
The Comprehensive Test Ban Treaty (CTBT)

• The CTBT bans all nuclear explosions for military

or civilian purposes to limit the proliferation of nu-

clear weapons by cutting a vital link, testing, in

their development.

• A network of seismological, hydroacoustic, infra-

sound, and radionuclide sensors will monitor com-

pliance. Once the Treaty enters into force, on-site

inspection will be provided to check compliance.

• The US has signed the CTBT, but not ratified it.

Red, Blue - ratified

Orange, Azure - signed

Yellow, Cyan - outside treaty



Can an Opponent Cheat on the CTBT?

• U.S. and Russian experiments have demonstrated that seismic signals can be muffled,

or decoupled, for a nuclear explosion detonated in a large underground cavity.

• Such technical scenarios are credible only for yields of at most a few kilotons.

• Seismic component of the International Monitoring System (INS) for the CTBT is to

consist of 170 seismic stations.

• The INS is expected to detect all seismic events

of about magnitude 4 or larger corresponds to an

explosive yield of approximately 1 kiloton (the ex-

plosive yield of 1,000 tons of TNT).

What can be learned from low-yield, sur-

reptitious blasts?

Can it extrapolated to full-up tests?

Demonstration of size of cavity

needed to decouple a 5 kT blast.



Nuclear Weapons 101

• Fissile materials (235U , 233U , 239Pu) are used to make weapons of devastating

power.

• As each nucleus fissions, it emits 2 or so neutrons plus lots of energy. Usually most of

the neutrons leave without striking any other nuclei.

235U + n →
236 U∗

→
140 Xe + 94Sr + 2n + ≈ 200 MeV

• Increasing the density creates a ‘chain reaction’ where the emitted neutrons cause

other fissions in a self-propagating process.

• Only about 8 kg of plutonium or 25 kg of highly-enriched uranium (HEU) is needed is

needed to produce a weapon.

U nuclei
235

neutrons

A Chain Reaction



HEU Gun-Type Design

The figure to the right shows the ‘Little Boy’ design of the

nuclear bomb dropped on Hiroshima. The fissile, 235U is

shown in red. A cordite charge was detonated behind one

of the pieces of 235U accelerating it to a speed of 300 m/s

before it struck the target to form a critical mass (see figure

below). A neutron trigger/initiator was used to start the chain

reaction.



Critical Mass

In the greatest gathering of scientific talent in hu-

man history, the Manhattan Project had the goal

‘to produce a practical military weapon in the form

of a bomb in which the energy is released by a fast

neutron chain reaction’. This chain reaction will

occur when the neutron number density n(~r, t)

grows exponentially in time. Under what condi-

tions will this occur given the fissile material 235U

has a neutron diffusion constant D = 105 m2/s

and a neutron creation rate C = 108 s−1? Treat

the system as a one-dimensional one of length L

in the range 0 < x < L. Neutrons that reach the

boundaries escape and no longer contribute to the

reaction so require that n(x = 0, t) = n(x =

L, t) = 0.

Nuclear fireball 1 ms af-

ter detonation showing rope

tricks (Tumbler Snapper).



The Diffusion Equation - Getting Started

• Consider a portion of a distribution of mat-

ter in a pipe of area A where the number

density n depends on position in the x di-

rection.

An(x)dx

dx

x

AJ  (x)x

A

AJ  (x+dx)x

• Frick’s Law describes the flow of material

through volume

Jx = −D
∂n

∂x

where Jx is the x-component of the flow

of material (units: particles/m2
− s),

n is the number density of the material,

and D is a constant of proportionality

(unit:m2/s).



The Diffusion Equation - An Example

Consider the one-dimensional diffusion equation corresponding to particles

in a long pipe of length L.

∂n(x, t)

∂t
= D

∂2n

∂x2
+ Cn

where n(x, t) is the particle density, D is the self-diffusion coefficient, and

C is the creation rate. Restrict the problem to the case where there are no

sources of particles (C = 0).

1. What is the general solution to this differential equation?

2. What restrictions are there on the parameters of the solution?

3. Suppose the particle density goes to zero at the ends of the pipe so

n(x = 0, t) = n(x = L, t) = 0. What is the particular solution?



The Diffusion Equation - Discretization

A schematic view of the initial values and boundary conditions.

x=0 x=L
t=0

Initial condition (red)

Boundary conditions (black)

Solution in the 
interior

x

t



The Diffusion Equation - Discretization

A schematic view of the initial values and boundary conditions.

x=0 x=L
t=0

Initial condition (red)

Boundary conditions (black)

Solution in the 
interior

x

t

Now discretize the initial values and boundary conditions.

x=0
t=0

Boundary conditions (black)

Solution in the 
interior

x

t

Initial condition (red)

x=L



The Diffusion Equation - The Couplings
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The Diffusion Equation - The Couplings
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The Diffusion Equation - The Couplings

x=0 x=L
t=0

x
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Euler’s Relation

Euler’s relation (also known as Euler’s formula) is considered the first bridge between the

fields of algebra and geometry, as it relates the exponential function to the trigonometric

sine and cosine functions.

Euler’s relation states that

eix = cosx + i sinx

Start by noting that

ik =



























1 k ≡ 0

i k ≡ 1

−1 k ≡ 2

−i k ≡ 3

Using the Taylor series expansions of ex, sinx and cosx it follows that

eix =

∞
∑

n=0

inxn

n!
=

∞
∑

n=0

(

x4n

(4n)!
+

ix4n+1

(4n + 1)!
−

x4n+2

(4n + 2)!
−

ix4n+3

(4n + 3)!

)



Because the series expansion above is absolutely convergent for all x, we can rearrange

the terms of the series as

eix =
∞
∑

n=0

(−1)n
x2n

(2n)!
+ i

∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
= cosx + i sinx



The Diffusion Equation - The Couplings

Explicit method.

x=0
t=0

x

t

x=L

Implicit method.

x=0

x

t

x=L
t=0



Sample Code
( * Define diffusion parameters. * )

Dn = 0.001; ( * self diffusion coefficient in mˆ2/shake * )

Ln = 0.1; ( * size of the region in meters. * )

( * parameters for the algorithm. * )

tmax = 10.0; ( * maximum time in shakes. * )

Nxsteps = 20; ( * steps in x. * )

Ntsteps = 1000; ( * steps in time. * )

dx = Ln/Nxsteps; ( * stepsize in x (m). * )

dt = tmax/Ntsteps; ( * stepsize in time. * )

( * set up the distribution of particles at t=0 so there is always

a spike of the same size in the middle. * )

n0 = Table[{x, 0, 0}, {x, 0, Ln, dx}];

n0[[Nxsteps/2 + 1, 3]] = 1/dx ;

( * initialize the main array. * )

particle = Table[0.0, {i, 1, Nxsteps}, {n, 1, Ntsteps}];

( * put in the initial conditions for t=0. * )

Do[particle[[i, 1]] = n0[[i, 3]], {i, 1, Nxsteps}];



( * The boundary condition at x=0. * )

Do[particle[[1, n]] = 10.0, {n, 2, Ntsteps}];

( * The boundary condition at x=L. * )

Do[particle[[Nxsteps, n]] = 0.6, {n, 2, Ntsteps}];

( * constants for the recursion relation. * )

A0 = 1 - (2 * dt * Dn)/dxˆ2;

B0 = (dt * Dn)/dxˆ2;

( * main loop. outer loop over time and inner loop over position. * )

Do[

Do[particle[[i, n]] = A0 * particle[[i, n - 1]] +

B0* particle[[i + 1, n - 1]] +

B0* particle[[i - 1, n - 1]],

{i, 2, Nxsteps - 1}]( * end of inner loop * ),

{n, 2, Ntsteps}]( * end of outer loop * )
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