### **The Pendulum - Stating the Problem**

The physics of the pendulum evokes a wide range of applications from circuits to ecology. We start with a simple pendulum consisting of a point mass on a negligibly light string.

- 1. Show the simple pendulum obey's Hooke's Law  $F_s = -kx$  for small angles where  $F_s$  is the force exerted by a spring (the restoring force) and x is the displacement from the equilibrium point.
- 2. What differential equation does x satisfy?
- 3. What is the solution?
- 4. How would you prove the solution is correct?
- 5. What is the physical meaning of the constants in the solution?





#### **The Simple Pendulum - The Solution**

The solution for Hooke's Law is

 $x(t) = A\cos(\omega t + \phi)$ 

where x(t) is the displacement from equilibrium.

A Cosine Curve



#### **The Simple Pendulum - An Example**

A harmonic oscillator consists of a block of mass  $m = 0.33 \ kg$  attached to a spring with spring constant k400 N/m. See the figure below. At time  $t = 0.0 \ s$  the block's displacement from equilibrium and its velocity are x = $0.100 \ m$  and  $v = -13.6 \ m/s$ . Find the particular solution for this oscillator. Use a centered derivative formula to generate an algorithm for solving the equation of motion.



#### **The Simple Pendulum with Friction**

Consider the simple pendulum shown here. What is the differential equation describing the motion when the following forces are included in addition to gravity? For friction use

$$F_{friction} = -\frac{q}{L}v$$

where q is a constant specific to a particular body. For the driving force use

$$F_{driving} = F_D \sin(\Omega t)$$

where  $F_D$  is the magnitude of the driving force and  $\Omega$  is its angular frequency.





### **Moments of Inertia**

© 2006 Brooks/Cole - Thomson

# **The Physical Pendulum**

Consider the rod rotating about an end point in the figure. Starting from the definition of the torque

$$\vec{\tau} = \vec{r} \times \vec{F}$$

(1) derive the differential equation the angular position  $\theta$  must satisfy.

(2) Derive a new differential equation if the pendulum is damped by a friction force  $\vec{F}_f = -D\vec{v}$ where *b* is some constant describing the the pendulum.

(3) Derive a final differential equation if the pendulum is now also driven by a force  $\vec{F}_{drive} = F_D \sin(\Omega t) \hat{\theta}$ .

(4) What does the phase space look like for each set of conditions if the initial conditions are  $\theta_0 = 25^{\circ}$  and  $\omega_0 = 0 \; rad/s$ ?



#### Nonlinear, Physical Pendulum Phase Space and Time Series



#### Nonlinear, Damped, Physical Pendulum Phase Space and Time Series



#### Nonlinear, Damped, Driven, Physical Pendulum Phase Space and Time Series



#### Code for Nonlinear, Damped, Driven, Physical Pendulum

```
(* Initial conditions and parameters *)
th0 = 25.0*Pi/180; (* initial position in meters *)
w0 = 0.0; (* initial velocity in m/s *)
t0 = 0.0; (* initial time in seconds *)
grav = 9.8; (* acceleration of gravity *)
length = 14.7; (* length of pendulum *)
mass = 0.245; (* mass of pendulum *)
(* driving force amplitude and friction force. See below for more *)
gDrag = 0.6; (* drag coefficient *)
DriveForce = 11.8; (* DriveForce = 11.8; cool plot value *)
DriveFreq = 0.67; (* driving force angular frequency *)
DrivePeriod = 2*Pi/DriveFreq; (* period of the driving force *)
(* step size *)
step = 0.10;
(* limits of the iterations. since we already have theta(t=0) and we \setminus
have calculated theta(t=step) then the first value in the table will \setminus
be for t=2*step. *)
tmin = 2*step;
tmax = 80.0;
(* condense the constants into coefficients for the appropriate terms. *)
f1 = 1 + (3*gDrag*step/(2*mass*length));
f2 = 3*DriveForce*(step^2)/(2*length);
f3 = -3*grav*(step^2)/(2*length);
f4 = -1 + (3*qDraq*step/(2*mass*length));
```

```
(* set up the first two points. *)
t1 = t0 + step;
th1 = th0 + w0*step;
(* get rid of the previous results for the table and proceed *)
Clear[pdispl]
Clear[tdispl]
(* A centered second derivative formula is used to generate a
iterative solution for the mass on a spring.
   first load the starting point values for the algorithm. *)
thmid = th0; (*starting value of theta *)
thplus = th1;
               (* second value \setminus
of theta *)
tmid = t0;
(* create a table of ordered (theta,w). for each component the next
value is calculated first and then the variables are incremented in
preparation for the next interation. *)
pdispl = \{ \{ th0, w0 \} \};
tdispl = {{t0, th0}};
Do[thminus = thmid;
   thmid
              = thplus;
  tmid = tmid + step;
           = (f2*Sin[DriveFreq*t] + 2*thmid + f3*Sin[thmid] +
  thplus
      f4*thminus)/f1; wmid = (thplus - thminus)/(2*step);
  pdispl = Append[pdispl, {thmid, wmid}] ;
  tdispl = Append[tdispl, {tmid, thmid}] ,
  {t, tmin, tmax, step}
  1;
```

# **Visualizing Chaos - The Phase Space Trajectory**



 $\theta_0 = 10^\circ$ 

# **Visualizing Chaos - Stroboscopic Pictures**



# **Visualizing Chaos - The Poincare Section** 2 $\omega(rad/s)$ 0 -2-3 -23 -1 0 2 1 $\theta$ (rad) $\theta_0 = 10^\circ$













#### **Calculating Chaos - The Poincare Series - 1**

(\* initial conditions and parameters \*)

```
t0 = 0.0;
x0 = 1.0i
v0 = 0.2;
step = 0.01;
(* get the second and third points on the curve *)
t1 = t0 + step;
x1 = x0 + step*v0;
x^{2} = 2 \times x^{1} - x^{0} - (step \times step \times x^{1});
v1 = (x2 - x0)/(2*step);
(* put the first point in the table *)
MyTable = \{ \{x0, v0\}, \{x1, v1\} \};
(* Use a Do loop and store the points when t = n \setminus [Pi]. A centered formula is used to
approximate the second derivative. Set parameters needed to test when to store the data. *)
TimeTest = Pi;
PeriodCounter = 1;
(* first point of the algorithm *)
xminus = x0;
xmid = x1;
xplus = x2i
tmin = t1 + step;
tmax = 50.0;
```

#### **Calculating Chaos - The Poincare Section - 2**