
The Pendulum - Stating the Problem
The physics of the pendulum evokes a wide range

of applications from circuits to ecology. We start

with a simple pendulum consisting of a point mass

on a negligibly light string.

1. Show the simple pendulum obey’s Hooke’s

Law Fs = −kx for small angles where Fs

is the force exerted by a spring (the restor-

ing force) and x is the displacement from the

equilibrium point.

2. What differential equation does x satisfy?

3. What is the solution?

4. How would you prove the solution is correct?

5. What is the physical meaning of the constants

in the solution? m
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The Simple Pendulum - The Solution

The solution for Hooke’s Law is

x(t) = A cos(ωt + φ)

where x(t) is the displacement from equilibrium.
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The Simple Pendulum - An Example

A harmonic oscillator consists of a block

of mass m = 0.33 kg attached to

a spring with spring constant k =

400 N/m. See the figure below. At

time t = 0.0 s the block’s displacement

from equilibrium and its velocity are x =

0.100 m and v = −13.6 m/s. Find the

particular solution for this oscillator. Use

a centered derivative formula to generate

an algorithm for solving the equation of

motion.
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The Simple Pendulum with Friction

Consider the simple pendulum shown

here. What is the differential equation

describing the motion when the following

forces are included in addition to gravity?

For friction use

Ffriction = −

q

L
v

where q is a constant specific to a partic-

ular body. For the driving force use

Fdriving = FD sin(Ωt)

where FD is the magnitude of the driving

force and Ω is its angular frequency.
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Moments of Inertia



The Physical Pendulum
Consider the rod rotating about an end point in the

figure. Starting from the definition of the torque

~τ = ~r × ~F

(1) derive the differential equation the angular po-

sition θ must satisfy.

(2) Derive a new differential equation if the pen-

dulum is damped by a friction force ~Ff = −D~v

where b is some constant describing the the pen-

dulum.

(3) Derive a final differential equation if the pen-

dulum is now also driven by a force ~Fdrive =

FD sin(Ωt)θ̂.

(4) What does the phase space look like for each

set of conditions if the initial conditions are θ0 =

25◦ and ω0 = 0 rad/s?
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Nonlinear, Physical Pendulum Phase Space and Time Series
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Nonlinear, Damped, Physical Pendulum Phase Space and Time Series
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Nonlinear, Damped, Driven, Physical Pendulum Phase Space and Time Series
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Code for Nonlinear, Damped, Driven, Physical Pendulum

( * Initial conditions and parameters * )

th0 = 25.0 * Pi/180; ( * initial position in meters * )

w0 = 0.0; ( * initial velocity in m/s * )

t0 = 0.0; ( * initial time in seconds * )

grav = 9.8; ( * acceleration of gravity * )

length = 14.7; ( * length of pendulum * )

mass = 0.245; ( * mass of pendulum * )

( * driving force amplitude and friction force. See below for mo re * )

qDrag = 0.6; ( * drag coefficient * )

DriveForce = 11.8; ( * DriveForce = 11.8; cool plot value * )

DriveFreq = 0.67; ( * driving force angular frequency * )

DrivePeriod = 2 * Pi/DriveFreq; ( * period of the driving force * )

( * step size * )

step = 0.10;

( * limits of the iterations. since we already have theta(t=0) a nd we \

have calculated theta(t=step) then the first value in the ta ble will \

be for t=2 * step. * )

tmin = 2 * step;

tmax = 80.0;

( * condense the constants into coefficients for the appropria te terms. * )

f1 = 1 + (3 * qDrag * step/(2 * mass* length));

f2 = 3 * DriveForce * (stepˆ2)/(2 * length);

f3 = -3 * grav * (stepˆ2)/(2 * length);

f4 = -1 + (3 * qDrag * step/(2 * mass* length));



( * set up the first two points. * )

t1 = t0 + step;

th1 = th0 + w0 * step;

( * get rid of the previous results for the table and proceed * )

Clear[pdispl]

Clear[tdispl]

( * A centered second derivative formula is used to generate a

iterative solution for the mass on a spring.

first load the starting point values for the algorithm. * )

thmid = th0; ( * starting value of theta * )

thplus = th1; ( * second value \

of theta * )

tmid = t0;

( * create a table of ordered (theta,w). for each component the n ext

value is calculated first and then the variables are increme nted in

preparation for the next interation. * )

pdispl = {{th0, w0}};

tdispl = {{t0, th0}};

Do[thminus = thmid;

thmid = thplus;

tmid = tmid + step;

thplus = (f2 * Sin[DriveFreq * t] + 2 * thmid + f3 * Sin[thmid] +

f4 * thminus)/f1; wmid = (thplus - thminus)/(2 * step);

pdispl = Append[pdispl, {thmid, wmid}] ;

tdispl = Append[tdispl, {tmid, thmid}] ,

{t, tmin, tmax, step}

];



Visualizing Chaos - The Phase Space Trajectory
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Visualizing Chaos - Stroboscopic Pictures



Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Poincare Section
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Visualizing Chaos - The Time Series
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Calculating Chaos - The Poincare Series - 1
( * initial conditions and parameters * )

t0 = 0.0;

x0 = 1.0;

v0 = 0.2;

step = 0.01;

( * get the second and third points on the curve * )

t1 = t0 + step;

x1 = x0 + step * v0;

x2 = 2 * x1 - x0 - (step * step * x1);

v1 = (x2 - x0)/(2 * step);

( * put the first point in the table * )

MyTable = {{x0, v0}, {x1, v1}};

( * Use a Do loop and store the points when t = n\[Pi]. A centered fo rmula is used to

approximate the second derivative. Set parameters needed t o test when to store the data. * )

TimeTest = Pi;

PeriodCounter = 1;

( * first point of the algorithm * )

xminus = x0;

xmid = x1;

xplus = x2;

tmin = t1 + step;

tmax = 50.0;



Calculating Chaos - The Poincare Section - 2
Do[xminus = xmid;

xmid = xplus;

xplus = 2 * xmid - xminus - (step * step * xmid);

vmid = (xplus - xminus)/(2 * step);

If[t > TimeTest,

MyTable = Append[MyTable, {xmid, vmid}];

PeriodCounter = PeriodCounter + 1;

TimeTest = PeriodCounter * 2* Pi

],

{t, tmin, tmax, step}

]


