The Pendulum - Stating the Problem
The physics of the pendulum evokes a wide range
of applications from circuits to ecology. We start
with a simple pendulum consisting of a point mass

on a negligibly light string.

1. Show the simple pendulum obey’s Hooke’s

Law Fy = —kx for small angles where FJ

Is the force exerted by a spring (the restor-

ing force) and x is the displacement from the

equilibrium point.
. What differential equation does x satisfy?
. What is the solution?
. How would you prove the solution is correct?

. What is the physical meaning of the constants

in the solution?




The Simple Pendulum - The Solution

The solution for Hooke’s Law is

x(t) = Acos(wt + @)

where x(t) is the displacement from equilibrium.

A Cosine Curve

Period




The Simple Pendulum - An Example

A harmonic oscillator consists of a block
of mass m = 0.33 kg attached to
a spring with spring constant k =
400 N/m. See the figure below. At
time ¢t = 0.0 s the block’s displacement

from equilibrium and its velocity are x =

0.100 m and v = —13.6 m/s. Find the

particular solution for this oscillator. Use

a centered derivative formula to generate
an algorithm for solving the equation of

motion.

)




The Simple Pendulum with Friction

Consider the simple pendulum shown
here. What is the differential equation
describing the motion when the following
forces are included in addition to gravity?

For friction use

q
Ffriction — _Zv

where ¢ is a constant specific to a partic-

ular body. For the driving force use

Fdriving = I'p SlH(Qt)
mgcos 0

where Fp is the magnitude of the driving

force and €2 is its angular frequency.




Moments of Inertia

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Objects
With Different Geometries

Hoop or thin _ It N H()Ilnw cylinder ﬂ
cylindrical shell E s 5
[(:.\l = J\f[]{ﬂ = — [(“_\.[ 9 :‘I(]\’| + Ry

8
‘. gz

Solid cylinder Rectangular plate
or disk s

1 9 9
Tem= = M(a® + %)
Iom = 2 MR? 12

© 2008 Brooks/Cole - Thomson

Long thin rod : Long thin & ! 4
with rotation axis rod with
through center rotation axis
through end
Iow =5 ML? 1

12 = L st
I ZML

Solid sphere =% Thin spherical

9 - shell
](‘M = ?) MR- I [[’2
i EMi= L

22008 Brooks/Cale - Thomson




The Physical Pendulum

Consider the rod rotating about an end point in the

figure. Starting from the definition of the torque

—

T=rxF

(1) derive the differential equation the angular po-

sition @ must satisfy.

(2) Derive a new differential equation if the pen-

dulum is damped by a friction force ﬁf = —Dv

where b is some constant describing the the pen-
dulum.

(3) Derive a final differential equation if the pen-
dulum is now also driven by a force ﬁdm’ve =
Fp sin(t)6.

(4) What does the phase space look like for each

set of conditions if the initial conditions are 85 =
25° and wg = 0 rad/s?




Nonlinear, Physical Pendulum Phase Space and Time Series

Phase Space for y=25° (red), 8y=24° (black)
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Nonlinear, Damped, Physical Pendulum Phase Space and Time Series

Phase Space for y=25° (red), 8y=24° (black)
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Nonlinear, Damped, Driven, Physical Pendulum Phase Space and Time Series

Phase Space for §y=25° (red), §y=24° (black)




Code for Nonlinear, Damped, Driven, Physical Pendulum

(* Initial conditions and parameters *)
thO = 25.0 =Pi/180; ( * initial position in meters
w0 = 0.0; ( =+ initial velocity in m/s *)

t0 = 0.0; ( =* initial time in seconds *)
grav = 9.8; ( * acceleration of gravity *)
length = 14.7; ( * length of pendulum *)
mass = 0.245; ( * mass of pendulum =)

(* driving force amplitude and friction force. See below for mo
gDrag = 0.6; ( * drag coefficient *)

DriveForce = 11.8; ( * DriveForce = 11.8; cool plot value
DriveFreq = 0.67; ( * driving force angular frequency *)
DrivePeriod = 2  *Pi/DriveFreq; ( * period of the driving force

(* step size  *)
step = 0.10;

(* limits of the iterations. since we already have theta(t=0) a nd we \
have calculated theta(t=step) then the first value in the ta ble will \
be for t=2 =*step. *)

tmin = 2 *step;

tmax = 80.0;

(* condense the constants into coefficients for the appropria te terms. *)
fl 1 + (3 *=qDrag *step/(2 +*mass*length));

f2 3 *DriveForce =*(step™2)/(2 * length);

f3 = -3 *grav *(step™2)/(2 * length);

f4 = -1 + (3 =qgDrag *step/(2 *mass*length));




(* set up the first two points. *)

tl = t0 + step;

thl = thO + wO = step;

(* get rid of the previous results for the table and proceed

Clear[pdispl]
Clear[tdispl]

(* A centered second derivative formula is used to generate a
iterative solution for the mass on a spring.
first load the starting point values for the algorithm.
thmid = thO; (  =*starting value of theta *)
thplus = thi, ( * second value \
of theta  *)
tmid = t0;

(* create a table of ordered (theta,w). for each component the n ext
value is calculated first and then the variables are increme nted in
preparation for the next interation. *)
pdispl = {{thO, wO}};
tdispl = {{t0, thO}};
Do[thminus = thmid,

thmid = thplus;

tmid = tmid + step;

thplus = (f2 +Sin[DriveFreq *t] + 2 =*thmid + f3 =*Sin[thmid] +

f4 =thminus)/f1; wmid = (thplus - thminus)/(2 * step);

pdispl = Append[pdispl, {thmid, wmid}] ;

tdispl = Append[tdispl, {tmid, thmid}] ,

{t, tmin, tmax, step}

I;




Visualizing Chaos - The Phase Space Trajectory
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Visualizing Chaos - Stroboscopic Pictures




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Poincare Section




Visualizing Chaos - The Time Series

Time Series of the Physical Pendulum
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Calculating Chaos - The Poincare Series - 1

(* initial conditions and parameters *)
t0 = 0.0;

x0 = 1.0;

vOo = 0.2;

step = 0.01;

(* get the second and third points on the curve

tl = t0 + step;

x1 X0 + step =*VO;

X2 = 2+xx1 - X0 - (step  xstep *x1);
vl (x2 - x0)/(2 * step);

(* put the first point in the table *)
MyTable = {{x0, vO0}, {x1, v1}};

(* Use a Do loop and store the points when t = n\[Pi]. A centered fo rmula is used to
approximate the second derivative. Set parameters needed t o test when to store the data.
TimeTest = Pi;

PeriodCounter = 1;

(* first point of the algorithm
Xminus = XxO;

xmid = x1;

xplus = x2;

tmin = t1 + step;

tmax = 50.0;




Calculating Chaos - The Poincare Section - 2

Do[xminus = xmid;

xmid = xplus;

xplus = 2 *xmid - xminus - (step * step * xmid);

vmid = (xplus - xminus)/(2 * step);

Ift > TimeTest,

MyTable = Append[MyTable, {xmid, vmid}];
PeriodCounter = PeriodCounter + 1;
TimeTest = PeriodCounter * 2% Pj

1,

{t, tmin, tmax, step}




