
The Comprehensive Test Ban Treaty (CTBT)

The CTBT bans all nuclear explosions for military
or civilian purposes to limit the proliferation of nu-
clear weapons by cutting a vital link, testing, in their
development.

A network of seismological, hydroacoustic, infra-
sound, and radionuclide sensors will monitor com-
pliance. Once the Treaty enters into force, on-site
inspection will be provided to check compliance.

The US has signed the CTBT, but not ratified it.

Red, Blue - ratified
Orange, Azure - signed
Yellow, Cyan - outside
treaty
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Can an Opponent Cheat on the CTBT?

U.S. and Russian experiments have demonstrated that seismic signals can be muffled,
or decoupled, for a nuclear explosion detonated in a large underground cavity.

Such technical scenarios are credible only for yields of at most a few kilotons.

Seismic component of the International Monitoring System (INS) for the CTBT is to
consist of 170 seismic stations.

The INS is expected to detect all seismic events of
about magnitude 4 or larger corresponds to an ex-
plosive yield of approximately 1 kiloton (the explo-
sive yield of 1,000 tons of TNT).

What can be learned from low-yield, sur-
reptitious blasts?

Can it extrapolated to full-up tests? Demonstration of size of
cavity needed to decou-
ple a 5 kT blast.
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Nuclear Weapons 101

Fissile materials (235U , 233
U , 239

Pu) are used to make weapons of devastating
power.
As each nucleus fissions, it emits 2 or so neutrons plus lots of energy. Usually most of
the neutrons leave without striking any other nuclei.

235
U + n →

236
U
∗
→

140
Xe +

94
Sr + 2n + ≈ 200 MeV

Increasing the density creates a ‘chain reaction’ where the emitted neutrons cause
other fissions in a self-propagating process.
Only about 8 kg of plutonium or 25 kg of highly-enriched uranium (HEU) is needed is
needed to produce a weapon.

U nuclei
235

neutrons

A Chain Reaction
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HEU Gun-Type Design

The figure to the right shows the ‘Little Boy’ de-
sign of the nuclear bomb dropped on Hiroshima.
The fissile, 235U is shown in red. A cordite charge
was detonated behind one of the pieces of 235U

accelerating it to a speed of 300 m/s before it
struck the target to form a critical mass (see fig-
ure below). A neutron trigger/initiator was used to
start the chain reaction.
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Critical Mass

In the greatest gathering of scientific
talent in human history, the Manhattan
Project had the goal ‘to produce a practi-
cal military weapon in the form of a bomb
in which the energy is released by a fast
neutron chain reaction’. This chain re-
action will occur when the neutron num-
ber density n(~r, t) grows exponentially in
time. Under what conditions will this oc-
cur given the fissile material 235U has a
neutron diffusion constant D = 105 m2/s

and a neutron creation rate C = 108 s−1?

Treat the system as a one-dimensional one of length L in the range
0 < x < L. Neutrons that reach the boundaries escape and no longer
contribute to the reaction so require that n(x = 0, t) = n(x = L, t) = 0.

Nuclear fireball 1 ms after det-
onation showing rope tricks
(Tumbler Snapper).
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The Diffusion Equation - Getting Started

Consider a portion of a distribution of
matter in a pipe of area A where the num-
ber density n depends on position in the
x direction.

An(x)dx

dx

x

AJ  (x)x

A

AJ  (x+dx)x

Frick’s Law describes the flow of material
through volume

Jx = −D
∂n

∂x

where Jx is the x-component of the flow
of material (units: particles/m2

− s), n

is the number density of the material,
and D is a constant of proportionality
(unit:m2/s).
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The Diffusion Equation - An Example

Consider the one-dimensional diffusion equation corresponding to
particles in a long pipe of length L.

∂n(x, t)

∂t
= D

∂2n

∂x2
+ Cn

where n(x, t) is the particle density, D is the self-diffusion coefficient, and
C is the creation rate. Restrict the problem to the case where there are no
sources of particles (C = 0).

1. What is the general solution to this differential equation?

2. What restrictions are there on the parameters of the solution?

3. Suppose the particle density goes to zero at the ends of the pipe so
n(x = 0, t) = n(x = L, t) = 0. What is the particular solution?
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The Diffusion Equation - Discretization

A schematic view of the initial values and boundary conditions.

x=0 x=L
t=0

Initial condition (red)

Boundary conditions (black)

Solution in the 
interior

x

t
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The Diffusion Equation - Discretization

A schematic view of the initial values and boundary conditions.

x=0 x=L
t=0

Initial condition (red)

Boundary conditions (black)

Solution in the 
interior

x

t

Now discretize the initial values and boundary conditions.

x=0
t=0

Boundary conditions (black)

Solution in the 
interior

x

t

Initial condition (red)

x=L
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The Diffusion Equation - The Couplings - 1

x=0
t=0

x

t

x=L
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The Diffusion Equation - The Couplings - 2

x=0
t=0

x

t

x=L
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The Diffusion Equation - The Couplings - 3

x=0 x=L
t=0

x

t

Nuclear Diffusion – p. 11/20



Euler’s Relation - 1

Euler’s relation (also known as Euler’s formula) is considered the first
bridge between the fields of algebra and geometry, as it relates the
exponential function to the trigonometric sine and cosine functions.

Euler’s relation states that

eix = cos x + i sinx

Start by noting that

ik =



























1 k ≡ 0

i k ≡ 1

−1 k ≡ 2

−i k ≡ 3
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Euler’s Relation - 2

Using the Taylor series expansions of ex, sinx and cos x it follows that

eix =
∞
∑

n=0

inxn

n!
=

∞
∑

n=0

(

x4n

(4n)!
+

ix4n+1

(4n + 1)!
−

x4n+2

(4n + 2)!
−

ix4n+3

(4n + 3)!

)

Because the series expansion above is absolutely convergent for all x, we
can rearrange the terms of the series as

eix =
∞
∑

n=0

(−1)n
x2n

(2n)!
+ i

∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
= cos x + i sin x
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The Diffusion Equation - The Couplings - 4

Explicit method.

x=0
t=0

x

t

x=L

Implicit method.

x=0

x

t

x=L
t=0
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Sample Code - 1

( * Define diffusion parameters. * )

Dn = 0.001; ( * self diffusion coefficient in mˆ2/shake * )

Ln = 0.1; ( * size of the region in meters. * )

( * parameters for the algorithm. * )

tmax = 10.0; ( * maximum time in shakes. * )

Nxsteps = 20; ( * steps in x. * )

Ntsteps = 1000; ( * steps in time. * )

dx = Ln/Nxsteps; ( * stepsize in x (m). * )

dt = tmax/Ntsteps; ( * stepsize in time. * )

( * set up the distribution of particles at t=0 so there is always

a spike of the same size in the middle. * )

n0 = Table[{x, 0, 0}, {x, 0, Ln, dx}];

n0[[Nxsteps/2 + 1, 3]] = 1/dx ;

( * initialize the main array. * )

particle = Table[0.0, {i, 1, Nxsteps}, {n, 1, Ntsteps}];
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Sample Code - 2

( * put in the initial conditions for t=0. * )

Do[particle[[i, 1]] = n0[[i, 3]], {i, 1, Nxsteps}];

( * The boundary condition at x=0. * )

Do[particle[[1, n]] = 10.0, {n, 2, Ntsteps}];

( * The boundary condition at x=L. * )

Do[particle[[Nxsteps, n]] = 0.6, {n, 2, Ntsteps}];

( * constants for the recursion relation. * )

A0 = 1 - (2 * dt * Dn)/dxˆ2;

B0 = (dt * Dn)/dxˆ2;

( * main loop. outer loop over time and inner loop over position. * )

Do[

Do[particle[[i, n]] = A0 * particle[[i, n - 1]] +

B0* particle[[i + 1, n - 1]] +

B0* particle[[i - 1, n - 1]],

{i, 2, Nxsteps - 1}]( * end of inner loop * ),

{n, 2, Ntsteps}]( * end of outer loop * )
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The Code - 1

( * Define diffusion parameters. * )

Dn = 0.001; ( * self diffusion coefficient in mˆ2/shake * )

Cn = 1.0; ( * Creation rate in fraction/shake. * )

Ln = 0.13; ( * size of the region in meters. * )

( * parameters for the algorithm. * )

tmax = 10.0; ( * maximum time in shakes. * )

Nxsteps = 40; ( * steps in x. * )

Ntsteps = 3000; ( * steps in time. * )

dx = Ln/Nxsteps; ( * stepsize in x (m). * )

dt = tmax/Ntsteps; ( * stepsize in time (shakes). * )

( * set up the distribution of neutrons at t=0 so there is always

a spike of the same size in the middle. * )

n0 = Table[{x, 0, 0}, {x, 0, Ln, dx}];

n0[[IntegerPart[Nxsteps/2], 3]] = 1/dx ;

( * some test parameters. * )

tsigma = dxˆ2/(2 * Dn);
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The Code - 2

( * monitor the choice of parameters. * )

Print["tsigma=", tsigma, " shakes, dt=", dt, " shakes, L=", Ln, " m"]

( * initialize the main array. * )

neutron = Table[0.0, {i, 1, Nxsteps}, {n, 1, Ntsteps}];

( * put in the initial conditions for t=0. * )

Do[neutron[[i, 1]] = n0[[i, 3]], {i, 1, Nxsteps}];

( * The boundary condition at x=0. * )

Do[neutron[[1, n]] = 0.0, {n, 2, Ntsteps}];

( * The boundary condition at x=L. * )

Do[neutron[[Nxsteps, n]] = 0.0, {n, 2, Ntsteps}];

( * constants for the recursion relation. * )

A0 = 1 - (2 * dt * Dn)/dxˆ2 + dt * Cn;

B0 = (dt * Dn)/dxˆ2;
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The Code - 3

( * main loop. outer loop over time and inner loop over position. * )

Do[

Do[neutron[[i, n]] =

A0* neutron[[i, n - 1]] + B0 * neutron[[i + 1, n - 1]] +

B0* neutron[[i - 1, n - 1]],

{i, 2, Nxsteps - 1}]( * end of inner loop * ),

{n, 2, Ntsteps}] ( * end of outer loop * )

( * plotting the results in the middle of the x range. * )

xcounter = IntegerPart[Nxsteps/2];

xvalue = dx * xcounter;

t1 = Table[{dt * (n - 1), neutron[[xcounter, n]]}, {n, 1, Ntsteps}];

t1a = Table[t1[[n, 2]], {n, 2, Ntsteps}];

p1 = ListLogLogPlot[t1,

PlotRange -> {{dt, tmax}, {Automatic, Automatic}}, Frame - > True,

FrameLabel -> {"t (shakes)", "n (inverse meters)",

StringForm["Neutron Diffusion, Ln=‘‘ m", Ln], ""}, Joined -> True,

BaseStyle -> Large, PlotStyle -> Thickness[0.005],

LabelStyle -> Directive[Larger], ImageSize -> 7 * 72]
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