Faraday's Law states that

$$
\mathcal{E}=-\frac{d \Phi}{d t}
$$

where \mathcal{E} is the electromotive force or voltage and Φ is the magnetic flux. Does Faraday's Law agree with the result for the potential?

Q2006 Brooks Cole - Thomson

Faraday’s Law

A conducting bar moves on two frictionless, parallel rails in a uniform magnetic field directed into the plane. The bar has length l and initial velocity \vec{v}_{i} to the right. What is the electric potential across the bar using the magnetic force law $\vec{F}_{\text {mag }}=Q \vec{v} \times \vec{B}$? Faraday's Law states that

$$
\mathcal{E}=-\frac{d \Phi}{d t}
$$

where \mathcal{E} is the electromotive force or voltage and Φ is the magnetic flux. Does Faraday's Law agree with the result for the potential?

-2006 Brooks ${ }^{2}$ cole - Thomson

What happens if you change the \vec{B} field?

Maxwell's Equations (so far)

$$
\begin{gathered}
\nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} \\
\nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}} \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\nabla \cdot \overrightarrow{\mathbf{B}}=0
\end{gathered}
$$

Gauss's Law

Ampere's Law

Faraday's Law

Martha's Law

Vector Identities from Griffith's Inside Cover

(1)

$$
\begin{gathered}
\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \\
\nabla(f g)=f \nabla g+g \nabla f
\end{gathered}
$$

$$
\nabla(\vec{A} \cdot \vec{B})=\vec{A} \times(\nabla \times \vec{B})+\vec{B} \times(\nabla \times \vec{A})+(\vec{A} \cdot \nabla) \vec{B}+(\vec{B} \cdot \nabla) \vec{A}
$$

$$
\nabla \cdot(f \vec{A})=f(\nabla \cdot \vec{A})+(\vec{A} \cdot(\nabla f)
$$

$$
\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})
$$

$$
\nabla \times(f \vec{A})=f(\nabla \times \vec{A})-\vec{A} \times(\nabla f)
$$

$$
\nabla \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \nabla) \vec{A}-(\vec{A} \cdot \nabla) \vec{B}+\vec{A}(\nabla \cdot \vec{B})-\vec{B}(\nabla \cdot \vec{A})
$$

$$
\nabla \cdot(\nabla \times \vec{A})=0
$$

$$
\nabla \times(\nabla f)=0
$$

$$
\nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}
$$

Fixing Ampere's Law

Fixing Ampere's Law

Maxwell's Equations (so far)

$$
\begin{aligned}
\nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} & \text { Gauss's Law } \\
\nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}} & \text { Ampere's Law } \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} & \text { Faraday's Law } \\
\nabla \cdot \overrightarrow{\mathbf{B}}=0 & \text { Martha's Law }
\end{aligned}
$$

Evidence for Faraday’s Law

- Lenz's Law.
- Measurement by R. C. Nicklin, Am. J. Phys. 54, 422 (1986).

Maxwell's Equations

$$
\nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{0}}
$$

Gauss's Law

$$
\begin{gathered}
\nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}}+\mu_{0} \epsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t} \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}
\end{gathered}
$$

Faraday's Law

$$
\nabla \cdot \overrightarrow{\mathbf{B}}=0
$$

Martha's Law

Vector Identities from Griffith's Inside Cover

(1)

$$
\begin{gathered}
\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \\
\nabla(f g)=f \nabla g+g \nabla f
\end{gathered}
$$

$$
\nabla(\vec{A} \cdot \vec{B})=\vec{A} \times(\nabla \times \vec{B})+\vec{B} \times(\nabla \times \vec{A})+(\vec{A} \cdot \nabla) \vec{B}+(\vec{B} \cdot \nabla) \vec{A}
$$

$$
\nabla \cdot(f \vec{A})=f(\nabla \cdot \vec{A})+(\vec{A} \cdot(\nabla f)
$$

$$
\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})
$$

$$
\nabla \times(f \vec{A})=f(\nabla \times \vec{A})-\vec{A} \times(\nabla f)
$$

$$
\nabla \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \nabla) \vec{A}-(\vec{A} \cdot \nabla) \vec{B}+\vec{A}(\nabla \cdot \vec{B})-\vec{B}(\nabla \cdot \vec{A})
$$

$$
\nabla \cdot(\nabla \times \vec{A})=0
$$

$$
\nabla \times(\nabla f)=0
$$

$$
\nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}
$$

Traveling Waves

Traveling Waves

Traveling Waves

Traveling Waves

Electromagnetic Waves

Electromagnetic Waves

What Happens to Electromagnetic Waves in Linear Media?

What Happens to Electromagnetic Waves in Linear Media?

Recall Clausius-Mossotti (CM)

$$
\begin{gathered}
\epsilon_{r}=\frac{1+\frac{2 N \alpha}{3 \epsilon_{0}}}{1-\frac{N \alpha}{3 \epsilon_{0}}}=1+\chi_{e} \\
\vec{D}=\epsilon_{0} \epsilon_{r} \vec{E}=\epsilon \vec{E}
\end{gathered}
$$

and the magnetic susceptibility

$$
\begin{gathered}
\chi_{m}=-\frac{1}{1+\frac{16 \pi m_{e} R_{E}}{2 \mu_{0} e^{2}}}=\frac{\mu}{\mu_{0}}-1 \\
\vec{H}=\frac{1}{\mu} \vec{B}
\end{gathered}
$$

What Happens to Electromagnetic Waves in Linear Media?

Recall Clausius-Mossotti (CM)

$$
\begin{gathered}
\epsilon_{r}=\frac{1+\frac{2 N \alpha}{3 \epsilon_{0}}}{1-\frac{N \alpha}{3 \epsilon_{0}}}=1+\chi_{e} \\
\vec{D}=\epsilon_{0} \epsilon_{r} \vec{E}=\epsilon \vec{E}
\end{gathered}
$$

In free space with no charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

and the magnetic susceptibility

$$
\begin{gathered}
\chi_{m}=-\frac{1}{1+\frac{16 \pi m_{e} R_{E}}{2 \mu_{0} e^{2}}}=\frac{\mu}{\mu_{0}}-1 \\
\vec{H}=\frac{1}{\mu} \vec{B}
\end{gathered}
$$

What Happens to Electromagnetic Waves in Linear Media?

Recall Clausius-Mossotti (CM)

$$
\begin{gathered}
\epsilon_{r}=\frac{1+\frac{2 N \alpha}{3 \epsilon_{0}}}{1-\frac{N \alpha}{3 \epsilon_{0}}}=1+\chi_{e} \\
\vec{D}=\epsilon_{0} \epsilon_{r} \vec{E}=\epsilon \vec{E}
\end{gathered}
$$

and the magnetic susceptibility

$$
\begin{gathered}
\chi_{m}=-\frac{1}{1+\frac{16 \pi m_{e} R_{E}}{2 \mu_{0} e^{2}}}=\frac{\mu}{\mu_{0}}-1 \\
\vec{H}=\frac{1}{\mu} \vec{B}
\end{gathered}
$$

In free space with no charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

In a medium with no free charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{D}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

What Happens to Electromagnetic Waves in Linear Media?

Recall Clausius-Mossotti (CM)

$$
\begin{gathered}
\epsilon_{r}=\frac{1+\frac{2 N \alpha}{3 \epsilon_{0}}}{1-\frac{N \alpha}{3 \epsilon_{0}}}=1+\chi_{e} \\
\vec{D}=\epsilon_{0} \epsilon_{r} \vec{E}=\epsilon \vec{E}
\end{gathered}
$$

and the magnetic susceptibility

$$
\begin{gathered}
\chi_{m}=-\frac{1}{1+\frac{16 \pi m_{e} R_{E}}{2 \mu_{0} e^{2}}}=\frac{\mu}{\mu_{0}}-1 \\
\vec{H}=\frac{1}{\mu} \vec{B}
\end{gathered}
$$

In free space with no charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

In a medium with no free charge:

$$
\begin{array}{lc}
\nabla \cdot \vec{D}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

In a linear medium with no free charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu \epsilon \frac{\partial \vec{B}}{\partial t}
\end{array}
$$

What Happens to Electromagnetic Waves in Linear Media?

Recall Clausius-Mossotti (CM)

$$
\begin{gathered}
\epsilon_{r}=\frac{1+\frac{2 N \alpha}{3 \epsilon_{0}}}{1-\frac{N \alpha}{3 \epsilon_{0}}}=1+\chi_{e} \\
\vec{D}=\epsilon_{0} \epsilon_{r} \vec{E}=\epsilon \vec{E}
\end{gathered}
$$

and the magnetic susceptibility

$$
\begin{gathered}
\chi_{m}=-\frac{1}{1+\frac{16 \pi m_{e} R_{E}}{2 \mu_{0} e^{2}}}=\frac{\mu}{\mu_{0}}-1 \\
\vec{H}=\frac{1}{\mu} \vec{B}
\end{gathered}
$$

For nitrogen gas $\left(\mathrm{N}_{2}\right)$:

$$
\begin{aligned}
& n(C M)=\sqrt{\epsilon_{r}}=1.0002939 \\
& n(\text { measured })=1.0002982 \rightarrow 1.0003012
\end{aligned}
$$

In free space with no charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

In a medium with no free charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{D}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

In a linear medium with no free charge:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\mu \epsilon \frac{\partial \vec{B}}{\partial t}
\end{array}
$$

The Mote in God's Eye

Described by Robert Heinlein as the finest Science Fiction book ever, The Mote in God's Eye by Larry Niven and Jerry Pournelle is a story about our First Contact with an alien civilization. The Moties use a laser cannon to shine light on a solar sail and push it across a distance of 35 light-years.

The Mote in God's Eye

Described by Robert Heinlein as the finest Science Fiction book ever, The Mote in God's Eye by Larry Niven and Jerry Pournelle is a story about our First Contact with an alien civilization. The Moties use a laser cannon to shine light on a solar sail and push it across a distance of 35 light-years.

1. What is the expression for the energy per time per area transported by EM waves in vacuum?
2. What is the expression for the pressure of the electromagnetic waves?
3. Assume the sail is 3000 km in diameter, the total mass is $m=4.5 \times 10^{5} \mathrm{~kg}$, and the craft accelerates uniformly for 75 years to reach the halfway point. What is the minimum laser power required?

4. What is the minimum pressure of the light?

Vector Identities from Griffith's Inside Cover

(1)

$$
\begin{gathered}
\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \\
\nabla(f g)=f \nabla g+g \nabla f
\end{gathered}
$$

$$
\nabla(\vec{A} \cdot \vec{B})=\vec{A} \times(\nabla \times \vec{B})+\vec{B} \times(\nabla \times \vec{A})+(\vec{A} \cdot \nabla) \vec{B}+(\vec{B} \cdot \nabla) \vec{A}
$$

$$
\nabla \cdot(f \vec{A})=f(\nabla \cdot \vec{A})+(\vec{A} \cdot(\nabla f)
$$

$$
\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})
$$

$$
\nabla \times(f \vec{A})=f(\nabla \times \vec{A})-\vec{A} \times(\nabla f)
$$

$$
\nabla \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \nabla) \vec{A}-(\vec{A} \cdot \nabla) \vec{B}+\vec{A}(\nabla \cdot \vec{B})-\vec{B}(\nabla \cdot \vec{A})
$$

$$
\nabla \cdot(\nabla \times \vec{A})=0
$$

$$
\nabla \times(\nabla f)=0
$$

$$
\nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}
$$

Maxwell's Equations

$$
\nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{0}}
$$

Gauss's Law

$$
\begin{gathered}
\nabla \times \overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{J}}+\mu_{0} \epsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t} \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}
\end{gathered}
$$

Faraday's Law

$$
\nabla \cdot \overrightarrow{\mathbf{B}}=0
$$

Martha's Law

Light Pressure

Time Averaging

