
EEEEKKKKK!!!!

In January, 1942 a Soviet Ilyushin 4 flown by Lieutenant
I.M.Chisov was badly damaged by German gunfire. At an
altitude of 21,980 feet Lieutenant Chisov fell from the plane.
Unfortunately, he did not have a parachute on when he fell.
He landed on the slopes of a snow-covered ravine and slid
to the bottom. He suffered a fractured pelvis and severe
spinal damage, but lived. By 1974 he had become
Lieutenant Colonel Chisov. How fast was Lieutenant Chisov
moving when he hit the ravine? How long did his fall take?
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The Drag Force

|~Ff | =
1

2
DρAv2

D - drag coefficient (dimen-
sionless).

ρ - air density (kg/m3).

A - Cross sectional area (m2).

v - speed (m/s).
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Resistive Force on Coffee Filters
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The Drag Force

Aerodynamic forces acting on an artillery shell. The force ~W is the drag or
air resistive force, ~La is the lift, ~Fg is gravity, and the point D is the center
of pressure. Note the change in the air resistive force at the speed of
sound.
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Resistive Force on a Baseball

Jonathan Papelbon gives Derek Jeter some chin music at
90 mph (40 m/s). What is the drag coefficient of a baseball?
What is the resistive force at that speed? The mass of a
baseball is 0.145 kg, its radius is 3.7 cm, and its terminal
velocity is measured to be 43 m/s.
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Approximating a Function

The plot below shows an arbitrary curve (black) with the
tangent curve (red) at one point.
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Taylor Series for the Sine function

The plot below shows the sine function. What are the first
two nonzero terms of the Taylor series for the sine function
expanded about the point θ = 0? How close do they come
to the sine function?
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Taylor Series for the Sine function
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The Integral Convergence Test
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Numerical Differentiation of a Curve
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Numerical Differentiation of a Curve
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Numerical Differentiation of a Curve
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Life is a Differential Equation (DE)

Some definitions first

Ordinary DE One independent variable; only total derivatives.
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Life is a Differential Equation (DE)

Some definitions first

Ordinary DE One independent variable; only total derivatives.

Partial DE More than one variable so use partial derivatives.

Order of the DE Highest derivative in the DE.

Degree of the DE Power of the highest order derivative in the DE.

Linear DE No multiplications among dependent variables and
their derivatives.

Homogeneous Every single term contains the dependent variables
or their derivatives.

General Solution Results of integrating the DE; nth order DE require
n conditions to fix all the constants.

Particular Solution General solution plus the n conditions.

Initial Value Problem Find v(t) and y(t) when v(t0) = v0 or y(t0) = y0.
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Solving First-Order, Ordinary DEs

1. The differential equation and the initial conditions are
given. For example

dy

dt
= f(t, y) and y(t0) = y0

and y(t1) is unknown.

2. Divide the range [t0, t1] into pieces.

3. Generate a recursion relationship between adjacent
points.

4. Perform a step-by-step integration.
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Nuclear Decay

The rate of radioactive decay of atomic nuclei is
proportional to the number of nuclei N in the sample so

dN

dt
= −λN

where λ is a constant of proportionality (related to the
half-life) and the negative sign means the number of nuclei
is decreasing. The initial condition is N(t = 0) = N0 = 1000.

1. Write down the analytical solution.

2. Generate an algorithm to solve this differential equation
and apply it for the first three values of N(t) ‘by hand’ for
h = ∆t = 0.1 s and λ = 0.2 s−1.

3. Find the solution for the first sixty seconds.
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Nuclear Decay Results

t(s) Calculation Result Analytic Result
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Solution of dN
dt = −λN using an Euler algorithm

( * initial parameter values * )

N0 = 1000.0;

lambda = 0.2;

t0 = 0.0;

t1 = 60.0;

h = 0.1;

( * starting point of recursion relationship. * )

Nn = N0;

( * make the table * )

table1 = Table[

{t,

Nplus = Nn * (1 - lambda * h);

Nn = Nplus

},

{t, t0 + h, t1, h}];

( * stick the starting point at the front of the table. * )

table1 = Prepend[table1, {t0, N0}];

Results

t (s) N

0.0 1000.0
0.1 980.0
0.2 960.4
0.3 941.2
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The Limits of Accuracy

1. Consider the following code fragment. Why does a 6= b?

a = 1.0 * 10ˆ17 + 1.0 - 1.0 * 10ˆ17;

b = 1* 10ˆ17 + 1 - 1 * 10ˆ17;

Print["a=", a, " b=", b]

a=0. b=1

2. Consider the following function.

∆ = cos θ−
sin(θ + h) − sin(θ − h)

2h

The plot shows the dependence
of the function on the stepsize h.
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PROBLEMS!!!!!!

Original initial conditions.
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The Stability Problem

Red- v+
Blue- v-
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SOLUTIONS!!!!!!

Increase the initial altitude.
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The fix is in.
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The Harmonic Oscillator - Stating the Problem

Hooke’s Law states that

Fs = −kx

where Fs is the force exerted by

a spring (the restoring force) and

x is the displacement from equi-

librium where there is no net force

acting on the mass.

1. What differential equation does x satisfy?

2. What is the solution?

3. How would you test the solution?

4. What is the physical meaning of the constants in the solution?
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The Harmonic Oscillator - The Solution

The solution for Hooke’s Law is

x(t) = A cos(ωt + φ)

where x(t) is the displacement from equilibrium.
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The Simple Harmonic Oscillator - An Example

A harmonic oscillator consists of
a block of mass m = 0.33 kg
attached to a spring with spring
constant k = 400 N/m. See the
figure below. At time t = 0.0 s the
block’s displacement from equi-
librium and its velocity are y =
0.100 m and v = −13.6 m/s. (1)
Find the particular solution for
this oscillator. (2) Use a centered
derivative formula to generate an
algorithm for solving the equation
of motion.
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The Pendulum - Stating the Problem

Hooke’s Law states that

Fs = −kx

where Fs is the force exerted by a spring
(the restoring force) and x is the displace-
ment from equilibrium where there is no
net force acting on the mass. One can
show the similarity between the simple
pendulum and the harmonic oscillator.

1. What differential equation does θ

satisfy for small angles?

2. What is the solution?

3. How would you test the solution?
m
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The Simple Pendulum with Friction

Consider the simple pendulum shown
here. What is the differential equation
describing the motion when the following
forces are included in addition to gravity?
For friction use

Ffriction = −
q

L
v

where q is a constant specific to a partic-
ular body. For the driving force use

Fdriving = FD sin(Ωt)

where FD is the magnitude of the driving
force and Ω is its angular frequency.
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The Physical Pendulum

Consider the rod rotating about an end
point in the figure. Starting from the defi-
nition of the torque ~τ = ~r × ~F ,
(1) derive the differential equation the an-
gular position θ must satisfy.
(2) Derive a new differential equation if
the pendulum is damped by a friction
force ~Ff = −b~v where b is some constant
describing the the pendulum.
(3) Derive a final differential equation if
the pendulum is now also driven by a
force ~Fdrive = FD sin(Ωt)θ̂.
(4) What does the phase space look like
for each set of conditions if the initial con-
ditions are θ0 = 25◦ and ω0 = 0 rad/s?
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Harmonic Oscillator With Coupled Equations - 1

( * Solving the mass on a spring problem.

Initial conditions and parameters * )

x0 = 0.0; ( * initial position in meters * )

v0 = 2.0; ( * initial velocity in m/s * )

t0 = 0.0; ( * initial time in seconds * )

( * set up the first two points.

step size * )

step = 0.1;

t1 = t0 + step;

x1 = x0 + v0 * step;

v1 = v0 - ( step * kspring * x0/mass);

xminus = x0; ( * initial value of x * )

vminus = v0; ( * initial value of v * )

xmid = x1;

vmid = v1;

mass = 0.33; ( * the mass in kg * )

kspring = 0.5; ( * spring constant in N/m * )
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Harmonic Oscillator With Coupled Equations - 2

( * limits of the iterations. since we already have y(t=0) and we

have calculated y(t=step), then the first value in the table

will be for t=2 * step. * )

tmin = 2 * step;

tmax = 25.0;

( * create a table of ordered (t,x). for each component the next v alue is

calculated and then variables are incremented for the next i nteration.

tpos = Table[

{t,

vplus = vminus - (2 * step * kspring/mass) * xmid;

xplus = xminus + (2 * step * vmid);

vminus = vmid;

vmid = vplus;

xminus = xmid;

xmid = xplus

},

{t, tmin, tmax, step}

];
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