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Welcome to Physics 131!

The exercises in this manual have been developed to support an investigative physics course that emphasizes
active learning. Your written work will consist primarily of documenting your class activities by filling in the
entries in the spaces provided in the units. The entries consist of observations, derivations, calculations, and
answers to questions. Although you may use the same data and graphs as your partner(s) and discuss concepts
with your classmates, all entries should reflect your own understanding of the concepts and the meaning of the
data and graphs you are presenting. Thus, each entry should be written in your own words. It is very important
to your success in this course that your entries reflect a sound understanding of the phenomena you are observing
and analyzing.

Some of these exercises have been taken from the Workshop Physics project at Dickinson College and the Tools
for Scientific Thinking project at Tufts University and modified for use at the University of Richmond. Others
have been developed locally. We wish to acknowledge the support we have received for this project from the
University of Richmond and the Instrumentation and Laboratory Improvement program of the National Science
Foundation.

∗Current address: Germanna Community College, Fredericksburg, VA
†Current address: Department of Physics, George Mason University, Fairfax, VA
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LAB 1 POSITION VS. TIME GRAPHS

Lab 1 Position vs. Time Graphs1

Name: Lab Partner(s):

Objectives
• To learn about two of the ways that physicists can describe motion in one dimension: words and graphs.
• To learn how to relate graphs of position vs. time to the motions they represent.

Apparatus
• Capstone software (P_Graphs.cap experiment file)
• Masking tape
• Wireless motion sensor
• Wooden board

Introduction
The focus of this unit on kinematics is to be able to describe your position as a function of time using words
and graphs. You will use a wireless motion sensor connected to a computer to learn to describe one-dimensional
motion.
The motion sensor sends out a series of sound pulses that are of too high a frequency to hear (ultrasonic). These
pulses reflect from objects in the vicinity of the motion sensor and some of the sound energy returns to the sensor.
The computer is able to record the time it takes for reflected sound waves to return to the sensor and then, by
knowing the speed of sound in air, figure out how far away the reflecting object is. There are several things to
watch out for when using a motion sensor. (1) Do not get closer than 0.15 meters from the sensor because it
cannot record reflected pulses which come back too soon. (2) The ultrasonic waves come out in a cone of about
15◦. It will see the closest object. Be sure there is a clear path between the object whose motion you want to
track and the motion sensor. (3) The motion sensor is very sensitive and will detect slight motions. You can try
to glide smoothly along the floor, but don’t be surprised to see small bumps in velocity graphs. (4) Some objects
like bulky sweaters are good sound absorbers and may not be “seen” well by a motion sensor. Hold a wooden
board in front of you when doing the activities below so the motion sensor can “see” a smooth surface.
Position vs. Time Graphs of Your Motion
The purpose of this unit is to learn how to relate graphs of position as a function of time to the motions they
represent. How does a position vs. time graph look when you move slowly? Quickly? What happens when you
move toward the motion sensor? Away? After completing the next few activities, you should be able to look at a
position vs. time graph and describe the motion of the object. You should also be able to look at the motion of
an object and sketch a graph representing that motion.
Note that the motion sensor measures the distance of an object from the sensor, and that the motion sensor is
located at the origin of each graph. It is common to refer to the distance of an object from some origin as the
position of the object. Therefore, it is better to refer to these graphs as position vs. time graphs than distance
vs. time graphs.
You will use the Capstone software to do the following activities. Launch the P_Graphs.cap file by going to the
Phys131 folder on the desktop. Next, turn on the sensor at your station by pressing the power button located on
its side (when on, the status LED will blink). In Capstone, select Hardware Setup in the Tools palette. In
Hardware Setup, the sensors are ordered by proximity to the device. To connect a sensor to the computer via
Bluetooth, select the correct address that matches the Device ID Number (XXX-XXX) found on the motion
sensor at your station.
To start a data run, click the Record button in the Controls palette. To stop a data run, click the Stop button
in the Controls palette. After a data run, the graph can be expanded by clicking on the Scale to Fit button in

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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LAB 1 POSITION VS. TIME GRAPHS

the upper left corner of the Graph window. Multiple data sets can be displayed on the same graph. Data can be
removed from the graph by opening the Delete Last Run menu on the Controls palette and selecting Delete
All Runs or Delete Run #X. When you are finished with the activities, choose Exit from the File menu and
do not save this activity.

Before you begin the activities, you should mark a position scale on the floor. To do this, position one person at
approximately 1 meter in front of the motion sensor and take data for 1 second. The computer will display a
horizontal line showing the position measured by the sensor. The person standing in front of the sensor should
then adjust their position and the procedure repeated until the 1 meter position is established. Mark the 1 meter
position on the floor with a piece of masking tape and then mark the 2, 3 and 4 meter positions using the 2
meter stick.

Activity 1: Making Position vs. Time Graphs

Make position-time graphs for the following motions and sketch the graph you observe in each case:

(a) Starting at 0.5 m, walk away from the origin (i.e., the motion sensor) slowly and steadily.

Time

Po
sit

io
n

(b) Walk away from the origin medium-fast and steadily.

Time

Po
sit

io
n

(c) Walk toward the origin slowly and steadily.

Time

Po
sit

io
n
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LAB 1 POSITION VS. TIME GRAPHS

(d) Describe the difference between the graph you made by walking away slowly and the one made by walking
away more quickly.

(e) Describe the difference between the graph made by walking toward and the one made walking away from the
origin.

Activity 2: Predicting a Position vs. Time Graph

(a) Suppose you were to start 1.0 m in front of the motion sensor and walk away slowly and steadily for 4 seconds,
stop for 4 seconds, and then walk toward the sensor quickly. Sketch your prediction on the axes below using a
dashed line.

0 3 6 9 12 15
0

1

2

3

Time (s)

Po
sit

io
n

(m
)

(b) Test your prediction by moving in the way described and making a graph of your motion with the motion
sensor. Sketch the trace of your actual motion on the above graph with a solid line.

(c) Is your prediction the same as the final result? If not, describe how you would move to make a graph that
looks like your prediction.
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Activity 3: Matching Position vs. Time Graphs

0 4 8 12 16 20
0

2

4

Time (s)

Po
sit

io
n

(m
)

(a) Describe in your own words how you would move in order to match the graph shown above.

(b) Move to match the above graph on the computer screen. You may try a number of times. It helps to work as
a team. Get the times right. Get the positions right. Do this for yourself. (Each person in your group should do
their own match. You will not learn very much by just watching!)

(c) What was the difference in the way you moved to produce the two differently sloped parts of the graph you
just matched?

(d) Make curved position vs. time graphs like those shown below.

Time

Po
sit

io
n

Graph 1

Time

Po
sit

io
n

Graph 2

(e) Describe how you must move to produce a position vs. time graph with each of the shapes shown.

Graph 1 answer:

Graph 2 answer:
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LAB 1 POSITION VS. TIME GRAPHS

(f) What is the general difference between motions which result in a straight-line position vs. time graph and
those that result in a curved-line position vs. time graph?

Homework
Answer the following questions in the spaces provided.
1.What do you do to create a horizontal line on a position-time graph?

Time

Po
sit

io
n

2. How do you walk to create a straight line that slopes up?

Time

Po
sit

io
n

3. How do you walk to create a straight line that slopes down?

Time

Po
sit

io
n

4. How do you move so the graph goes up steeply at first, then continues up gradually?

Time

Po
sit

io
n

5. How do you walk to create a U-shaped graph?

Time

Po
sit

io
n
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LAB 1 POSITION VS. TIME GRAPHS

Answer the following about the two objects A and B, whose motion produced the following position-time graphs.

6. (a) Which object is moving faster? (b) Which starts ahead? Define what you mean by “ahead.”

(c) What does the intersection mean?

B

A

Time

Po
sit

io
n

7. (a) Which object is moving faster? (b) Which object has a negative velocity according to the convention we
have established?

A

B

Time

Po
sit

io
n

8. (a) Which object is moving faster? (b) Which starts ahead? Define what you mean by “ahead.”

A

B

Time

Po
sit

io
n

Sketch the position-time graph corresponding to each of the following descriptions of the motion of an object.

9. The object moves with a steady (constant) velocity away from the origin.

Time

Po
sit

io
n
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10. The object is standing still.

Time

Po
sit

io
n

11. The object moves with a steady (constant) velocity toward the origin for 5 seconds and stands still for 5
seconds.

Time

Po
sit

io
n

12. The object moves with a steady velocity away from the origin for 5 seconds, then reverses direction and
moves at the same speed toward the origin for 5 seconds.

Time

Po
sit

io
n

13. The object moves away from the origin, starting slowly and speeding up.

Time

Po
sit

io
n
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LAB 2 VELOCITY VS. TIME GRAPHS

Lab 2 Velocity vs. Time Graphs1

Name: Lab Partner(s):

Objectives
• To acquire an intuitive understanding of speed and velocity in one dimension.
• To learn how to relate graphs of velocity vs. time to the motions they represent.

Apparatus
• Capstone software (V_Graphs.cap experiment file)
• Wireless motion sensor
• Wooden board

Introduction
You have already plotted your position as a function of time. Another way to represent your motion during an
interval of time is with a graph which describes how fast and in what direction you are moving from moment
to moment. How fast you move is known as your speed. Velocity is a quantity which takes into account your
speed and the direction you are moving. It is the rate of change of position with respect to time. Thus, when
you examine the motion of an object moving along a line, its velocity can be positive or negative depending on
whether the object is moving in the positive or negative direction.

Graphs of velocity over time are more challenging to create and interpret than those for position. A good way to
learn to interpret them is to create and examine velocity vs. time graphs of your own body motions, as you will
do in the next few activities.

Activity 1: Making Velocity vs. Time Graphs
To make the graphs in the following activities, open the V_Graphs.cap application in the Phys131 folder. Turn on
the sensor at your station. To connect it to the computer via Bluetooth, select Hardware Setup and select the
correct address that matches its Device ID Number (XXX-XXX). To start a data run, click the Record button.
To stop a data run, click the Stop button.

(a) Make a velocity graph by walking away from the sensor slowly and steadily. Try again until you get a graph
you’re satisfied with and then sketch your result on the graph that follows. (We suggest you draw smooth patterns
by ignoring smaller bumps that are mostly due to your steps.)

0 1 2 3 4 5
−2

−1

0

1

2

Time (s)

Ve
lo

cit
y

(m
/s

)

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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LAB 2 VELOCITY VS. TIME GRAPHS

(b) Make a velocity graph, walking away from the sensor steadily at a medium speed. Sketch your graph below.

0 1 2 3 4 5
−2

−1

0

1

2

Time (s)

Ve
lo

cit
y

(m
/s

)

(c) Make a velocity graph, walking toward the sensor slowly and steadily. Sketch your graph below.

0 1 2 3 4 5
−2

−1

0

1

2

Time (s)

Ve
lo

cit
y

(m
/s

)

(d) What is the most important difference between the graph made by slowly walking away from the sensor and
the one made by walking away more quickly?

(e) How are the velocity vs. time graphs different for motion away and motion toward the sensor?
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Activity 2: Predicting a Velocity vs. Time Graph

Suppose you were to undergo the following sequence of motions: (1) walk away from the sensor slowly and steadily
for 6 seconds, (2) stand still for 6 seconds, (3) walk toward the sensor steadily about twice as fast as before.

(a) Use a dashed line in the graph that follows to record your prediction of the shape of the velocity graph that
will result from the motion described above.

0 4 8 12 16 20
−2

−1

0

1

2

Time (s)

Ve
lo

cit
y

(m
/s

)

(b) Compare predictions with your partner(s) and see if you can all agree. Use a solid line to sketch your group
prediction in the graph above.

(c) Adjust the sampling time to 15 s and then test your prediction. Repeat your motion until you are confident
that it matches the description in words and then draw the actual graph on the axes below. Be sure the 6-second
stop shows clearly.

0 4 8 12 16 20
−2

−1

0

1

2

Time (s)

Ve
lo

cit
y

(m
/s

)

(d) Did your prediction match your real motion? If not, what misunderstanding of what elements of the graph
did you have?
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Velocity Vectors

The two ideas of speed and direction can be combined and represented by vectors. A velocity vector is represented
by an arrow pointing in the direction of motion. The length of the arrow is drawn proportional to the speed; the
longer the arrow, the larger the speed. If you are moving toward the right, your velocity vector can be represented
by the arrow shown below.

 
𝑣⃗𝑣 

If you were moving twice as fast toward the right, the arrow representing your velocity vector would look like:
 

𝑣⃗𝑣 

while moving twice as fast toward the left would be represented by the following arrow:
 

𝑣⃗𝑣 

What is the relationship between a one-dimensional velocity vector and the sign of velocity? This depends on the
way you choose to set the positive x-axis.

 

0 + 
Origin Pos. 𝑥𝑥 axis 

negative velocity 

positive velocity 

0 + 
Origin Pos. 𝑥𝑥 axis 

positive velocity 

negative velocity 

In both diagrams the top vectors represent velocity toward the right. In the left diagram, the x-axis has been
drawn so that the positive x-direction is toward the right. Thus the top arrow represents positive velocity.
However, in the right diagram, the positive x-direction is toward the left. Thus the top arrow represents negative
velocity. Likewise, in both diagrams the bottom arrows represent velocity toward the left. In the left diagram
this is negative velocity, and in the right diagram it is positive velocity.

Activity 3: Sketching Velocity Vectors

Sketch below velocity vectors representing the three parts of the motion described in the prediction you made in
Activity 2.

(a) Walking slowly away from the sensor:

(b) Standing still:

(c) Walking rapidly toward the sensor:

18
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Activity 4: Matching a Velocity Graph

(a) Describe how you think you will have to move in order to match the velocity graph shown below.

0 4 8 12 16 20
−1

0

1

Time (s)

Ve
lo

cit
y

(m
/s

)

(b) Move in such a way that you can reproduce the graph shown. You may have to practice a number of times to
get the movements right. Work as a team and plan your movements. Get the times right. Get the velocities right.
You and each person in your group should take a turn. Then sketch your group’s best match on the above graph.

(c) Is it possible for an object to move so that it produces an absolutely vertical line on a velocity-time graph?
Explain.

(d) Did you run into the motion sensor on your return trip? If so, why did this happen? How did you solve the
problem? Does a velocity graph tell you where to start? Explain.
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Homework

Answer the following questions in the spaces provided.

1. How do you move to create a horizontal line in the positive part of a velocity-time graph, as shown below?

−

0

+

Time

Ve
lo

cit
y

2. How do you move to create a straight-line velocity-time graph that slopes up from zero, as shown below?

−

0

+

Time

Ve
lo

cit
y

3. How do you move to create a straight-line velocity-time graph that slopes down, as shown below?

−

0

+

Time

Ve
lo

cit
y

4. How do you move to make a horizontal line in the negative part of a velocity-time graph, as shown below?

−

0

+

Time

Ve
lo

cit
y
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5. The velocity-time graph of an object is shown below. Figure out the total change in position (displacement) of
the object. Show your work.

Displacement = ____________ meters.

0 2 4 6 8 10
0

2

4

Time (s)

Ve
lo

cit
y

(m
/s

)

6. The velocity graph below shows the motion of two objects, A and B. Answer the following questions separately.
Explain your answers when necessary. (a) Is one faster than the other? If so,which one is faster? (A or B) (b)
What does the intersection mean? (c) Can one tell which object is “ahead”? (define “ahead”) (d) Does either
object A or B reverse direction? Explain.

A

B

Time

Ve
lo

cit
y

7. The velocity graph below shows the motion of two objects, A and B. Answer the following questions separately.
Explain your answers when necessary. (a) Is one faster than the other? If so,which one is faster? (A or B) (b)
What does the intersection mean? (c) Can one tell which object is “ahead”? (define “ahead”) (d) Does either
object A or B reverse direction? Explain.

A

B

Time

Ve
lo

cit
y
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An object moves along a line (the + position axis). Sketch the velocity-time graph corresponding to each of the
following descriptions of its motion.

8. The object is moving away from the origin at a constant velocity.

−

0

+

Time
Ve

lo
cit

y

9. The object is standing still.
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10. The object moves toward the origin at a steady (constant) velocity for 10 s and then stands still for 10 s.
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11. The object moves away from the origin at a steady (constant) velocity for 10 s, reverses direction and moves
back toward the origin at the same speed for 10 s.
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LAB 3 RELATING POSITION AND VELOCITY GRAPHS

Lab 3 Relating Position and Velocity Graphs1

Name: Lab Partner(s):

Apparatus
• Capstone software (P_V_Graphs.cap experiment file)
• Wireless motion sensor
• Wooden board

Introduction
You have looked at position and velocity vs. time graphs separately. Since position vs. time and velocity vs. time
graphs are different ways to represent the same motion, it ought to be possible to figure out the velocity at which
someone is moving by examining their position vs. time graph. Conversely, you ought to be able to figure out
how far someone has traveled (change in position) from a velocity vs. time graph.

Activity 1: Predicting Velocity Graphs from Position Graphs
Open the P_V_Graphs.cap application in the Phys131 folder. Turn on the sensor at your station and connect it
to the computer via Bluetooth. For some of the runs it may be necessary to adjust the time axis for one of the
graphs so that the time scales are the same for the position and velocity graphs.
(a) Carefully study the position graph shown below and predict the velocity vs. time graph that would result
from the motion. Using a dashed line, sketch your prediction of the corresponding velocity vs. time graph on the
velocity axes.
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11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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LAB 3 RELATING POSITION AND VELOCITY GRAPHS

(b) After each person in your group has sketched a prediction, test your prediction by matching the position
vs. time graph shown. When you have made a good duplicate of the position graph, sketch your actual graph
over the existing position vs. time graph. Use a solid line to draw the actual velocity graph on the same graph
with your prediction. (Do not erase your prediction).

(c) How would the position graph be different if you moved faster? Slower?

(d) How would the velocity graph be different if you moved faster? Slower?

Activity 2: Average Velocity Calculations

(a) Find your average velocity during the time you were moving at constant speed from your velocity graph in
the previous activity. To do this, use the Statistics function on the graph menu bar to determine the average
velocity and the standard deviation on the left part of the graph (where the velocity is approximately constant).
See Appendix A: Capstone for instructions on how to do this.

Average value of the velocity: m/s

Standard deviation: m/s (This can be taken as an uncertainty.)

Average velocity with uncertainty: m/s

(b) Average velocity during a particular time interval can also be calculated as the change in position divided by
the change in time. (The change in position is often called the displacement.) By definition, this is also the slope
of the position vs. time graph for that time period. Select the position vs. time graph and open the Delta Tool
function on the Graph menu bar. Set the cursor on one point on the position graph, right click on this point and
select Show Delta Tool. There will then be two cursors. Set one cursor on one point on the position graph and
the other on another point on the graph. The changes in position and time will then be shown on the graph. For
a more accurate answer, use two points as far apart as possible but still typical of the motion, and within the
time interval over which you took velocity readings in part (a). Record the values of ∆x and ∆t here:

(c) Divide the change in position by the change in time to calculate the average velocity. Show your calculation
here:

(d) Is the average velocity positive or negative? Is this what you expected?

24



LAB 3 RELATING POSITION AND VELOCITY GRAPHS

(e) Does the average velocity you just calculated from the position graph fall within the range of values determined
in part (a) from the velocity graph? Would you expect them to agree? How would you account for any differences?

Activity 3: Finding Position from a Velocity Graph

(a) Carefully study the velocity graph that follows. Using a dashed line, sketch your prediction of the corresponding
position graph on the top set of axes. (Assume that you started at the 1-meter mark.)
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(b) After each person has sketched a prediction, do your group’s best to duplicate the bottom (velocity vs. time)
graph by walking. When you have made a good duplicate of the velocity vs. time graph, draw your actual result
over the existing velocity vs. time graph. Use a solid line on the top graph to draw the actual position vs. time
graph on the same axes with your prediction. Do not erase your prediction.

(c) How can you tell from a velocity vs. time graph that the moving object has changed direction?

(d) What is the velocity at the moment the direction changes?
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LAB 3 RELATING POSITION AND VELOCITY GRAPHS

(e) Is it possible to actually move your body (or an object) to make vertical lines on a position vs. time graph?
Why or why not? What would the velocity be for a vertical section of a position vs. time graph?

(f) How can you tell from a position vs. time graph that your motion is steady (motion at a constant velocity)?

(g) How can you tell from a velocity vs. time graph that your motion is steady (constant velocity)?

Homework
1. Draw the velocity graphs for an object whose motion produced the position-time graphs shown below on the
left. Note: Unlike most real objects, you can assume these objects can change velocity so quickly that it looks
instantaneous with this time scale.
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LAB 3 RELATING POSITION AND VELOCITY GRAPHS

2. Draw careful graphs below of position and velocity for a cart that (a) moves away from the origin at a slow and
steady (constant) velocity for the first 5 seconds; (b) moves away at a medium-fast, steady (constant) velocity
for the next 5 seconds; (c) stands still for the next 5 seconds; (d) moves toward the origin at a slow and steady
(constant) velocity for the next 5 seconds; (e) stands still for the last 5 seconds.
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LAB 4 CHANGING MOTION

Lab 4 Changing Motion1

Name: Lab Partner(s):

Objectives

• To learn how to relate graphs of acceleration vs. time to the motions they represent.

• To understand the relationship between position vs. time, velocity vs. time, and acceleration vs. time graphs.

Introduction: Velocity and Acceleration Graphs

We are interested in having you learn to describe simple motions in which the velocity of an object is changing.
In order to learn to describe motion in more detail for some simple situations, you will be asked to observe and
describe the motion of a dynamics cart on a track. Although graphs and words are still important representations
of these motions, you will also be asked to draw velocity vectors, arrows that indicate both the direction and
speed of a moving object. Thus, you will also learn how to represent simple motions with velocity diagrams.

In the last session, you looked at position vs. time and velocity vs. time graphs of the motion of your body as you
moved at a “constant” velocity. The data for the graphs were collected using a motion detector. Your goal in
this session is to learn how to describe various kinds of motion in more detail. It is not enough when studying
motion in physics to simply say that “the object is moving toward the right” or “it is standing still.” You have
probably realized that a velocity vs. time graph is better than a position vs. time graph when you want to know
how fast and in what direction you are moving at each instant in time as you walk. When the velocity of an
object is changing, it is also important to know how it is changing. The rate of change of velocity is known as the
acceleration.

In order to get a feeling for acceleration, it is helpful to create and learn to interpret velocity vs. time and
acceleration vs. time graphs for some relatively simple motions of a cart on a track. You will be observing the
motion of the cart as it moves at a constant velocity and as it changes its velocity at a constant rate.

Apparatus

• Capstone software (P_V_A_Graphs.cap experiment file)

• Dynamics track

• Lab stand

• Wireless smart cart

Activity 1: Graphs of Constant Velocity

(a) Based on your observations of the motions of your body in the last session, what would the position and
velocity graphs look like if a cart were to move at a constant velocity in the positive direction, starting at the
origin? Sketch your predictions with dashed lines on the axes that follow.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Acceleration is defined as the time rate of change of velocity. Sketch your prediction of the cart’s acceleration
on the axes below using a dashed line.
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(c) To test your predictions, open the P_V_A_Graphs.cap application in the Phys131 folder. The wireless smart
cart includes built-in sensors which measure its position (relative to its starting point), velocity, and acceleration.
Turn on the cart at your station and connect it to the computer via Bluetooth. At the beginning of the experiment,
the measurement from the built-in acceleration sensor may not be zero when the acceleration is actually zero. To
zero (or tare) the sensor, select the desired sensor (in this case, the Smart Cart Acceleration Sensor) in the
Controls palette and then click Zero Sensor Now while the cart is at rest.
Give the cart a push in the positive direction (defined by the x-axis printed on the top of the cart) along the
level track and graph its motion. Try several times until you get a fairly constant velocity. Sketch your results
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LAB 4 CHANGING MOTION

with solid lines on the axes shown above. The acceleration vs. time graphs may exhibit small fluctuations due to
irregularities in the motion of the cart. You should ignore these fluctuations and draw smooth patterns.

(d) Did your graphs agree with your predictions? What characterizes constant velocity motion on a position
vs. time graph?

(e) What characterizes constant velocity motion on a velocity vs. time graph?

(f) What characterizes constant velocity motion on an acceleration vs. time graph?

Activity 2: Representing Acceleration

To find the average acceleration of the cart during some time interval (the average time rate of change of its
velocity), you must measure its velocity at two different times, calculate the difference between the final value
and the initial value and divide by the time interval.

To find the acceleration vector from two velocity vectors, you must first find the vector representing the change
in velocity by subtracting the initial velocity vector from the final one. Then you divide this vector by the time
interval.

(a) Calculate the average acceleration during some time interval from your velocity graph in Activity 1. Does the
result agree with your acceleration graph in Activity 1?

(b) The diagram below shows the positions of the cart at equal time intervals. (This is like taking snapshots of
the cart at equal time intervals.) At each indicated time, sketch, and label, a vector above the cart which might
represent the velocity of the cart at that time while it is moving at a constant velocity in the positive direction.

 

଴ݐ ൌ 0 s  ଵݐ ൌ 1 s ଶݐ ൌ 2 s ଷݐ ൌ 3 s 

 ଴ݔ  ଵݔ ଶݔ  ଷݔ

(c) Show how you would find the vector representing the change in velocity between the times t1 = 1 s and t2 = 2
s by creating a vector diagram using the vectors above. From the resultant vector, what value would you calculate
for the acceleration? Is this value in agreement with the acceleration graph you obtained in Activity 1?
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LAB 4 CHANGING MOTION

Activity 3: Graphs Depicting Speeding Up

In this activity you will look at velocity and acceleration graphs of the motion of a cart when its velocity is
changing. You will be able to see how these two representations of the motion are related to each other when the
cart is speeding up.

(a) Predict the shape of the position, velocity, and acceleration vs. time graphs for a cart moving in the positive
direction while speeding up at a constant rate. Sketch your predictions on the following axes using dashed lines.
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(b) To test your predictions, use the lab stand to raise the track several centimeters at one end. Release the cart
from rest near the raised end of the track and create graphs of its motion as it moves in the positive direction
(defined by the x-axis printed on the top of the cart) down the incline. Stop the cart before it hits the end of the
track. Sketch the graphs neatly on the above axes using solid lines.
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LAB 4 CHANGING MOTION

(c) How does your position graph differ from the position graphs for steady (constant velocity) motion?

(d) What feature of your velocity graph signifies that the motion was in the positive direction?

(e) What feature of your velocity graph signifies that the cart was speeding up? How would a graph of motion
with a constant velocity differ?

(f) During the time that the cart is speeding up, is the acceleration positive or negative? How does speeding up
while moving in the positive direction result in this sign of acceleration? Hint: Remember that acceleration is the
rate of change of velocity. Look at how the velocity is changing.

(g) How does the velocity vary in time as the cart speeds up? Does it increase at a steady rate or in some other
way?

(h) How does the acceleration vary in time as the cart speeds up? Is this what you expect based on the velocity
graph? Explain.

(i) Do not delete the graphs from the computer screen. They will be used in Activity 5.

Activity 4: Using Vectors to Describe Acceleration
Let’s return to the Vector Diagram representation and use it to describe the acceleration.
(a) The diagram that follows shows the positions of the cart at equal time intervals. At each indicated time,
sketch, and label, a vector above the cart which might represent the velocity of the cart at that time while it is
moving in the positive direction and speeding up.

 

଴ݐ ൌ 0 s  ଵݐ ൌ 1 s  ଶݐ ൌ 2 s ଷݐ ൌ 3 s 

 ଴ݔ  ଵݔ ଶݔ  ଷݔ

(b) Show below how you would find the approximate length and direction of the vector representing the change
in velocity between the times t1 = 1 s and t2 = 2 s by creating a vector diagram using the vectors above. No
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quantitative calculations are needed. Based on the direction of the resultant vector and the direction of the
positive x-axis, what is the sign of the acceleration? Does this agree with your answer to Activity 3 (f)?

Activity 5: Measuring and Calculating Accelerations

In this investigation you will analyze the motion of your accelerated cart quantitatively. This analysis will be
quantitative in the sense that your results will consist of numbers. You will determine the cart’s acceleration from
the slope of your velocity vs. time graph and compare it to the average acceleration read from the acceleration
vs. time graph.

(a) Using the Statistics function on your acceleration graph from Activity 3, determine the average acceleration
and the standard deviation by selecting only values from the portion of the graph after the cart was released and
before you stopped it. See Appendix A: Capstone for information on how to use the Statistics function.
Record these values here:

(b) Write the acceleration with its uncertainty (the standard deviation) here:

(c) The average acceleration during a particular time period is defined as the change in velocity divided by the
change in time. This is the average rate of change of velocity. By definition, the rate of change of a quantity
graphed with respect to time is also the slope of the curve. Thus the (average) slope of an object’s velocity
vs. time graph is the (average) acceleration of the object.

Select the velocity vs. time graph from Activity 3 and open the Delta Tool function on the graph menu bar.
Determine quantities ∆v and ∆t for two points on the velocity graph using the Delta Tool, in the same way that
you did on the position vs. time graph in the previous experiment. Record the values of ∆v and ∆t here:

(d) Divide the change in velocity by the change in time. This is the average acceleration. Show your calculation
here:

34



LAB 4 CHANGING MOTION

(e) Is the acceleration positive or negative? Is this what you expected?

(f) Does the average acceleration you just calculated agree with the average acceleration you calculated from the
acceleration vs. time graph? Do you expect them to agree? How would you account for any differences?

Activity 6: Speeding Up at a Faster Rate

(a) Suppose that you accelerate your cart at a faster rate by raising the end of the track several more centimeters.
How would your velocity and acceleration graphs change?

(b) Resketch the velocity and acceleration graphs you found in Activity 3 using the axes that follow.
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(c) In the previous set of axes, use a dashed line or another color to sketch your predictions for the general graphs
that depict a cart speeding up at a faster rate. Exact predictions are not expected. We just want to know how
you think the general shapes of the graphs will change.
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(d) Test your predictions by accelerating the cart with the end of the track raised several centimeters more than
in Activity 3. Repeat if necessary to get nice graphs and then sketch the results using the axes that follow.
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(e) Did the general shapes of your velocity and acceleration graphs agree with your predictions? How is the
greater magnitude (size) of acceleration represented on a velocity vs. time graph?

(f) How is the greater magnitude (size) of acceleration represented on an acceleration vs. time graph?
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Homework

1. An object moving along a line (the + position axis) has the acceleration-time graph shown below. Describe
how the object might move to create this graph if it is moving away from the origin.
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2. Sketch on the axes below a velocity-time graph that goes with the above acceleration-time graph.
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3. For each of the velocity-time graphs below, sketch the shape of the acceleration-time graph that goes with it.
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4. The following is a velocity-time graph for a car. What is the car’s average acceleration? Show your work below.
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5. Which position-time graph below could be that for a cart that is steadily accelerating away from the origin?
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A car can move along a line (the + position axis). Sketch velocity-time and acceleration-time graphs which
correspond to each of the following descriptions of the car’s motion.

6. The car starts from rest and moves away from the origin increasing its speed at a steady rate.
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7. The car is moving away from the origin at a constant velocity.
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8. The car starts from rest and moves away from the origin increasing its speed at a steady rate twice as large as
in (6) above.
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9. The car is moving away from the origin at a constant velocity twice as large as in (7) above.
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Lab 5 Slowing Down, Speeding Up, and Turning1

Name: Lab Partner(s):

Objectives

• To learn how to relate graphs of acceleration vs. time to the motions they represent.

• To understand the relationship between velocity vs. time and acceleration vs. time graphs.

About Slowing Down, Speeding Up and Turning

In the previous session, you explored the characteristics of position vs. time, velocity vs. time and acceleration
vs. time graphs. In the cases examined, the object was always moving in the positive direction, either at a constant
velocity or speeding up with a constant acceleration. Under these conditions, the velocity and acceleration
are both positive. You also learned how to find the magnitude of the acceleration from velocity vs. time and
acceleration vs. time graphs, and how to represent the velocity and acceleration using vectors.

In the motions you studied in the last session, the velocity and acceleration vectors representing the motion of the
object both pointed in the same direction. In order to get a better feeling for acceleration, it will be helpful to
examine velocity vs. time and acceleration vs. time graphs for some slightly more complicated motions. As before,
you will examine the motion of a cart as its velocity changes at a constant rate. Only this time the motion may
be in the positive or negative direction, and the cart may be speeding up or slowing down.

Apparatus

• Capstone software (P_V_A_Graphs.cap experiment file)

• Dynamics track

• Lab stand

• Tennis ball

• Wireless smart cart

Slowing Down and Speeding Up

In this activity you will look at a cart moving in the positive direction and slowing down. Later you will examine
the motion of a cart moving in the negative direction and speeding up. In both cases, we are interested in the
shapes of the velocity vs. time and acceleration vs. time graphs, as well as the vectors representing velocity and
acceleration.

Activity 1: Graphs Depicting Slowing Down

(a) Predict the shape of the velocity and acceleration vs. time graphs for a cart moving in the positive direction
while slowing down at a constant rate. Sketch your predictions on the following axes using dashed lines.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) To test your predictions, open the P_V_A_Graphs.cap application in the Phys131 folder. Turn on the cart
at your station and connect it to the computer via Bluetooth. You may need to zero (or tare) the built-in
acceleration sensor. Use the lab stand to raise the track several centimeters at one end. Give the cart a gentle
push near the lowered end of the track and create graphs of its motion as it moves in the positive direction
(defined by the x-axis printed on the top of the cart) up the incline. Stop the cart before it turns around or hits
the end of the track. Sketch the graphs neatly on the above axes using solid lines. The acceleration vs. time
graphs may exhibit small fluctuations due to irregularities in the motion of the cart. You should ignore these
fluctuations and draw smooth patterns.

(c) Did the shapes of your velocity and acceleration graphs agree with your predictions? How is the sign of the
acceleration represented on a velocity vs. time graph?

(d) How is the sign of the acceleration represented on an acceleration vs. time graph?
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(e) Is the sign of the acceleration what you predicted? How does slowing down while moving in the positive
direction result in this sign of acceleration? Hint: Remember that acceleration is the rate of change of velocity.
Look at how the velocity is changing.

Activity 2: Constructing Acceleration Vectors for Slowing Down

Let’s consider a diagrammatic representation of a cart which is slowing down and use vector techniques to figure
out the direction of the acceleration.

(a) The diagram that follows shows the positions of the cart at equal time intervals. (This is like taking snapshots
of the cart at equal time intervals.) At each indicated time, sketch, and label, a vector above the cart which
might represent the velocity of the cart at that time while it is moving in the positive direction and slowing down.

 

଴ݐ ൌ 0 s 

 ଴ݔ

ଵݐ ൌ 1 s

ଵݔ

ଶݐ ൌ 2 s

ଶݔ

ଷݐ ൌ 3 s 

 ଷݔ ൅ݔ
direction

(b) Show below how you would find the vector representing the change in velocity between the times t1 = 1 s and
t2 = 2 s by creating a vector diagram using the vectors above. Based on the direction of the resultant vector and
the direction of the positive x-axis, what is the sign of the acceleration? Does this agree with your answer to
Question (e) in Activity 1?

(c) By filling in the following table, state the general rules to predict the sign of the acceleration if you know the
sign of the velocity (i.e., the direction of motion) and whether the object is speeding up or slowing down. Positive
velocities have been investigated in this experiment and the previous one. Negative velocities we investigate
below, so these are essentially predictions.

Velocity Acceleration
positive speeding up
positive slowing down
negative speeding up
negative slowing down
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Activity 3: Speeding Up While Moving in the Negative Direction

(a) Predict the shape of the velocity and acceleration vs. time graphs for a cart moving in the negative direction
while speeding up at a constant rate. Sketch your predictions on the following axes using dashed lines.
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(b) To test your predictions, release the cart from rest near the raised end of the track. The cart should be
oriented so that the positive direction (the x-axis printed on the top of the cart) points up the incline, so that
the cart’s motion is in the negative direction. Stop the cart before it hits the end of the track. Sketch the graphs
neatly on the above axes using solid lines.

(c) How does your velocity graph show that the cart was moving in the negative direction?

(d) During the time that the cart was speeding up, is the acceleration positive or negative? Does this agree
with your prediction? Explain how speeding up while moving in the negative direction results in this sign of
acceleration. Hint: Think about how the velocity is changing.
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Activity 4: Constructing Acceleration Vectors for Speeding Up
Let’s consider a diagrammatic representation of a cart which is speeding up and use vector techniques to figure
out the direction of the acceleration.
(a) The diagram that follows shows the positions of the cart at equal time intervals. (This is like taking snapshots
of the cart at equal time intervals.) At each indicated time, sketch, and label, a vector above the cart which
might represent the velocity of the cart at that time while it is moving in the negative direction and speeding up.

 

଴ݐ ൌ 0 s 

 ଴ݔ

ଵݐ ൌ 1 s

ଵݔ

ଶݐ ൌ 2 s

ଶݔ

ଷݐ ൌ 3 s 

 ଷݔ ൅ݔ
direction

(b) Show below how you would find the vector representing the change in velocity between the times t1 = 1 s
and t2 = 2 s as you did in Activity 2(b). Based on the direction of the resultant vector and the direction of the
positive x-axis, what is the sign of the acceleration? Does this agree with your answer to Question (d) in Activity
3?

Activity 5: Slowing Down While Moving in the Negative Direction
There is one more possible combination of velocity and acceleration for the cart, that of moving in the negative
direction while slowing down.
(a) Use your general rules to predict the direction and sign of the acceleration when the cart is slowing down as it
moves in the negative direction. Explain why the acceleration should have this sign in terms of the velocity and
how the velocity is changing.

(b) The diagram below shows the positions of the cart at equal time intervals for slowing down while moving in
the negative direction. At each indicated time, sketch, and label, a vector above the cart which might represent
the velocity of the cart at that time while it is moving in the negative direction and slowing down.

 

଴ݐ ൌ 0 s 

 ଴ݔ

ଵݐ ൌ 1 s

ଵݔ

ଶݐ ൌ 2 s 

 ଶݔ

ଷݐ ൌ 3 s 

 ଷݔ ൅ݔ
direction

(c) Show below how you would find the vector representing the change in velocity between the times t1 = 1 s
and t2 = 2 s as you did in Activity 2(b). Based on the direction of the resultant vector and the direction of the
positive x axis, what is the sign of the acceleration? Does this agree with the prediction you made in part (a)?
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Activity 6: Acceleration and Turning Around

In Lab 4, and in Activity 1 in this session, you looked at velocity vs. time and acceleration vs. time graphs for a
cart moving in one direction with a changing velocity. In this investigation you will look at what happens when
the cart slows down, turns around and then speeds up. (This is a combination of Activities 1 and 3.)

To practice this motion you should position the cart near the lowered end of the track and and give the cart
a gentle push in the positive direction (defined by the x-axis printed on the top of the cart) up the incline. It
should move up the track, slow down, reverse direction and then move back down the incline. Be sure that the
cart does not hit the end of the track before it turns around. Try it, but don’t record the data (yet).

(a) For each part of the motion (up the incline, at the turning point, and down the incline) predict in the table
that follows whether the cart’s velocity is positive, zero or negative. Also indicate whether the acceleration is
positive, zero or negative.

Moving Away Turning Around Moving Toward
Velocity

Acceleration

(b) Sketch the predicted shapes of the velocity vs. time and acceleration vs. time graphs of this entire motion on
the axes that follow using dashed lines.
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(c) Test your predictions by making graphs of the motion. Use the procedures you used in the slowing down and
speeding up activities. You may have to try a few times to get a good run. When you get a good run, sketch
both graphs on the axes above using solid lines.
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(d) Did the cart have a zero velocity at any point in the motion? Does this agree with your prediction? How
much time did it spend at zero velocity?

(e) According to your acceleration graph, what is the acceleration at the instant the cart comes to rest? Is it
positive, negative or zero? Does this agree with your prediction?

(f) Explain the observed sign of the acceleration when the cart changes direction. (Hint: Remember that
acceleration is the rate of change of velocity.)

(g) If your instructor requests it, print a copy of the position, velocity, and acceleration graphs for each person.

(h) Notice that the slope of the velocity graph is not quite the same for positive velocities as it is for negative
velocities. (This difference can also be seen on the acceleration graph.) What accounts for this difference?

Activity 7: The Rise and Fall of a Ball

Suppose you throw a ball up into the air. It moves upward, reaches its highest point and then moves back down
toward your hand. We will now consider what can be said about the directions of its velocity and acceleration
vectors at various points.

(a) Consider the ball toss carefully. Assume that upward is the positive direction. Indicate in the table that
follows whether the velocity is positive, zero or negative during each of the three parts of the motion. Also
indicate if the acceleration is positive, zero or negative. Hint: Remember, to find the acceleration you must look
at the change in velocity.

Moving Up At Highest Point Moving Down
(After Release)

Velocity
Acceleration

(b) In what ways is the motion of the ball similar to the motion of the cart which you just observed?
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Homework

1. An object moving along a line (the + position axis) has the acceleration-time graph below. How might the
object move to create this graph if it is moving toward the origin?
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2. Sketch on the axes below a velocity-time graph that goes with the above acceleration-time graph.
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3. How would an object move to create each of the three labeled parts of the acceleration-time graph shown
below? (Consider the labeled horizontal line segments only, not the connectors between them.)
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A:

B:

C:
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4. Sketch below a velocity-time graph which might go with the acceleration-time graph in question (3). (Again,
consider the straight line segments only.)
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5. Sketch the shape of the acceleration-time graph that goes with the velocity-time graph shown below.
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6. A car moves along a line [the + position axis]. Fill in the table below with the sign (+ or -) of the velocity
and acceleration of the car for each of the motions described.

Position Velocity Acceleration Acceleration
Speeding Up Slowing Down

Car Moves Away +
from the Origin

Car Moves Toward +
the Origin
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7. For each of the position-time graphs shown, sketch below it the corresponding velocity-time and acceleration-
time graphs.
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8. Describe how you would move to produce the velocity-time graph shown below.
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9. Sketch a position-time graph corresponding to the velocity-time graph above.
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10. Sketch an acceleration-time graph corresponding to the velocity-time graph above.
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A car can move in either direction along a line (the + position axis). Sketch velocity-time and acceleration-time
graphs that correspond to each of the following descriptions of the car’s motion.

11. The car is moving toward the origin at a constant velocity.
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12. The car starts from rest and moves toward the origin, speeding up at a steady rate.
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13. A ball is tossed in the air. It moves upward, reaches its highest point and falls back downward. Sketch a
velocity-time and an acceleration-time graph for the ball from the moment it leaves the thrower’s hand until the
moment just before it reaches their hand again. Consider the positive direction to be upward.
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14. Each of the pictures below represents a car driving down a road. The motion of the car is described. In each
case, draw velocity and acceleration vectors above the car which might represent the described motion. Also
specify the sign of the velocity and the sign of the acceleration. (The positive direction is toward the right.)

(a) The driver has stepped on the accelerator and the car is just starting to move forward.

 

(b) The car is moving forward. The brakes have been applied. The car is slowing down, but has not yet come to
rest.

 

(c) The car is moving backward. The brakes have been applied. The car is slowing down, but has not yet come
to rest.
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The following graphs represent the motions of objects along the positive position axis. Notice that the motion of
the objects is represented by position, velocity, or acceleration graphs.

Answer the following questions. You may use a graph more than once or not at all, and there may be more
correct choices than blanks. If none of the graphs is correct, answer none.
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(I)

15. Pick one graph that gives enough information to indicate that the velocity is always negative.

Pick three graphs that represent the motion of an object whose velocity is constant.

16. 17. 18.

19. Pick one graph that definitely indicates an object has reversed direction.

20. Pick one graph that might possibly be that of an object standing still.

Pick 3 graphs that represent the motion of objects whose acceleration is changing.

21. 22. 23.

Pick a velocity graph and an acceleration graph that could describe the motion of the same object during the
time shown.

24. Velocity graph. 25. Acceleration graph.
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Lab 6 Measurement, Uncertainty, and Variation1

Name: Lab Partner(s):

Objectives

• To explore the mathematical meaning of the standard deviation and standard error associated with a set of
measurements.

• To investigate random and systematic variations associated with a set of measurements.

Statistics - The Inevitability of Uncertainty

With care and attention, it is commonly believed that both mistakes and systematic errors can be eliminated
completely. However, inherent uncertainties do not result from mistakes or errors. Instead, they can be attributed
in part to the impossibility of building measuring equipment that is precise to an infinite number of significant
figures. The ruler provides us with an example of this. It can be made better and better, but it always has an
ultimate limit of precision.

Another cause of inherent uncertainties is the large number of random variations affecting any phenomenon
being studied. For instance, if you repeatedly drop a baseball from the level of the lab table and measure the
time of each fall, the measurements will most probably not all be the same. Even if the stop watch was gated
electronically so as to be as precise as possible, there would be small fluctuations in the flow of currents through
the circuits as a result of random thermal motion of atoms and molecules that make up the wires and circuit
elements. This could change the stop watch reading from measurement to measurement. The sweaty palm of
the experimenter could cause the ball to stick to the hand for an extra fraction of a second, slight air currents
in the room could change the ball’s time of fall, vibrations could cause the floor to oscillate up and down an
imperceptible distance, and so on.

Repeated Time-of-Fall Data

In the first two activities, you and your partners will take repeated data on the time of fall of a ball and study
how the data vary from some average value for the time-of-fall.

Apparatus

• A ball
• A stop watch
• A 2-meter stick

Activity 1: Timing a Falling Ball

(a) Drop the ball so it falls through a height of exactly 2.0 m at least 10 times in rapid succession and measure
the time of fall in each case. Be as exact as possible about the height from which you drop the ball. Record your
10 time values here:

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Enter your data as a single column in Excel and find the average (mean) of the data. See Appendix D for
instructions. Report the mean value in the space below (including units).

The Standard Deviation as a Measure of Uncertainty

How certain are we that the average fall-time determined in the previous activity is accurate? The average of a
number of measurements does not tell the whole story. If all the times you measured were the same, the average
would seem to be very precise. If each of the measurements varied from the others by a large amount, we would
be less certain of the meaning of the average time. We need criteria for determining the certainty of our data.
Statisticians often use a quantity called the standard deviation as a measure of the level of uncertainty in data.
The standard deviation is usually represented by the Greek letter σ (sigma). A customary way of expressing
an experimentally determined value is: Mean ± σ. The formal mathematical definition of σ can be found in
Appendix E.

In the next activity you will use Excel (see Appendix D) to calculate the value of the standard deviation for the
repeated fall-time data you just obtained and explore how the standard deviation is related to variation in your
data. In particular, you will try to answer this question: What percentage of your data lies within one standard
deviation of the average you calculated?

Activity 2: Standard Deviation

(a) Report the value for the standard deviation of your data in the space below (including units).

(b) In the space below, write the time of fall from your data as t = ⟨t⟩ ± σ, (including units).

(c) Determine the number of your data points that lie within ±σ of the average and write the result in the space
below. Also, calculate the percentage of data points lying within a standard deviation of the average and report
that result.

(d) Combine your results with those obtained by the other groups in the class and create a table in the space
below with the following column headings: Lab Station, ⟨t⟩ (s), σ (s), %Data ±σ.

(e) Study the last column, which represents the percentage of data points lying within one standard deviation
of the average. What does the standard deviation, σ, tell you about the approximate probability that another
measurement will lie within ±σ of the average?
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Systematic Error - How About the Accuracy of Your Timing Device and Timing Methods?

As the result of problems with your measuring instrument or the procedures you are using, each of your
measurements may tend to be consistently too high or too low. If this is the case, you probably have a source of
systematic error. There are several types of systematic error.

Most of us have set a watch or clock only to see it gain or lose a certain amount of time each day or week. In
ordinary language we would say that such a time keeping device is inaccurate. In scientific terms, we would say
that it is subject to systematic error. In the case of a stopwatch or digital timer that doesn’t run continuously
like a clock, we have to ask an additional set of questions. Does it start up immediately? Does it stop exactly
when the event is over? Is there some delay in the start and stop time? A delay in starting or stopping a timer
could also cause systematic error.

Finally, systematic error can be present as a result of the methods you and your partner are using for making the
measurement. For example, are you starting the timer exactly at the beginning of the event being measured and
stopping it exactly at the end? Are you dropping the ball from a little above the exact starting point each time?
A little below?

Activity 3: Is There Systematic Error in the Data?

We will now use your data set to determine the acceleration due to gravity g and an uncertainty in the value
obtained. As shown in your text, the distance h that a ball falls in time t (starting from rest) near the earth’s
surface is given by

h = 1
2gt2

where g is the acceleration due to gravity. In this idealized equation the effects of air resistance have been
neglected.

(a) Calculate your value of g from the above equation.

(b) Assume an uncertainty δh in the height h from which you dropped the ball. Write h as h ± δh:

(c) Assume the uncertainty in your average time of fall is the standard deviation σ that you found in Activity 2;
i.e. δt = σ. Write the time of fall as t = ⟨t⟩ ± δt:

(d) Next, we’ll calculate the uncertainty in g. Since g depends on two independent measurements that have
uncertainty, you need to find the uncertainty in g from each one of the two measurements separately, as explained
in Appendix F. Then, combine those uncertainties “in quadrature,” to get the total uncertainty. The following
steps will guide you to carry out this calculation.

1. First, assume that your measurement of h is exact, but that the value of t is the worst case of t + δt.
Calculate the resulting worst-case value for g. The difference between this value and the best-guess value is
the uncertainty in the value of g caused by the measurement of t.

δgdue to t =
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2. Next, assume that your measurement of t is exact, but that the value of h is the worst case of h + δh.
Calculate the resulting worst-case value for g, and subsequently, the uncertainty in the value of g caused by
the measurement of h.

δgdue to h =

3. Now, combine the two uncertainties calculated in the last two steps by adding them “in quadrature” (which
looks an awful lot like finding the hypotenuse of a right triangle from the two legs):

δg =
√

(δgdue to t)2 + (δgdue to h)2 =

Finally, write g as g = g ± δg:

Does the “accepted value” of g (9.80 m/s2) fall within the range of values you have determined for g? If not, you
probably have a source of systematic error.

(e) If you seem to have systematic error, explain whether the measured times tend to be too short or too long
and list some of the possible causes of it in the space below.

Activity 4: Visualizing Your Data

In Activities 1-2 you extracted the mean and standard deviation for your data set. These two numbers characterize
your data, but they contain far less information than the full data set. To pull more understanding from your
data we want to investigate a common method for creating a pictorial representation of your data: the histogram.
A histogram is a summary graph showing a count of your data points falling in various ranges. The effect is a
rough approximation of the frequency distribution of the data showing you how often different outcomes might
occur. You may be familiar with histograms from seeing distributions of grades on an exam. The histogram you
are about to make is analogous to such a grade distribution except you will be using your measured fall times
instead of student grades.

(a) Follow the instructions in Appendix D to make a histogram of your data. One of the choices you have to
make in producing the histogram is the size and position of the ‘bins’. The horizontal range of your data will be
broken up into a series of adjacent sub-ranges that will be used to sort your data. The bin size is simply the
length of each sub-range. We will typically use a constant bin size. Use simple numbers for the bin limits, and be
sure they cover the entire range of your data when you follow the directions in Appendix D. The horizontal
label “bin” must be removed and replaced by a label describing whatever you are plotting (including units). Once
you have made the histogram, include an appropriate title, print it, and attach it to this unit.
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(b) How many “peaks” are in your histogram? Explain your reasoning.

(c) What does the histogram of the fall-times data tell you?

(d) Do the average and standard deviation capture the full description of your data? Why or why not.

(e) Consider the histogram shown below for two sets of possible fall times from different classes. The average and
standard deviation of the data is (0.95 ± 0.36)‘ s. How many peaks are in this histogram? Do the average and
standard deviation capture the full description of the data? Why or why not.

Average: 0.90 s

Standard Deviation: 0.32 s
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(f) What advantages do histograms have over just calculating the average and standard deviation?

Homework

1. Suppose you made the following five length measurements of the width of a piece of 8 1
2

′′ × 11′′ paper which
has been cut carefully by a manufacturer using an unfamiliar centimeter rule: 21.33 cm, 21.52 cm, 21.47 cm,
21.21 cm, 21.45 cm. (a) Find the mean and standard deviation of the measurements. The formal mathematical
definition of standard deviation is given in Appendix E.
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(b) Is there any evidence of uncertainty in the measurements or are they precise? Explain.

(c) Is there any evidence of systematic error in the measurements? If so, what might cause this? Explain.

2. Suppose Ashley and Ryan each throw darts at targets as shown below. Each of them is trying very hard to hit
the bulls eye each time. Discuss in essay form which of the two students has the least amount of random error
associated with his or her throws and is thus more precise. Is one of the students less accurate is the sense of
having a systematic error associated with his or her throws? What factors like eyesight and coordination might
cause one to be more precise and another more accurate?

Ashley Ryan
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Lab 7 Projectile Motion1

Name: Lab Partner(s):

Objectives

To understand the experimental and theoretical basis for describing projectile motion as the superposition of
two independent motions: (1) a body falling in the vertical direction, and (2) a body moving in the horizontal
direction with no forces.

Apparatus

• A tennis ball.

• A movie scaling ruler or meter stick.

• A video analysis system (Tracker).

• Graphing and curve fitting software (Excel).

Activity 1: Predicting the Two-Dimensional Motion of a Tossed Ball

(a) Toss a tennis ball up at an angle of about 60◦ with the horizontal a couple of times. Sketch the motion and
describe it in words below. What is the shape of the trajectory?

(b) Let’s consider the horizontal and vertical components of the motion separately. What do you think is the
horizontal motion of the ball? Is it motion with constant velocity, constant acceleration, or some other kind of
motion? (Hint: What is the force acting on the ball in the horizontal direction after it is released?)

(c) What do you think is the vertical motion of the ball? Is it motion with constant velocity, constant acceleration,
or some other kind of motion? (Hint: What is the force acting on the ball in the vertical direction after it is
released?)

The two-dimensional motion of a tossed ball is too fast to observe carefully by eye without the aid of special
instruments. In the next activity we will use a video analysis system to study the motion of a small ball
launched at an angle of about 60◦ with respect to the horizontal. You are to use the video analysis software
and mathematical modeling techniques to find the equations that describe: (a) the trajectory (y vs. x), (b) the
horizontal motion (x vs. t), and (c) the vertical motion (y vs. t) of the projectile.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.

59



LAB 7 PROJECTILE MOTION

Activity 2: Analyzing Projectile Motion

(a) Make a movie of a tennis ball in flight by following these steps.

1. Open Camera and turn on the video camera as explained in Appendix B: Video Analysis Using
Tracker. Center the field of view of the camera on the region where you will toss the ball. This region
should be about 2 meters from the camera to get a large enough area for the flight of the ball. Place a ruler
or meter stick somewhere in the field of view close to the plane of the motion of the ball where it won’t
interfere with the motion. This ruler will be used later to determine the scale.

2. Make a movie of the tennis ball flying through the air with a significant component of its initial velocity in
the horizontal direction (i.e., don’t toss it straight up). Make sure most of the complete trajectory is visible
to the camera. See Appendix B: Video Analysis Using Tracker for details on making the movie.

(b) Determine the position of the ball as a function of time using Tracker. To do this, track the position of the
ball throughout its trajectory. The resulting file will contain three columns with the values of time, x-position
and y-position.

(c) Determine the equation that describes the trajectory of the projectile by plotting the vertical position y versus
the horizontal position x. Write the equation for the trajectory of the projectile in the space below. Be sure to
include the proper units. What is the shape of the trajectory? Does the result agree with your earlier prediction?

(d) Determine the equation that describes the horizontal motion of the projectile by plotting the horizontal
position (x) versus time (t) in Tracker. What kind of motion is it? What would you expect for the horizontal
acceleration? Does the result agree with your earlier prediction? Note: As in the previous experiment, numbers
from your graph should be rounded off to no more than 3 significant figures.

1. The equation for the horizontal component of the motion with proper units is: x =

2. The horizontal component of the acceleration with proper sign and units is: ax =

3. The horizontal component of the initial velocity with proper sign and units is: v0x =

4. The initial x position with proper units is: x0 =

(e) Determine the equation that describes the vertical motion of the projectile by plotting the vertical position
(y) versus time (t) in Tracker. Print the graph and attach a copy to this unit. What kind of motion is it? What
would you expect for the vertical acceleration? Does the result agree with your earlier prediction?

1. The equation for the vertical component of the motion with proper units is: y =

2. The vertical component of the acceleration with proper sign and units is: ay =
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3. The vertical component of the initial velocity with proper sign and units is: v0y =

4. The initial y position with proper units is: y0 =

(f) Does it appear that projectile motion is simply the superposition of two types of motion that we have already
studied? Explain.

(g) Go around to the other groups in the lab and ask them for their measured values of the horizontal and vertical
accelerations. Make a histogram of your results for each component and calculate the average and standard
deviation of each one. For information on making histograms, see Appendix D. For information on calculating
the average and standard deviation, see Appendix E. Record the average and standard deviation here. Attach
the histogram to the unit.

(h) What is your expectation for the vertical acceleration of the ball? Is your data consistent with your
expectation? Is the acceleration the same for the entire class? Use the average and standard deviation for the
class to quantitatively answer these questions.

(i) What is your expectation for the horizontal acceleration of the ball? Is your data consistent with your
expectation? Is this acceleration the same for the entire class? Use the average and standard deviation for the
class to quantitatively answer these questions.

(j) What do the histograms of the class data for each component of the acceleration tell you? Be quantitative in
your answer.
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Lab 8 Uniform Circular Motion1

Name: Lab Partner(s):

Objective

To explore the phenomenon of uniform circular motion and the acceleration needed to maintain it.

Overview

You have recently studied projectile motion. In this unit we are going to explore another phenomenon in two
dimensions, uniform circular motion. In particular, you will develop a mathematical description of the centripetal
acceleration that keeps an object moving in a circle. You will start by watching a toy “airplane” suspended from
a string fly in a circle.

Apparatus

• The “airplane.”

• A movie scaling ruler or meter stick.

• A video analysis system (Tracker).

• Graphing software (Excel).

Activity 1: Observing an Airplane Undergoing Circular Motion

(a) Put on your safety glasses and wear them until your instructor announces they can be removed. Turn on the
engine of the airplane suspended from the string. Be careful to stay clear of the propeller. Launch the airplane
into circular motion by giving it a gentle push. If it doesn’t quickly settle into steady circular motion, catch it
and try launching it in the opposite direction. Sketch the motion and describe it in words below.

(b) How would you describe the speed of the airplane? How would you describe the velocity? Would you say that
this is accelerated motion? Why?

(c) What is the definition of acceleration? (Remember that acceleration is a vector!)

(d) Are velocity and speed the same thing? Is the velocity of the airplane constant? (Hint: Velocity is a vector
quantity!)

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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(e) In light of your answers to (c) and (d), would you like to change your answer to part (b)? Explain.

The two-dimensional motion of the airplane is too fast to observe carefully so we will use a video system to record
the motion of the airplane and to analyze the movie frame-by-frame. You will use the video analysis system to
investigate the direction of the velocity of the circling airplane and the direction of its acceleration.

Activity 2: Analyzing Circular Motion

(a) Make a movie of the airplane in flight by following these steps.

1. Open Camera and turn on the video camera as explained in Appendix B: Video Analysis Using
Tracker. Center the field of view on the region where the plane will fly. This region should be at least 1
meter from the camera to get a large enough area for the flight of the plane. Mount a ruler or meter stick
somewhere in the field of view where it won’t interfere with the motion. This ruler will be used later to
determine the scale.

2. Launch the airplane into circular motion and wait until it settles into steady, circular flight. Record several
revolutions of the airplane and save the movie as the file Airplane. See Appendix B: Video Analysis
Using Tracker for details on making the movie.

(b) Determine the position of the airplane during one complete revolution using Tracker. The resulting file should
contain three columns with the values of time, x-position, and y-position for one complete revolution.

(c) Within Tracker, make a graph of the trajectory of the airplane during one full revolution. This can be done
by plotting y vs x. When you make your plot make sure the x and y axes cover the same size range; otherwise
you will distort the path of the airplane. Double click on the graph to produce a larger version. Print the graph
and attach a copy to this unit.

1. Is the motion circular? What is your evidence?

2. Draw vectors for the position vector and the velocity vector at one point on the trajectory. How are the
position vector and the velocity vector related? How is the velocity vector related to the path of the
airplane?

3. What would happen to the path of the plane if you cut the string? Explain.
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(d) Launch the airplane into uniform circular motion. You are going to investigate what happens to the trajectory
after the string is cut. Be sure you are wearing your eye protection. After the plane settles into steady, circular
flight start recording a movie of the plane. After it completes one revolution use the scissors to cut the string just
above the horizontal metal bar. BE CAREFUL to avoid letting the plane strike anyone or any object except the
floor. Halt recording and save the movie.

(e) Make a plot of the trajectory of the airplane after the string was cut and for at least one full revolution before.
Is the trajectory circular before the string was cut? Does the trajectory of the plane after the string was cut
agree with the prediction you made earlier? Explain. Print the graph and attach a copy to the unit.

Using Vectors to Diagram How Velocity Changes

By now you should have concluded that since the direction of the motion of an object undergoing uniform circular
motion is constantly changing, its velocity is also changing and thus it is accelerating. We would like you to
figure out how to calculate the direction of the acceleration and its magnitude as a function of the speed v of an
object such as a ball as it revolves and as a function of the radius of the circle in which it revolves. In order to
use vectors to find the direction of velocity change in circular motion, let’s review some rules for adding velocity
vectors.

 

𝑣⃗𝑣1 

𝑣⃗𝑣2 

𝑡𝑡1 

𝑡𝑡2 

𝑎⃗𝑎 ≈
∆𝑣⃗𝑣
∆𝑡𝑡

 

1. 2. 3. 

∆𝑣⃗𝑣 𝑣⃗𝑣1 

𝑣⃗𝑣2 

𝑣⃗𝑣1 + ∆𝑣⃗𝑣 = 𝑣⃗𝑣2 

1. To Draw Velocities: Draw an arrow representing the velocity, v⃗1, of the object at time t1. Draw another
arrow representing the velocity, v⃗2, of the object at time t2.

2. To Draw Velocity Change: Find the change in the velocity ∆v⃗ = v⃗2 − v⃗1 during the time interval described
by ∆t = t2 − t1. Start by using the rules of vector sums to rearrange the terms so that v⃗1 + ∆v⃗ = v⃗2. Next
place the tails of the two velocity vectors together halfway between the original and final location of the
object. The change in velocity is the vector that points from the head of the first velocity vector to the
head of the second velocity vector.

3. To Draw Acceleration: The acceleration equals the velocity change ∆v⃗ divided by the time interval ∆t
needed for the change. Thus, a⃗ is in the same direction as ∆v⃗ but is a different length (unless ∆t = 1).
Thus, even if you do not know the time interval, you can still determine the direction of the acceleration
because it points in the same direction as ∆v⃗.

The acceleration associated with uniform circular motion is known as centripetal acceleration. You will use the
vector diagram technique described above to find its direction.
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Activity 3: The Direction of Acceleration in Circular Motion

(a) Determine the direction of motion of the ball shown below if it is moving counter-clockwise at a constant
speed. Note that the direction of the ball’s velocity is always tangential to the circle as it moves around. Draw
an arrow representing the direction and magnitude of the ball’s velocity as it passes the dot just before it reaches
point A. Label this vector v⃗1.

 

𝑣 1 

𝑣 2 

𝑡1 

𝑡2 

a  ≈
Δ𝑣 

Δ𝑡
 

1. 2. 3. 

Δ𝑣  𝑣 1 

𝑣 2 

𝑣 1 + Δ𝑣 = 𝑣 2 

“Just” after 
“Just” before 

A 

B 

(b) Next, use the same diagram to draw the arrow representing the velocity of the ball when it is at the dot just
after it passes point A. Label this vector v⃗2.

(c) Find the direction and magnitude of the change in velocity as follows. In the space below, make an exact copy
of both vectors, placing the tails of the two vectors together. Next, draw the vector that must be added to vector
v⃗1 to add up to vector v⃗2 ; label this vector ∆v⃗. Be sure that vectors v⃗1 and v⃗2 have the same magnitude and
direction in this drawing that they had in your drawing in part (a)!

(d) Now, draw an exact copy of ∆v⃗ on your sketch in part (a). Place the tail of this copy at point A. Again,
make sure that your copy has the exact magnitude and direction as the original ∆v⃗ in part (c).

(e) Now that you know the direction of the change in velocity, what is the direction of the centripetal acceleration,
a⃗c?

(f) If you redid the analysis for point B at the opposite end of the circle, what do you think the direction of the
centripetal acceleration, a⃗c, would be now?
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(g) As the ball moves on around the circle, what is the direction of its acceleration?

Using Mathematics to Derive How Centripetal Acceleration Depends on Radius and Speed

You haven’t done any experiments yet to see how centripetal acceleration depends on the radius of the circle and
the speed of the object. You can use the rules of mathematics and the definition of acceleration to derive the
relationship between speed, radius, and magnitude of centripetal acceleration.

Activity 4: How Does ac Depend on v and r?

(a) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
moving at a certain speed to rotate in a smaller circle? In other words, would the magnitude, ac, have to increase
or decrease as r decreases if circular motion is to be maintained? Explain.

(b) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
to rotate at a given radius r if the speed v is increased? In other words, would the magnitude, ac, have to increase
or decrease as v increases if circular motion is to be maintained? Explain.

You should have guessed that it requires more acceleration to move an object of a certain speed in a circle of
smaller radius and that it also takes more acceleration to move an object that has a higher speed in a circle
of a given radius. Let’s use the definition of acceleration in two dimensions and some accepted mathematical
relationships to show that the magnitude of centripetal acceleration should actually be given by the equation

ac = v2

r
[Eq. 1]

In order to do this derivation you will want to use the following definition for average acceleration:

a⃗avg = v⃗2 − v⃗1

t2 − t1
= ∆v⃗

∆t
[Eq. 2]
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Activity 5: Finding the Equation for ac

(a) Refer to the diagram below. Explain why, at the two points shown on the circle, the angle between the
position vectors at times t1 and t2 is the same as the angle between the velocity vectors at times t1 and t2. Hint:
In circular motion, velocity vectors are always perpendicular to their position vectors.

 

curved arc 

Δ𝑣⃗ 

𝑣⃗1 

𝑣⃗2 

straight  
vector 𝑟2 𝑟1 

Δ𝑟 

θ 

Δ𝑟 = 𝑟2 − 𝑟1 

Δ𝑠 

θ 

(b) Since the angles are the same and since the magnitudes of the position vectors never change (i.e., r = r1 = r2)
and the magnitudes of the velocities never change (i.e., v = v1 = v2), use the properties of similar triangles to
explain why ∆v

v = ∆r
r .

(c) Now use the equation in part (b) and the definition of aavg to show that aavg = ac = ∆v
∆t = (∆r)

(∆t)
v
r .

(d) The speed of the object as it rotates around the circle is given by v = ∆s
∆t . Is the change in arc length, ∆s,

larger or smaller than the magnitude of the change in the position vector, ∆r? Explain why the arc length change
and the change in the position vector are approximately the same when ∆t is very small (so that the angle θ
becomes very small) i.e., why is ∆s ≃ ∆r?

(e) If ∆s ≃ ∆r, then what is the equation for the speed in terms of ∆r and ∆t? (Start with the formula for v in
part (d).)

(f) Using the equation in part (c), and your result from part (e), show that as ∆t → 0, the instantaneous value of
the centripetal acceleration is given by Eq. 1.
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Lab 9 Tangential Acceleration and Centripetal Acceleration

Name: Lab Partner(s):

Activity 1: Drawing Vectors

The picture below shows a top view of a car speeding up while taking a curve on a road.

(a) Use graphical techniques (no calculations) to draw a vector representing the change in velocity ∆ #»v during
the time shown.

This is for scale. 

 
𝑣⃗𝑣f 

𝑣⃗𝑣i 

(b) Does the average acceleration #»a avg during this time point exactly towards the center of the curve?

(c) You may have done previous exercises that involved a car driving on a circular track, in which the average
acceleration always pointed towards the center of the curve. Why is the case pictured above different?

Activity 2: An Example with Numbers

(a) Suppose you are driving north on a straight road. You accelerate uniformly from rest to a speed of 15 m/s
over a time ∆t = 5 seconds. What is the magnitude and direction of your accleration #»a during this time? Also
draw your acceleration vector #»a on the picture below.

This is for scale. 

 

(causing acceleration
with the gas pedal...)

(b) Now suppose you are driving at a constant speed v = 10 m/s around a curve of radius R = 25 m. What
is the magnitude and direction of your acceleration #»a at exactly the moment pictured below? Also draw your
acceleration vector #»a on the picture.

This is for scale. 

 

(causing acceleration
with the steering wheel...)
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(c) Finally, suppose that you increase your speed just like you did in part (a), but you do it while taking the
same curve in the road as you did in part (b). You are now combining the accelerations from parts (a) and (b),
doing both at the same time. Draw your acceleration vector #»a on the picture below. (Hint: what does it mean to
“combine” two acceleration vectors?)

This is for scale. 

 

(causing acceleration
with both the gas pedal
and the steering wheel...)

Let’s use the same numbers as we did before: you increased your speed from from 0 m/s to 15 m/s over ∆t = 5 s,
and at the moment shown in the picture above, you happen to have a speed of exactly v = 10 m/s.

(d) What is the tangential component at of your acceleration? (That is, the component of your acceleration
vector #»a that is along your direction of motion.)

(e) What is the centripetal component ac of your acceleration? (That is, the component of your acceleration
vector #»a that is towards the center or the curve.)

(f) What are the magnitude and direction of your acceleration #»a ?
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Lab 10 Force and Motion I1

Name: Lab Partner(s):

Objectives

• To understand the relationship between forces applied to an object and its motions.
• To find a mathematical relationship between the force applied to an object and its acceleration.

Overview

In the previous labs, you used motion sensors and smart carts to display position-time, velocity-time and
acceleration-time graphs for different objects. You were not concerned about how you got the objects to move,
i.e., what forces (pushes or pulls) acted on the objects. From your experiences, you know that force and motion
are related in some way. To start your bicycle moving, you must apply a force to the pedal. To start up your car,
you must step on the gas pedal to get the engine to apply a force to the road through the tires.

But exactly how is force related to the quantities you used in the previous unit to describe motion: position,
velocity and acceleration? In this unit you will pay attention to forces and how they affect motion.

Apparatus

• Capstone software (V_A_F_Graphs.cap experiment file)
• CS2000 compact scale
• Dynamics track
• Hanging masses
• Pulley with clamp
• String
• Wireless smart cart

Measuring Forces

In this investigation you will use a force sensor (built in to the smart cart) to measure forces. The force sensor
puts out a voltage signal proportional to the force applied to the arm of the sensor. Physicists have defined a
standard unit of force called the newton, abbreviated N. For your work on forces and the motions they cause, it
will be more convenient to have the force sensor read directly in newtons rather than voltage.

Open the V_A_F_Graphs.cap file in the Phys131 folder. Turn on the cart at your station and connect it to the
computer via Bluetooth. At the beginning of each experiment, the measurements from the built-in acceleration
and force sensors may not be zero when the acceleration or force is actually zero. To tare the sensors, select
the desired sensor (either the Smart Cart Acceleration Sensor or the Smart Cart Force Sensor) in the
Controls palette and then click Zero Sensor Now. When taring the sensors, the cart should be at rest and
there should be no applied force on the hook.

Activity 1: Pushing and Pulling a Cart

In this activity you will move a cart by pushing and pulling it with your hand and measure the force exerted on
it, as well as the cart’s velocity and acceleration.

(a) Measure the mass of the cart (using the compact scale) and record the result below.

(b) Place the cart on the level track. Suppose you were to grasp the hook on the cart (which is attached to the
force sensor) and move the cart forwards and backwards. Would either the velocity or the acceleration graph

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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look like the force graph?

(c) To test your predictions, click the Record button, grasp the hook on the cart and push and pull the cart
back and forth 3 or 4 times. Repeat until you get a good run, and adjust the sampling rate and scale of the axes
if necessary. Sketch your graphs on the axes below.
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(d) Does either graph—velocity or acceleration—resemble the force graph? Which one? Explain.

(e) Based on your observations, does it appear that either the velocity or acceleration of the cart might be related
to the applied force? Explain.
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Activity 2: Speeding Up

You have seen in the previous activity that force and acceleration seem to be related. But just what is the
relationship between force and acceleration?

(a) Suppose you have a cart with very little friction, and that you pull this cart with a constant force as shown
below on the force vs. time graph. Predict with sketches on the axes below the velocity vs. time and acceleration
vs. time graphs of the cart’s motion.
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(b) Describe in words the predicted shape of the velocity vs. time and acceleration vs. time graphs for the cart.
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Equipment setup for quantitative measurements of force and motion.

(c) Test your predictions. Set up the pulley, cart, and string as shown in the figure above. The cart should be the
same mass as before. At the start of each trial, tare the cart’s built-in force sensor when there is no applied force
on the hook.
Take one of the masses (say, the 50-g one) from the tray and hang it from the end of the string. Release the cart
from rest and create graphs of its motion as it moves in the positive direction (defined by the x-axis printed on
the top of the cart). Stop the cart before it hits the end of the track. Sketch the graphs neatly on the axes below
and indicate the scale on the axes.
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(d) Is the force which is applied to the cart by the string constant, increasing or decreasing? Explain based on
your graph.
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(e) How does the acceleration graph vary in time? Does this agree with your prediction? What kind of acceleration
corresponds to a constant applied force?

(f) How does the velocity graph vary in time? Does this agree with your prediction? What kind of velocity
corresponds to a constant applied force?

(g) Use the Highlight and Statistics functions to determine the average force and the average acceleration and
record them below. Find the mean values only during the time interval when the force and acceleration are nearly
constant. See Appendix A for details on the use of the Highlight and Statistics functions of Capstone.

Activity 3: Acceleration from Different Forces

In the previous activity you examined the motion of an object with a constant force applied to it. But, what is
the relationship between acceleration and force? If you apply a larger force to the same object (same mass as
before) how will the acceleration change? In this activity you will try to answer these questions by applying a
different force to the object, and measuring the corresponding acceleration.

(a) Suppose you pulled the cart with a force about twice as large as before. What would happen to the acceleration
of the cart? Explain.

(b) Test your prediction by replacing the 50-g hanging mass with a 100-g mass. Tare the force sensor with no
force acting on the hook. Now create graphs of the motion as before. Repeat until you have a good run. Sketch
the results on the axes that follow. Don’t forget to put the scale on the axes.
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(c) Use the Highlight and Statistics functions to find the average force and the average acceleration and record
them below. Find the mean values only during the time interval when the force and acceleration are nearly
constant.

(d) How did the force applied to the cart compare to the force in Activity 2?

(e) How did the acceleration of the cart compare to that caused by the force in Activity 2? Did this agree with
your prediction? Explain.
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Activity 4: The Relationship Between Acceleration and Force
If you accelerate the same object (same mass) with different forces, you can plot a graph of force vs. acceleration.
You can then find the mathematical relationship between acceleration and force.
(a) Accelerate the cart with a force roughly midway between the other two forces tried. Use a hanging mass
about midway between those used in the last two activities. Record the mass below.

(b) Graph velocity, acceleration and force. Sketch the graphs on the axes in Activity 3 using dashed lines.
(c) Find the mean acceleration and force, as before, and record the values in the table below (in the Activity
4 line). Also, enter the values from the previous two activities in the table. Use different combinations of the
masses to get other applied forces and enter the results in the table.

Average Force (N) Average Acceleration (m/s2) Mass on string
Activity 4

Activity 3

Activity 2

Activity 4

Activity 4

(d) Using Excel, plot the average force applied to the cart as a function of the average acceleration of the cart by
fitting the data with a linear function. Include a sixth data point (0,0) (since zero force means 0 acceleration).
Label and print the graph showing the best fit, and add it to this unit.
(e) Does there appear to be a simple mathematical relationship between the acceleration of the cart (with fixed
mass) and the force applied to the cart (measured by the force sensor)? Write down the equation you found and
describe the mathematical relationship in words. What is the slope of the graph?

(f) Use the LINEST function in Excel (see Appendix D: Excel) to determine the uncertainty in mass of the
cart. Write your result as m = m ± ∆m. Be sure to include proper units.

(g) Does your measurement of m from Activity 1 fall within the range indicated in (f) above? If not, what are
some possible sources of systematic error?

Comment: The relationship which you have been examining between the acceleration of the cart and the applied
force is known as Newton’s Second Law, F = ma.
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Homework

1. A force is applied which makes an object move with the acceleration shown below. Assuming that friction is
negligible, sketch a force-time graph of the force on the object on the axes below.
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Explain your answer:

2. Roughly sketch the velocity-time graph for the object in question 1 on the axes below, beginning with a
negative velocity. Remember that acceleration is the derivative of velocity.
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3. A cart can move along a horizontal line (the + position axis). It moves with the velocity shown below.
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Assuming that friction is so small that it can be neglected, sketch on the axes that follow the acceleration-time
and force-time graphs of the cart’s motion.
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Explain both of your graphs.

Questions 4-6 refer to an object which can move in either direction along a horizontal line (the + position axis).
Assume that friction is so small that it can be neglected. Sketch the shape of the graph of the force applied to
the object which would produce the motion described.

4. The object moves away from the origin while speeding up at a constant rate.
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5. The object moves toward the origin while speeding up at a constant rate.
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6. The object moves away from the origin with a constant velocity.
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Questions 7 and 8 refer to an object which can move along a horizontal line (the + position axis). Assume that
friction is so small that it can be ignored. The object’s velocity-time graph is shown below.
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7. Sketch the shapes of the acceleration-time and force-time graphs on the axes below.
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8. Suppose that the force applied to the object were twice as large. Sketch with dashed lines on the same axes
above the force, acceleration, and velocity.
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9. An object moves along a horizontal line (the + position axis). Assume that friction is so small that it can be
ignored. The object’s velocity-time graph is shown below.
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Sketch the shapes of the acceleration and force graphs on the axes below.
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Lab 11 Force and Motion II1

Name: Lab Partner(s):

Objective

To understand the relationship between the direction of the force applied to an object and the direction of the
acceleration of the object.

Overview

In the previous lab you examined the one-dimensional motions of an object caused by a single force applied to
the object. You have seen that when friction is so small that it can be ignored, a single constant applied force
will cause an object to have a constant acceleration. (The object will speed up at a steady rate.)

Under these conditions, you have seen that the acceleration is proportional to the applied force, if the mass of
the object is not changed. You saw that when a constant force is applied to a cart, the cart speeds up at a
constant rate so that it has a constant acceleration. If the applied force is made larger, then the acceleration is
proportionally larger. This allows you to define force more precisely not just in terms of the stretches of rubber
bands and springs, but as the entity (the “thing”) that causes acceleration.

The goal of this lab is to continue to develop the relationship between force and acceleration, an important part
of the first two of Newton’s famous laws of motion. You will explore motions in which the applied force (and
hence the acceleration of the object) is in a different direction than the object’s velocity. In this case the object is
slowing down in the sense that its speed is decreasing.

Apparatus

• Capstone software (V_A_F_Graphs.cap experiment file)

• Dynamics track

• Hanging masses

• Pulley with clamp

• String

• Wireless smart cart

Speeding Up and Slowing Down

So far you have looked at cases where the velocity, force and acceleration all have the same sign (all positive).
That is, the vectors representing each of these three vector quantities all point in the same direction. For example,
if the cart is moving toward the right and a force is exerted toward the right, then the cart will speed up. Thus
the acceleration is also toward the right. The three vectors can be represented as:

Velocity Acceleration Force

𝑣⃗𝑣 𝑎⃗𝑎 𝐹⃗𝐹

If the positive direction is toward the right, then you could also say that the velocity, acceleration and also force
are all positive. In this investigation, you will examine the vectors representing velocity, force and acceleration
for other motions of the cart. This will be an extension of your earlier observations of changing motion. 3

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 1: Slowing Down
Set up the pulley, cart, and string as shown in the figure below. Now, if you give the cart a push away from the
pulley, it will slow down after it is released. In this activity you will examine the acceleration and the applied
force.

 

(a) Suppose that you give the cart a push away from the pulley and release it. Draw on the diagram below
vectors which might represent the velocity, force and acceleration of the cart at each time after it is released and
is moving away from the pulley. Be sure to mark your arrows with v⃗, a⃗, or F⃗ as appropriate.

 

଴ݐ ൌ 0 s 

 ଴ݔ

ଵݐ ൌ 1 s

ଵݔ

ଶݐ ൌ 2 s

ଶݔ

ଷݐ ൌ 3 s 

 ଷݔ ൅ݔ
direction

(b) If the positive direction is to the right, what are the signs of the velocity, force and acceleration after the cart
is released and is moving toward the right?

(c) To test your predictions:

1. Open the file V_A_F_Graphs.cap in the Phys131 folder. Turn on the cart at your station and connect it to
the computer via Bluetooth. At the beginning of each experiment, the measurements from the built-in
acceleration and force sensors may not be zero when the acceleration or force is actually zero. To tare
the sensors, select the desired sensor (either the Smart Cart Acceleration Sensor or the Smart Cart
Force Sensor) in the Controls palette and then click Zero Sensor Now. When taring the sensors, the
cart should be at rest and there should be no applied force on the hook.

2. By default, the x-axis printed on the top of the cart defines the positive direction for the cart’s built-in
sensors. Therefore, by default, the positive direction points towards the pulley (or to the left in the
figure above). To change this, so that the positive direction points away from the pulley (or to the right),
select Hardware Setup in the Tools palette. To change the sign of the cart’s velocity and acceleration
measurements, select the Properties icon (the gear symbol) in the Smart Cart Position Sensor window
and then select the Change Sign checkbox. To change the sign of the cart’s built-in force sensor, select
the Properties icon in the Smart Cart Force Sensor window and select the Change Sign checkbox.

3. Hang a 50-g mass from the end of the string.

4. Click the Record button. Then, give the cart a short push away from the pulley and let it go. Stop the
cart before it reverses its direction. Repeat until you get a good run.
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5. Sketch your velocity, acceleration and force graphs on the axes below. Indicate with an arrow the time
when the push stopped.
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(d) Did the signs of the velocity, force and acceleration agree with your predictions? If not, can you now explain
the signs?

(e) Did the velocity and acceleration both have the same sign? Explain these signs based on the relationship
between acceleration and velocity.
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(f) Did the force and acceleration have the same sign? Were the force and acceleration in the same direction?
Explain.

(g) Based on your observations, draw below vectors which might represent the velocity, force and acceleration
for the cart at the same instant in time. Do these agree with your predictions? If not, can you now explain the
directions of the vectors?

(h) After you released the cart, was the force applied by the falling mass constant, increasing or decreasing? Why
is this kind of force necessary to cause the observed motion of the cart?

Activity 2: Speeding Up Toward the Motion Detector

Using the same setup as in the last activity, you can start with the cart at the opposite end of the table from the
pulley and release it from rest. It will then be accelerated toward the pulley as a result of the force applied by
the falling mass.

(a) Suppose that you release the cart from rest and let it move toward the pulley. Draw on the diagram below
vectors which might represent the velocity, force and acceleration of the cart at each time after it is released and
is moving toward the left. Be sure to mark your arrows with v⃗, a⃗, or F⃗ as appropriate.

 

ଷݐ ൌ 3 s 

 ଷݔ

ଶݐ ൌ 2 s

ଶݔ

ଵݐ ൌ 1 s

ଵݔ

଴ݐ ൌ 0 s 

 ଴ݔ ൅ݔ
direction

(b) What are the signs of the velocity, force and acceleration after the cart is released and is moving toward the
pulley? (The positive direction is toward the right.)
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(c) Test your predictions. Use a hanging mass of 50 g. Start recording data and release the cart from rest as far
away from the pulley as possible. Catch the cart before it hits the end of the track. Repeat until you get a good
run. Sketch your graphs on the axes in the previous activity with dashed lines.

(d) Which of the signs – velocity, force and/or acceleration – are the same as in the previous activity (where
the cart was slowing down and moving away), and which are different? Explain any differences in terms of the
differences in the motion of the cart.

(e) Based on your observations, draw below vectors which might represent the velocity, force and acceleration
for the cart at the same instant in time. Do these agree with your predictions? If not, can you now explain the
directions of the vectors?

(f) Write down a simple rule in words which describes the relationship between the direction of the applied force
and the direction of the acceleration for any motion of the cart.

(g) Is the direction of the velocity always the same as the direction of the force? Is the direction of the acceleration
always the same as the direction of the force?
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Homework
Questions 1-6 refer to a toy car which can move in either direction along a horizontal line (the + position axis).

 

0 + 

Assume that friction is so small that it can be ignored. Sketch the shape of the graph of the applied force which
would keep the car moving as described in each statement.
1. The toy car moves away from the origin with a constant velocity.
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2. The toy car moves toward the origin with a constant velocity.
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3. The toy car moves away from the origin with a steadily decreasing velocity (a constant acceleration).
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4. The toy car moves away from the origin, speeds up and then slows down.
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5. The toy car moves toward the origin with a steadily increasing speed (a constant acceleration).
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6. The toy car is given a push away form the origin and released. It continues to move with a constant velocity.
Sketch the force after the car is released.
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7. A cart is moving toward the right and speeding up, as shown in the diagram below. Draw arrows above the
cart representing the magnitudes and directions of the net (combined) forces you think are needed on the cart at
the times shown to maintain its motion with a steadily increasing velocity.

 

ଷݐ ൌ 3 s 

 ଷݔ

ଶݐ ൌ 2 s

ଶݔ

ଵݐ ൌ 1 s 

 ଵݔ

଴ݐ ൌ 0 s 

 ଴ݔ ൅ݔ
direction

Explain the reasons for your answers.

8. If the positive direction is toward the right, what is the sign of the force at t = 2 sec in question 7? Explain.
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9. A cart is moving toward the right and slowing down, as shown in the diagrams below. Draw arrows above the
cart representing the magnitudes and directions of the net (combined) forces you think are needed on the cart at
t = 0 s, t = 1 s, etc. to maintain its motion with a steadily decreasing velocity.

 

଴ݐ ൌ 0 s 

 ଴ݔ

ଵݐ ൌ 1 s

ଵݔ

ଶݐ ൌ 2 s

ଶݔ

ଷݐ ൌ 3 s 

 ଷݔ ൅ݔ
direction

Explain the reasons for your answers.

10. If the positive direction is toward the right, what is the sign of the force at t = 2 sec in question 9? Explain.

11. A toy car can move in either direction along a horizontal line (the + position axis).
 

0 + 

Assume that friction is so small that it can be ignored. A force toward the right of constant magnitude is applied
to the car. Sketch on the axes below using a solid line the shape of the acceleration-time graph of the car.
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Explain the shape of your graph in terms of the applied force.
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Lab 12 Gravity, Normal Force, and Elevators

Name: Lab Partner(s):

A B C D E
Time

Po
sit

io
n

Apparatus

• digital lab scale
• 200-g mass

Activity 1: Some predictions

(a) Imagine you are riding in an elevator, and your vertical position as a function of time is given in the graph
above. You begin at rest, accelerate briefly to a constant velocity upwards for a while, then decelerate to a stop
at the top floor. Are there any of the times A through E when you feel heavier than usual? Which time(s)?

(b) Suppose your normal weight is exactly 100 pounds, and you happen to be standing on a bathroom scale in
the elevator as it goes up. Take a wild guess: During which of the times A through E does the scale read:

> 100 pounds?

< 100 pounds?

= 100 pounds?
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(c) Let’s think through the last two questions by draw-
ing some additional pictures and graphs. First, in the
space below, draw a free body diagram showing only
the forces acting on you as you ride the elevator. Next,
fill in the axes to the right with sketches of your ve-
locity, acceleration, FNET and Fnormal vs. time, being
super careful to align your graphs to the position vs.
time graph at the top of the page.
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(d) Would you care to reconsider either of your answers to parts (a) or (b) now? Don’t erase anything you wrote
before; just note any additional thoughts or changes below.

Activity 2: An actual experiment, and coming back down

(a) Physics is an experimental science, and you do have at your desposal a scale, a 200-g mass, and an elevator.
Go for it! (While you’re there, you might consider the return trip back down in the elevator too, as depicted in
the graph in the following part.)

(b) In the space following the graph below, draw any additional diagrams or graphs you need to explain exactly
where you felt lighter than normal, and where you felt heavier than normal.

A B C D E F G H I
Time

Po
sit

io
n

(c) Bottom line: If your normal weight was exactly 100 pounds, during which of the times A through I does the
scale read:

> 100 pounds?
< 100 pounds?
= 100 pounds?
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Lab 13 Newton’s 3rd Law, Tension, and Normal Forces1

Name: Lab Partner(s):

Objectives

• To investigate Newton’s 3rd law of motion.

• To explore the characteristics of two different types of forces: tension (in strings, ropes, springs, and chains),
and normal forces (which support objects that are in contact with solid surfaces).

Apparatus
• Spring scales (2)
• Variety of masses
• Rubber band
• Various lengths of string
• Pulleys (2)

Activity 1: An Introduction to Newton’s Third Law
In order to apply Newton’s laws to complex situations with strings, pulleys, inclined planes and so forth, we
need to consider a third force law formulated by Newton having to do with the forces of interaction between two
objects.
Grab a spring scale, and have your lab partner grab a second spring scale. If you hook the end of your scale
and pull, the scale measures the force you are pulling with. Hook the end of your spring scale onto the end of
your partner’s spring scale so that the two of you are pulling on each other. See if you can find a way for each of
you to pull so that your two spring scales give different readings. (You might try holding still, or pulling your
partner’s arm closer to yours, for instance.) Describe your conclusions below.

In contemporary English, Newton’s third law can be stated as follows.

Newton’s Third Law:
If one object exerts a force on a second object, then the second object exerts a force back on the first
object which is equal in magnitude and opposite in direction to that exerted on it by the first object.

In mathematical terms, we can describe the interaction forces between two objects use vector notation:

 

𝐹⃗𝐹1 on 2 = −𝐹⃗𝐹2 on 1 

𝐹⃗𝐹2 on 1 
Object 1 

Object 2 
𝐹⃗𝐹1 on 2 

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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LAB 13 NEWTON’S 3RD LAW, TENSION, AND NORMAL FORCES

Activity 2: Tension Forces

When you pull on one end of a rope attached to a crate, a force is transmitted down the rope to the crate. If you
pull hard enough the crate may begin to slide. Tension is the name given to forces transmitted in this way along
devices that can stretch such as strings, ropes, rubber bands, springs, and wires.

(a) Pull on the two ends of a rubber band, stretching it between your two hands. What is the direction of the
force applied by the rubber band on your right hand? On your left hand?

(b) Does the magnitude of the forces applied by the rubber band on each hand feel the same?

(c) Now add a spring scale to each side, to measure the forces at both ends. Are they indeed the same? 

 

left hand right hand rubber band 

(d) Repeat part (c) with a string instead of a rubber band. Does the string stretch? (Look carefully!) Are the
forces still the same on both sides?

(e) If you pull by the same amount on the string as you did on the rubber band, does substituting the string
for the rubber band change anything about the directions and magnitudes of the tension forces exerted on each
hand?

(f) If the forces caused by the string, known as tension force, on your left and right hands respectively are given
by T1 and T2, what is the equation that relates these two forces?
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Activity 3: Tension Forces when a String Changes Direction

Suppose you were to hang equal masses of m = 0.5 kg in the various configurations shown below.

 

𝑚𝑚 
𝑚𝑚 𝑚𝑚 

𝑚𝑚 

𝑚𝑚 𝑚𝑚 

𝑚𝑚 𝑚𝑚 𝑚𝑚 

𝑚𝑚 

PULLEY 

A B C 
D 

E 

F G 

H 

I 

(a) For each configuration shown, predict the reading in newtons on each of the spring scales; these readings
indicate the forces that are transmitted by the tensions at various places along the string. Then measure all of
the forces and record their values. Note: Remember that m = 0.5 kg.

Predicted Force Magnitudes Measured Force Magnitudes

FA = N FA = N

FB = N FB = N

FC = N FC = N

FD = N FD = N

FE = N FE = N

FF = N FF = N

FG = N FG = N

FH = N FH = N

FI = N FI = N
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(b) Based on Newton’s third law and the observations you just made, answer the following questions using vector
notation. If the muscle man in the diagram below is pulling to the left on a rope with a force of F⃗ = −(150 N)̂i.

(1) What is the magnitude and direction of the force that the rope is exerting on the man?

(2) What force is the left-hand rope exerting on the monkey’s right arm?

(3) What force is the spring scale experiencing on its left end?

(4) What force is the spring scale experiencing on its right end?

(5) What is the reading on the spring scale?

(6) What force is the rope exerting on the tree?

(7) What force is the tree exerting on the rope?

(c) Summarize what your observations reveal about the nature of tension forces everywhere along a string.

Activity 4: Can a String Support Lateral Forces?

Take a look at the diagram below. Can the strongest member of your group stretch a string or rope so that it is
perfectly horizontal when a 5 kg mass is hanging from it? In other words, can the string provide a force that just
balances the force exerted by the mass?

 

𝜃  

5 kg 

𝜃  

𝐹⃗1 

  

𝐹⃗2 

  

𝐹⃗3 
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(a) Draw a vector diagram showing the directions of the forces exerted by the strings on the mass hook in the
diagram below. What would happen to the direction of the forces as θ goes to zero? Do you think it will be
possible to support the mass when θ = 0? Why?

 

ߠ

5 kg	

 	ߠ

(b) Now, try holding a mass horizontally with a string. Explain why it is not possible to hold the string horizontal.

Activity 5: Normal Forces

A book resting on a table does not move; neither does a person pushing against a wall. According to Newton’s
first law the net force on the book and on the person’s hand must be zero. There must be another type of force
that explains why books don’t fall through tables and hands don’t usually punch through walls. The forces
exerted by these surfaces always seem to act in a direction perpendicular to that surface; such a force is known as
a normal force. (Here “normal” means perpendicular.)

(a) The diagram below shows a block sliding along a table near the surface of the earth at a constant velocity.
According to Newton’s first law, what is the net force on the block? In other words, what is the vector sum of all
the forces on the block?

 

constant Ԧݒ

݉

(b) The net force is made up of four forces. In what direction does each one act? Draw a diagram indicating the
direction of each of the forces.
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Activity 6: Components of FG on an Incline

Suppose that a block of mass m is perched on an incline of angle θ as shown in the diagram below. Also suppose
that you know the angle of the incline and the magnitude and direction of the gravitational force vector. What
do you predict the magnitude of the component of the force vector will be parallel to the plane? Perpendicular to
the plane?

 

 

 

𝐹𝐹|| 

𝐹𝐹G 
𝐹𝐹⊥  𝜃𝜃 

 𝜃𝜃 

(a) The angle that the incline makes with the horizontal and the angle between F⊥ and FG are the same. Explain
why.

(b) Choose a coordinate system with the x-axis parallel to the plane with the positive direction up the plane.
Using normal mathematical techniques for finding the components of a vector, find the values of F∥ and F⊥ as a
function of FG and the angle of the incline θ.

(c) Find an equation for the magnitude of the normal force exerted on the block by the surface of the incline.
Hint: Use Newton’s first law and the knowledge that the block is not moving in a direction perpendicular to the
plane.
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Lab 14 Friction and Applying the Laws of Motion1

Name: Lab Partner(s):

Objectives

• To explore the characteristics of friction.

• To learn to use free-body diagrams to make predictions about the behavior of systems which are acted on
by multiple forces in two and three dimensions.

Predicting and Measuring Friction Factors

If Newton’s laws are to be used to describe the sliding of a block in contact with a flat surface, we must postulate
the existence of a frictional force that crops up to oppose the applied force. There are two kinds of frictional
forces: static friction and kinetic or sliding friction, which is the friction between surfaces in relative motion. We
will concentrate on the study of kinetic friction for a sliding block.

Apparatus

• Wooden block with hook

• 5.0 newton spring scale

• Variety of masses

• CS2000 compact scale

Activity 1: Prediction of Friction Factors

(a) List several parameters that might influence the magnitude of the kinetic frictional force.

(b) Describe how you might do an experiment to determine the effect of mass on the magnitude of the frictional
force.

Measuring the Effect of Mass on Kinetic Friction

Let’s determine how mass actually influences the frictional force. Perform the experiment that you designed in
the previous activity to determine how the frictional force varies with mass.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 2: Friction Data and Analysis
(a) Create a data table for the frictional force as a function of mass in the space below. You should make at least
5-7 measurements.

(b) Graph the frictional force (vertical axis) versus the the magnitude of the normal force n = mg (horizontal
axis) and find the best fit to the data, using Excel with a linear function. Print the graph and include a copy
with this unit. Write the equation (with appropriate units) that describes the data in the space below.

(c) Look up kinetic friction in your text. Read about the coefficient of sliding friction, µk, and figure out how to
determine µk from the slope of your graph. Use the LINEST function in Excel (see Appendix D: Excel) to
determine the slope and its uncertainty. Calculate µk and its uncertainty for the block sliding on the table. How
does your range of values compare with the appropriate value in the table in your text? Do they agree?

Theories of Friction
No material is perfectly “smooth and flat.” Any surface when examined under a microscope is full of irregularities.
It is usually assumed that sliding friction forces result from the rubbing of rough surfaces, i.e., from the interlocking
of surface bumps during the sliding process. How reasonable is this explanation for sliding friction?
Activity 3: What Surfaces Have High Friction?
(a) Which kinds of surfaces do you think will have the most friction rough ones or smooth ones? Why?

(b) Examine the table of coefficients of friction in a text. Do the values listed in this table support your predictions?
Are you surprised?

The fact that smooth surfaces sometimes have more sliding friction associated with them than rough surfaces has
led to the modern view that other factors such as adhesion (i.e., the attraction between molecules on sliding
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surfaces) also play a major role in friction. Predicting the coefficient of sliding friction for different types of
surfaces is not always possible and there is much yet to be learned about the nature of the forces that govern
sliding friction. Most authors of introductory physics texts still tend, incorrectly, to equate smooth surfaces with
“frictionless ones” and to claim that the rubbing of rough surfaces is the cause of friction.

Free-Body Diagrams: Putting It All Together

You have made a series of observations which hopefully led you to reconstruct Newton’s three laws of motion and
some of its ramifications for yourself. In summary the laws are:

Newton’s First Law: If the net force acting on an object is zero its acceleration is zero. [If
∑

F⃗ = 0 then
a⃗ = 0 so that v⃗ = constant or zero.]

Newton’s Second Law: If the net force on an object is NOT zero, then it will be accelerated according to∑
F⃗ = ma⃗.

Newton’s Third Law: Any two objects that interact exert forces on each other which are equal in magnitude
and opposite in direction. [F⃗1 on 2 = −F⃗2 on 1]

These three laws are incredibly powerful because an understanding of them allows you to either: (1) use a
complete knowledge of forces on a system of objects to predict motions in the system or (2) identify the forces on
a system of objects based on observations of its motions.

Using Free-Body Diagrams to Predict Motions and Calculate Forces

The key to the effective application of Newton’s laws is to identify and diagram all the forces acting on each
object in a system of interest. The next step is to define a coordinate system and break the forces down into
components to take advantage of the fact that if

∑
F⃗ = ma⃗ then

∑
Fx = max and

∑
Fy = may.

A free-body diagram consists of a set of arrows representing all the forces on an object, but NOT the forces that
the object exerts on other objects. To create a free-body diagram you should do as follows:

1. Draw arrows to represent all force acting on the object or objects in the system of interest.

2. Place the tail of each arrow at the point where the force acts on the object.

3. Each arrow should point in the direction of the force it represents.

4. The relative lengths of the arrows should, if possible, be made to correspond to the magnitudes of the forces.

5. A set of coordinate axis should be chosen and indicated and all of the arrows should be labeled using
standard notation to indicate the type of force involved.

Important Note: The idea of using a single force vector to summarize external forces that act in the same
direction is a useful simplification which is not real. For example, when a block rests on a table, we will say that
the table exerts a normal force on the block. It is conventional to draw a single upward arrow at the point where
the middle of the bottom surface of the block touches the table. This arrow actually represents the sum of all the
smaller forces at each point where the block touches the table. This is shown in the diagram below:

lots of little support forces 𝑛𝑛
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An Example of a Free-Body Diagram

Consider a block of mass m sliding on a rough inclined plane as shown in the diagram below. It has three forces
on it: (1) a gravitational force, (2) a normal force perpendicular to the surface of the plane, and (3) the friction
force opposing its motion down the plane.

Since the block is sliding it could either be moving at a constant velocity or with a constant acceleration. Thus,
it is possible that the vector sum of forces on it is not equal to zero in some cases. For example, if there is
accelerated motion, then:

∑
F⃗ = n⃗ + F⃗G + f⃗ = ma⃗

𝜃𝜃

𝜃𝜃
𝐹⃗𝐹G

𝑛𝑛

Activity 4: Some Free-Body Diagrams

Based on the example above, try your hand at drawing the free-body diagrams for the situations described below.
In each case, write the equation for the vector sum of forces. As always, be sure to put arrows over symbols
representing vector quantities.

(a) A block slides freely down a smooth inclined plane.

𝑚𝑚

𝜃𝜃 smooth plane

(b) A block is on a rough plane but is not moving due to static friction.

𝑚𝑚

𝜃𝜃rough plane

(c) A block is on a rough plane but the coefficient of friction between the block and the plane is small. The block
is sliding down the plane at a constant velocity so that kinetic friction is acting.

𝑚𝑚

𝜃𝜃rough plane
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(d) The block is on a frictionless plane but is attached to a hanging mass of 2m by one of our famous “massless”
strings over a pulley. Construct two free-body diagrams, one showing the forces on the mass m, and one showing
the forces on the mass 2m.

𝜃𝜃 smooth plane

2𝑚𝑚

Breaking the Forces into Components: An Example

Consider the case of the block sliding down a “smooth” plane with a negligible amount of friction. The free-body
diagram and coordinate system chosen for analysis are shown in the figure below.

𝜃𝜃

𝜃𝜃 𝐹⃗𝐹G

𝑛𝑛

Taking components: (FG)x = −FG sin θ and (FG)y = −FG cos θ.

There is no motion perpendicular to the surface so
∑

Fy = 0 = n + (FG)y so that n = −(FG)y = FG cos θ.

There is no balancing force for the x-component of FG so according to Newton’s second law
∑

Fx = max =
−FG sin θ = −mg sin θ and therefore ax = −g sin θ.

Activity 5: Solving an Inclined Plane Problem

(a) Consider a block sliding down a rough inclined plane at a constant velocity. What is the net force on it?

(b) Refer to the free-body diagram you created for this situation in the last activity (part c of Activity 4). Break
the forces up into components and apply Newton’s first law to find the equation for the coefficient of kinetic
friction as a function of m, θ, and g. Remember that velocity is constant.

𝑚𝑚

𝜃𝜃rough plane
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LAB 15 THE ELECTRICAL AND GRAVITATIONAL FORCES

Lab 15 The Electrical and Gravitational Forces1

Name: Lab Partner(s):

I began to think of gravity extending to the orb of the moon, and . . . I deduced that the forces
which keep the planets in their orbs must be reciprocally as the squares of their distances from the
centers about which they revolve: and thereby compared the force requisite to keep the moon in her
orb with the force of gravity at the surface of the earth, and found them to answer pretty nearly. All
this was in the two plague years of 1665 and 1666, for in those days I was in the prime of my age for
invention, and minded mathematics and philosophy more than at any time since. — Isaac Newton

Objective

To understand the similarities of the gravitational and electrical forces.

Overview

The enterprise of physics is concerned ultimately with mathematically describing the fundamental forces of nature.
Nature offers us several fundamental forces, which include a strong force that holds the nuclei of atoms together,
a weak force that helps us describe certain kinds of radioactive decay in the nucleus, the force of gravity, and the
electromagnetic force.

Two kinds of force dominate our everyday reality: the gravitational force acting between masses and the Coulomb
force acting between electrical charges. The gravitational force allows us to describe mathematically how objects
near the surface of the earth are attracted toward the earth and how the moon revolves around the earth and
planets revolve around the sun. The genius of Newton was to realize that objects as diverse as falling apples and
revolving planets are both moving under the action of the same gravitational force. 

Moon 

Earth 

falling 
mass 

𝑅𝑅 ≈ 384,000 km 

Similarly, the Coulomb force allows us to describe how one charge “falls” toward another or how an electron
orbits a proton in a hydrogen atom.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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electron

proton 

falling 
electron 
attracted 
to proton 

ܴ ൌ 0.53 ൈ 10ିଵ଴ m

൅	

െ

൅	

െ	

The fact that both the Coulomb and the gravitational forces lead to objects falling and to objects orbiting around
each other suggests that these forces might have the same mathematical form.

In this unit we will explore the mathematical symmetry between electrical and gravitational forces for two reasons.
First, it is beautiful to behold the unity that nature offers us as we use the same type of mathematics to predict
the motion of planets and galaxies, the falling of objects, the flow of electrons in circuits, and the nature of the
hydrogen atom and of other chemical elements. Second, what you have already learned about the influence of the
gravitational force on a mass can be applied to aid your understanding of the forces on charged particles.

Activity 1: Comparison of Electrical and Gravitational Forces

Let’s start our discussion of this comparison with the familiar expression of the Coulomb force exerted by charge
1 on charge 2.

𝑟̂𝑟12

𝑞𝑞1

𝑞𝑞2

unit 
vector 

𝐹⃗𝐹1 on 2 = 𝑘𝑘𝑒𝑒
𝑞𝑞1𝑞𝑞2
𝑟𝑟2

𝑟̂𝑟12

𝑘𝑘𝑒𝑒 = 8.99 × 109 ⁄N m2 C2𝑟𝑟12

Charles Coulomb did his experimental investigations of this force in the 18th century by exploring the forces
between two small charged spheres. Much later, in the 20th century, Coulomb’s law enabled scientists to design
cyclotrons and other types of accelerators for moving charged particles in circular orbits at high speeds.

Newton’s discovery of the universal law of gravitation came the other way around. He thought about orbits first.
This was back in the 17th century, long before Coulomb began his studies. A statement of Newton’s universal
law of gravitation describing the force experienced by mass 1 due to the presence of mass 2 is shown below in
modern mathematical notation:
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𝑟̂𝑟12

𝑚𝑚1

𝑚𝑚2

unit 
vector 

𝐹⃗𝐹1 on 2 = −𝐺𝐺
𝑚𝑚1𝑚𝑚2

𝑟𝑟2
𝑟̂𝑟12

𝐺𝐺 = 6.67 × 10−11 ⁄N m2 kg2𝑟𝑟12

About the time that Coulomb did his experiments with electrical charges in the 18th century, one of his
contemporaries, Henry Cavendish, did a direct experiment to determine the nature of the gravitational force
between two spherical masses in a laboratory. This confirmed Newton’s gravitational force law and allowed him
to determine the gravitational constant, G. A fact emerges that is quite amazing. Both types of forces, electrical
and gravitational, are very similar. Essentially the same mathematics can be used to describe orbital and linear
motions due to either electrical or gravitational interactions of the tiniest fundamental particles or the largest
galaxies. This statement needs to be qualified a bit when electrons, protons and other fundamental particles are
considered. A new field called quantum mechanics was developed in the early part of the 20th century to take
into account the wave nature of matter, which we don’t actually study in introductory physics. However, even in
wave mechanical calculations electrical forces like those shown above are used.

Activity 2: The Electrical vs. the Gravitational Force

Examine the mathematical expression for the two force laws.

(a) What is the same about the two force laws?

(b) What is different? For example, is the force between two like masses attractive or repulsive? How about
two like charges? What part of each equation determines whether the like charges or masses are attractive or
repulsive?

(c) Do you think negative mass could exist? If there is negative mass, would two negative masses attract or repel?

Which Force is Stronger—Electrical or Gravitational?

Gravitational forces hold the planets in our solar system in orbit and account for the motions of matter in galaxies.
Electrical forces serve to hold atoms and molecules together. If we consider two of the most common fundamental
particles, the electron and the proton, how do their electrical and gravitational forces compare with each other?
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Let’s peek into the hydrogen atom and compare the gravitational force on the electron due to interaction of its
mass with that of the proton to the electrical force between the two particles as a result of their charge. In order
to do the calculation you’ll need to use some well known constants.

Electron: me = 9.1 × 10−31 kg, qe = −1.6 × 10−19 C

Proton: mp = 1.7 × 10−27 kg, qp = +1.6 × 10−19 C

Distance between the electron and proton: r = 0.53 × 10−10 m

Activity 3: The Electrical vs. the Gravitational Force in the Hydrogen Atom

(a) Calculate the magnitude of the electrical force on the electron. Is it attractive or repulsive?

(b) Calculate the magnitude of the gravitational force on the electron. Is it attractive or repulsive?

(c) Which is larger? By what factor (i.e. what is the ratio)?

(d) Which force are you more aware of on a daily basis? If your answer does not agree with the result of part (c),
explain why, i.e. why do we usually not experience electrical forces in our everyday lives?

Activity 4: The Gravitational Force of the Earth

(a) Use Newton’s law of universal gravitation to show that the magnitude of the acceleration due to gravity on an
object of mass m at a height h above the surface of the earth is given by the following expression:

GMe

(Re + h)2

Hint: Because of the spherical symmetry of the Earth you can treat the mass of the Earth as if it were all
concentrated at a point at the Earth’s center.
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(b) Calculate the acceleration due to gravity of a mass m at the surface of the earth (h=0). The radius of the
earth is Re ≈ 6.38 × 103 km and its mass Me ≈ 5.98 × 1024 kg. Does the result look familiar? How is this
acceleration related to the gravitational acceleration g?

(c) Use the equation you derived in part (a) to calculate the acceleration due to gravity at the ceiling of the room
you are now in. How does it differ from the value at the floor? Can you measure the difference in the lab using
the devices available?

(d) Suppose you travel halfway to the moon. What is the new value of the acceleration due to gravity (neglecting
the effect of the moon’s pull)? (Recall that the earth-moon distance is about 384,000 km.)

(e) Is the gravitational acceleration “constant,” g, really a constant? Explain.

(f) In part (d) you showed that there is a significant gravitational attraction halfway between the earth and the
moon. Why, then, do astronauts experience “weightlessness” when they are orbiting a mere 120 km above the
earth?
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Lab 16 Centripetal Force1

Name: Lab Partner(s):

Objective

To explore the phenomenon of uniform circular motion and the accelerations and forces needed to maintain it.

Overview

In a previous unit you began the study of the application of Newton’s laws to projectile motion. In this unit we
are going to consider the application of Newton’s laws to another phenomenon in two dimensions. Since Newton’s
laws can be used to predict types of motion or the conditions for no motion, their applications are useful in many
endeavors including human body motion, astrophysics, and engineering.

You will explore uniform circular motion, in which an object moves at a constant speed in a circle. In particular,
you will develop a mathematical description of centripetal acceleration and the force needed to keep an object
moving in a circle.

 

𝑣⃗𝑣 

𝑣⃗𝑣 

𝑣⃗𝑣 

𝑣⃗𝑣 

Apparatus

• An airplane.

• A video analysis system (Tracker).

• A spring scale.

• Graphing software (Excel).

Moving in a Circle at a Constant Speed

When a race car speeds around a circular track, or when David twirled a stone at the end of a rope to clobber
Goliath, or when a planet like Venus orbits the sun, they undergo uniform circular motion. Understanding
the forces which govern orbital motion has been vital to astronomers in their quest to understand the laws of
gravitation.

But we are getting ahead of ourselves, for as we have done in the case of linear and projectile motion we will
begin our study by considering situations involving external applied forces that lead to circular motion in the
absence of friction. We will then use our belief in Newton’s laws to see how the circular motions of the planets
can be used to help astronomers discover the laws of gravitation.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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𝑟𝑟

𝑣⃗𝑣

Let’s begin our study with some very simple considerations. Suppose an astronaut goes into outer space, ties a
ball to the end of a rope, and spins the ball so that it moves at a constant speed.

Activity 1: Uniform Circular Motion

(a) Consider the figure above. What is the speed of a ball that moves in a circle of radius r = 2.5 m if it takes
0.50 s to complete one revolution?

(b) The speed of the ball is constant! Would you say that this is accelerated motion?

(c) What is the definition of acceleration? (Remember that acceleration is a vector!)

(d) Are velocity and speed the same thing? Is the velocity of the ball constant? (Hint: Velocity is a vector
quantity!)

(e) In light of your answers to (c) and (d), would you like to change your answer to part (b)? Explain.

Using Vectors to Diagram How Velocity Changes

By now you should have concluded that since the direction of the motion of an object undergoing uniform circular
motion is constantly changing, its velocity is also changing and thus it is accelerating. We would like you to
figure out how to calculate the direction of the acceleration and its magnitude as a function of the speed v of an
object such as a ball as it revolves and as a function of the radius of the circle in which it revolves. In order to
use vectors to find the direction of velocity change in circular motion, let’s review some rules for adding velocity
vectors.
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𝑣⃗𝑣1 

𝑣⃗𝑣2 

𝑡𝑡1 

𝑡𝑡2 

𝑎⃗𝑎 ≈
∆𝑣⃗𝑣
∆𝑡𝑡

 

1. 2. 3. 

∆𝑣⃗𝑣 𝑣⃗𝑣1 

𝑣⃗𝑣2 

𝑣⃗𝑣1 + ∆𝑣⃗𝑣 = 𝑣⃗𝑣2 

1. To Draw Velocities: Draw an arrow representing the velocity, v⃗1, of the object at time t1. Draw another
arrow representing the velocity, v⃗2, of the object at time t2.

2. To Draw Velocity Change: Find the change in the velocity ∆v⃗ = v⃗2 − v⃗1 during the time interval described
by ∆t = t2 − t1. Start by using the rules of vector sums to rearrange the terms so that v⃗1 + ∆v⃗ = v⃗2. Next
place the tails of the two velocity vectors together halfway between the original and final location of the
object. The change in velocity is the vector that points from the head of the first velocity vector to the
head of the second velocity vector.

3. To Draw Acceleration: The acceleration equals the velocity change ∆v⃗ divided by the time interval t needed
for the change. Thus, a⃗ is in the same direction as ∆v⃗ but is a different length (unless ∆t = 1). Thus, even
if you do not know the time interval, you can still determine the direction of the acceleration because it
points in the same direction as ∆v⃗.

The acceleration associated with uniform circular motion is known as centripetal acceleration. You will use the
vector diagram technique described above to find its direction.

Activity 2: The Direction of Centripetal Acceleration

(a) Determine the direction of motion of the ball shown below if it is moving counter-clockwise at a constant
speed. Note that the direction of the ball’s velocity is always tangential to the circle as it moves around. Draw
an arrow representing the direction and magnitude of the ball’s velocity as it passes the dot just before it reaches
point A. Label this vector v⃗1.

 

𝑣 1 

𝑣 2 

𝑡1 

𝑡2 

a  ≈
Δ𝑣 

Δ𝑡
 

1. 2. 3. 

Δ𝑣  𝑣 1 

𝑣 2 

𝑣 1 + Δ𝑣 = 𝑣 2 

“Just” after 
“Just” before 

A 

B 

(b) Next, use the same diagram to draw the arrow representing the velocity of the ball when it is at the dot just
after it passes point A. Label this vector v⃗2.

(c) Find the direction and magnitude of the change in velocity as follows. In the space below, make an exact copy
of both vectors, placing the tails of the two vectors together. Next, draw the vector that must be added to vector
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v⃗1 to add up to vector v⃗2 ; label this vector ∆v⃗. Be sure that vectors v⃗1 and v⃗2 have the same magnitude and
direction in this drawing that they had in your drawing in part (a)!

(d) Now, draw an exact copy of ∆v⃗ on your sketch in part (a). Place the tail of this copy at point A. Again,
make sure that your copy has the exact magnitude and direction as the original ∆v⃗ in part (c).

(e) Now that you know the direction of the change in velocity, what is the direction of the centripetal acceleration,
a⃗c?

(f) If you re did the analysis for point B at the opposite end of the circle, what do you think the direction of the
centripetal acceleration, a⃗c), would be now?

(g) As the ball moves on around the circle, what is the direction of its acceleration?

(h) Use Newton’s second law in vector form (
∑

F⃗ = ma⃗ ) to describe the direction of the net force on the ball as
it moves around the circle.

(i) If the ball is being twirled around on a string, what is the source of the net force needed to keep it moving in
a circle?
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Using Mathematics to Derive How Centripetal Acceleration Depends on Radius and Speed

You haven’t done any experiments yet to see how centripetal acceleration depends on the radius of the circle and
the speed of the object. You can use the rules of mathematics and the definition of acceleration to derive the
relationship between speed, radius, and magnitude of centripetal acceleration.

Activity 3: How Does a⃗c Depend on v⃗ and r⃗?

(a) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
moving at a certain speed to rotate in a smaller circle? In other words, would the magnitude, ac, have to increase
or decrease as r decreases if circular motion is to be maintained? Explain.

(b) Do you expect you would need more centripetal acceleration or less centripetal acceleration to cause an object
to rotate at a given radius r if the speed v is increased? In other words, would the magnitude, ac, have to increase
or decrease as v increases if circular motion is to be maintained? Explain.

You should have guessed that it requires more acceleration to move an object of a certain speed in a circle of
smaller radius and that it also takes more acceleration to move an object that has a higher speed in a circle
of a given radius. Lets use the definition of acceleration in two dimensions and some accepted mathematical
relationships to show that the magnitude of centripetal acceleration should actually be given by the equation

ac = v2

r
[Eq. 1]

In order to do this derivation you will want to use the following definition for acceleration

a⃗avg = v⃗2 − v⃗1

t2 − t1
= ∆v⃗

∆t
[Eq. 2]

Activity 4: Finding the Equation for ac

(a) Refer to the diagram below. Explain why, at the two points shown on the circle, the angle between the
position vectors at times t1 and t2 is the same as the angle between the velocity vectors at times t1 and t2. Hint:
In circular motion, velocity vectors are always perpendicular to their position vectors.

 

curved arc 

Δ𝑣⃗ 

𝑣⃗1 

𝑣⃗2 

straight  
vector 𝑟2 𝑟1 

Δ𝑟 

θ 

Δ𝑟 = 𝑟2 − 𝑟1 

Δ𝑠 

θ 
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(b) Since the angles are the same and since the magnitudes of the displacements never change (i.e., r = r1 = r2)
and the magnitudes of the velocities never change (i.e., v = v1 = v2), use the properties of similar triangles to
explain why ∆v

v = ∆r
r .

(c) Now use the equation in part (b) and the definition of aavg to show that (ac)avg = ∆v
∆t = (∆r)

(∆t)
v
r .

(d) The speed of the object as it rotates around the circle is given by v = ∆s
∆t . Is the change in arc length, ∆s,

larger or smaller than the magnitude of the change in the position vector, ∆r? Explain why the arc length
change and the change in the position vector are approximately the same when t is very small (so that the angle
θ becomes very small) i.e., why is ∆s ≃ ∆r?

(e) If ∆s ≃ ∆r, then what is the equation for the speed in terms of ∆r and ∆t?

(f) Using the equation in part (c), show that as ∆t → 0, the instantaneous value of the centripetal acceleration is
given by Eq. 1.

(g) If the object has a mass m, what is the equation for the magnitude of the centripetal force needed to keep the
object rotating in a circle (in terms of v, r, and m)? In what direction does this force point as the object rotates
in its circular orbit?

Experimental Test of the Centripetal Force Equation
The theoretical considerations in the last activity should have led you to the conclusion that, whenever you see
an object of mass m moving in a circle of radius r at a constant speed v, it must at all times be experiencing a
net centripetal force directed toward the center of the circle that has a magnitude of

Fc = mac = m
v2

r
[Eq. 3]

Let’s check this out. Does this rather odd equation really work for an external force?
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To test the validity of the derivation we must compare it to experience. We will use a “toy” airplane suspended
from a string and flying in a circular path. We will use the video analysis system to measure the properties of the
motion and determine the horizontal and vertical components of the force exerted on the airplane using Equation
3. We will compare that result with a direct measurement of the tension in the string.
Activity 5: Verifying the Fc Equation
(a) Measure the mass of the airplane and the length L of the portion of the string that hangs below the horizontal
post with the hole in it. Record the values here:

(b) The airplane is suspended from a spring scale. The string should pass straight down from the scale through
the small hole in the horizontal post. The camera should be placed 1 to 2 meters above the airplane looking
down. Turn on the camera and center the spring scale in the frame. In order to turn on the camera, you will
have to open “Camera” (see Appendix B: Video Analysis Using Tracker). Check that the reading of the
spring scale is consistent with the mass of the airplane. Launch the plane into uniform circular motion. When
the motion is steady record a movie of at least one complete revolution and record the reading of the spring scale
here:

Fscale =

(c) To analyze the movie, use Tracker (see Appendix B: Video Analysis Using Tracker). Set the origin of
coordinate axes at the axis of revolution of the plane. After your plane has made one complete revolution, make
a graph of x vs t. Double click on the graph to expand it, print the graph and include with this unit. Read the
period of revolution for the complete cycle and record it here:

trev =

(d) Next, make a graph of y vs x. The result should be a circle. Double click on the graph to expand it. Determine
the diameter of the circle by measuring it at several places on the graph and averaging them. Record the average
radius of the path here:

r =

Print the graph and include with this unit.
(e) To test the validity of the expression for Fc we must know the speed. Use the measurements of the radius of
the airplane’s trajectory and the time for one complete revolution to calculate the average speed.

vave =

(f) Use your results for the mass, the average velocity of the airplane, and the radius of the circular motion to
predict the centripetal force exerted by the string.

Fc =

(g) We will now determine the net force exerted by the string on the airplane by using a little trigonometry.
Recall that we know r, the radius of the airplane’s circular path, and L, the total length of the string that is
actually rotating.
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1. Using these two distances (r and L), calculate the angle the string makes with the horizontal. You may
want to draw a diagram to do this.

θ =

2. We determined the horizontal component of the force on the airplane Fc in part (f). Knowing the angle θ we
can determine an expression for the net force exerted by the string on the airplane, Fplane. Draw a vector
force diagram including Fc and Fplane, derive an expression for Fplane, calculate it, and record it here:

Fplane =

(h) Compare your result for Fplane with the measurement of the spring scale Fscale. Should they be different?
Should they be the same? Explain.

(i) Calculate the percent difference between Fplane and Fscale (Fplane − Fscale)and record it below. Go around
to the other lab groups and get their results for this quantity. Make a histogram of the results you collect
and calculate the average and standard deviation. For information on making histograms, see Appendix D.
For information on calculating the average and standard deviation, see Appendix E. Record the average and
standard deviation here. Attach the histogram to this unit.

(j) What is your expectation for the difference Fplane −Fscale? Do the data from the class support this expectation?
Use the average and standard deviation for the class to quantitatively answer this question.

(k) What does the histogram of the class data tell you?

(l) Discuss the major sources of uncertainty in this experiment.
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Lab 17 Work and Power1

Name: Lab Partner(s):

Objectives

• To extend the intuitive notion of work as physical effort to a formal mathematical definition of work as a
function of force and distance.

• To understand the concept of power and its relationship to work.

Apparatus

• 5.0 newton spring scale
• Wooden block with hook
• Variety of masses
• meter stick
• stop watch

The Concept of Physical Work
Suppose you are president of the Richmond Load ’n’ Go Co. A local college has three jobs available and will
allow you to choose which one you want before offering the other two jobs to rival companies. All three jobs pay
the same amount of money. Which one would you choose for your crew?

Lifting 100
50−lb boxes
a distance
of 20 feet

Job 1

20 ft

Job 3 10 ft
Lifting 50 
100−lb boxes
a distance of 
10 feet.

Job 2

30 ft Lifting 100 of the 50−l
boxes a distance of 30 
along a 30 deg incline 
frictionless rollers30 deg

Activity 1: Choosing Your Job
Examine the descriptions of the jobs shown in figure above. Which one would you be most likely to choose?
Least likely to choose? Explain the reasons for your answer.

You obviously want to do the least amount of work for the most money. Before you reconsider your answers later
11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of

this material have been modified locally and may not have been classroom tested at Dickinson College.
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in this unit, you should do a series of activities to get a better feel for what physicists mean by work and how the
president of Load ’n’ Go can make top dollar.

In everyday language we refer to doing work whenever we expend effort. In order to get an intuitive feel for how
we might define work mathematically, you should experiment with moving your textbook back and forth along a
table top and a rougher surface such as a carpeted floor.

Activity 2: This is Work!

(a) Pick a distance of a meter or so. Sense how much effort it takes to push a heavy book that distance. How
much more effort does it take to push it twice as far?

(b) Pile another similar book on top of the original one and sense how much effort it takes to push the two books
through the distance you picked. Comment below.

(c) From your study of sliding friction, what is the relationship between the mass of a sliding object and the
friction force it experiences? On the basis of your experience with sliding friction, estimate how much more force
you have to apply to push two books compared to one book.

(d) If the “effort” it takes to move an object is associated with physical work, guess an equation that can be used
to define work mathematically when the force on an object and its displacement (i.e., the distance it moves) lie
along the same line.

In physics, work is not simply effort. In fact, the physicist’s definition of work is precise and mathematical. In
order to have a full understanding of how work is defined in physics, we need to consider its definition in a very
simple situation and then enrich it later to include more realistic situations.

A Simple Definition of Physical Work: If an object that is moving in a straight line experiences a constant
force in the direction of its motion during the time it is undergoing a displacement, the work done by the external
force, Fext, is defined as the product of the force and the displacement of the object,

Wext = Fext∆x
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where Wext represents the work done by the external force, Fext is the magnitude of the force, and ∆x is the
displacement of the object.

What if the force of interest and the displacement are in opposite directions? For instance, what about the work
done by the force of sliding friction, fk, when a block slides on a rough surface? The work done by the friction
force is dissipative; thus,

Wdiss = −fk∆x

Activity 3: Applying the Physics Definition of Work

(a) Does effort necessarily result in physical work? Suppose two guys are in an evenly matched tug of war. They
are obviously expending effort to pull on the rope, but according to the definition of physical work, are they
doing any physical work? Explain.

(b) A wooden block with a mass of .30 kg is pushed along a sheet of ice that has no friction with a constant
external force of 10 N which acts in a horizontal direction. After it moves a distance of 0.40 m how much work
has been done on the block by the external force?

(c) The same wooden block with a mass of .30 kg is pushed along a table with a constant external force of 10 N
which acts in a horizontal direction. It moves a distance of 0.40 m. However, there is a friction force opposing its
motion. Assume that the coefficient of sliding friction, µk, is 0.20.

 

𝐹⃗𝐹external 
𝐹⃗𝐹friction 

direction of motion 

1. According to the definition of work done by a force, what is the work associated with the external force? Is
the work positive or negative? Show your calculation. Note: This is the same as part (b) above.
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2. According to our discussion above of the work done by a friction force, what is the work associated with
the friction force? Is the work positive or negative? Show your calculation. (See the equation above, just
before Activity 3.)

(d) Suppose you lift a 0.3 kg object through a vertical distance of 1.0 m at a constant velocity.

1. What is the work associated with the force that the earth exerts on the object? Is the work positive or
negative? Show your calculation.

2. What is the work associated with the external force you apply to the object? Is the work positive or
negative? Show your calculation.

Pulling at an Angle: What Happens When the Force and the Displacement Are Not Along the
Same Line?

Let’s be more quantitative about measuring force and distance and calculating the work. How should work be
calculated when the external force and the displacement of an object are not in the same direction?

𝐹⃗𝐹 

𝐹⃗𝐹 

To investigate this, you will use a spring scale to measure the force necessary to slide a block along the table at a
constant speed. Before you make your simple force measurements, put some weights on your block so that it
slides along a smooth surface at a constant velocity even when it is being pulled with a force that is 30 or 60
degrees from the horizontal.
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Activity 4: Calculating Work

(a) Hold a spring scale horizontal to the table and use it to pull the block (with 500 grams on it) a distance of 0.5
meters along the horizontal surface in such a way that the block moves at a constant speed. Record the force in
newtons and the distance in meters in the space below and calculate the work done on the block in joules. (Note
that there is a special unit for work, the joule, or J for short. One joule is equal to one newton times one meter,
i.e., J = N m.)

(b) Repeat the measurement, only this time pull on the block at a 30◦ angle with respect to the horizontal. Pull
the block at about the same speed for the same distance as in part (a). Is the force needed larger or smaller than
you measured in part (a)? Write down the force in newtons:

(c) Repeat the measurement once more, this time pulling the block at a 60◦ angle with respect to the horizontal.
Pull the block at about the same speed and the same distance as before. Write down the force in newtons:

(d) The distances the block moved in parts (a), (b), and (c) were all the same. Should the work done in the three
cases be the same? Use your data to postulate a mathematical equation that relates the physical work, W , to
the magnitude of the applied force, F , the magnitude of the displacement, ∆s, and the angle, θ, between F and
∆s. Calculate the the work done in the three cases using your equation. Hint: sin 30◦ = .500, sin 60◦ = .866, cos
30◦ = .866, cos 60◦ = .500.

Are the three results the same? If not, can you think of a reason why not?

Work as a Dot Product

Review the definition of dot (or scalar) product as a special product of two vectors in your textbook, and convince
yourself that the dot product can be used to define physical work in general cases when the force is constant but
not necessarily in the direction of the displacement resulting from it.

W = F⃗ · ∆s⃗
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Activity 5: How Much Work Goes with Each Job?

(a) Re-examine the descriptions of the jobs shown in the figure on the first page of this experiment. What is the
minimum physical work done in job 1?

(b) What is the minimum physical work done in job 2? Get the angle right. Remember that even though you are
going up an inclined plane, the force you exert to counteract gravity is straight upward.

(c) What is the minimum physical work done in job 3?

(d) Was your original intuition about which job to take correct? Which job should Richmond Load ’n’ Go try to
land?

The Concept of Power

People are interested in more than physical work. They are also interested in the rate at which physical work can
be done. Average power, ⟨P ⟩, is defined as the ratio of the amount of work done, ∆W , to the time interval, ∆t,
it takes to do the work, so that

Pavg = ∆W

∆t
.

Instantaneous power is given by the derivative of work with respect to time, or

P = dW

dt
.

If work is measured in joules and time in seconds then the fundamental unit of power is in joules/second where 1
joule/second equals one watt. However, a more traditional unit of power is the horsepower, which represents the
rate at which a typical work horse can do physical work. It turns out that 1 horsepower (or hp) = 746 watts =
746 joules/second.

Those of you who are car buffs know that horsepower is a big deal in rating high performance cars. The hp in a
souped-up car is in the hundreds. How does your stair climbing ability stack up? Let’s see how long it takes you
to climb the two stories of stairs in the science center.
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Activity 6: Rate the Horsepower in Your Legs

(a) Determine the time it takes you to climb the two flights of stairs in the science center. Then measure the
height of the climb and compute the work done against the force of gravity.

(b) Compute the average power, Pavg, you expended in hp. How does this compare to the horsepower of your
favorite automobile? If you’re not into cars, how do you stack up against a horse?
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Lab 18 Work and Kinetic Energy1

Name: Lab Partner(s):

Objectives

• To discover Hooke’s law.
• To understand the concept of kinetic energy and its relationship to work as embodied in the work-energy

theorem.
• To develop an understanding of the physical significance of mathematical integration.

The Force Exerted on a Mass by an Extended Spring

So far we have pushed and pulled on an object with a constant force and calculated the work needed to displace
that object. In most real situations the force on an object can change as it moves.

What happens to the average force needed to stretch a spring from 0 to 1 cm compared to the average force
needed to extend the same spring from 10 to 11 cm? How does the applied force on a spring affect the amount
by which it stretches, i.e., its displacement?

Apparatus

• A large spring
• A support rod to hang the spring
• A 2-meter stick
• A variety of masses

Activity 1: Are Spring Forces Constant?

Hang the spring from a support rod with the large diameter coils in the downward position. Extend the spring
from 0 to 1 cm. Feel the force needed to extend the spring. Extend the spring from 10 to 11 cm. Feel the force
needed to extend the spring again. How do the two forces compare? Are they the same?

The Force and Work Needed to Stretch a Spring

Now we would like to be able to quantify the force and work needed to extend a spring as a function of its
displacement from an equilibrium position (i.e., when it is “unstretched”).

Activity 2: Force vs. Displacement for a Spring

(a) Measure the distance from the floor to the lower end of the spring and record this distance as s0 below. Start
filling in the first four columns of the data table on the next page. (Alternatively, this data table can be created
directly in Excel. If you use Excel, print the data table and attach it to this lab.) Hang different masses on the
spring in 0.100 kg increments up to 1.000 kg and calculate the external gravitational force Fext applied to the
spring. For each mass, measure the distance s from the floor to the lower end of the spring, and also calculate
the stretch of the spring x (= s0 − s).

s0 =

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material have been modified locally and may not have been classroom tested at Dickinson College.
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m (kg) s (m) x (m) ∆x (m) Fext (N) ⟨Fext⟩ (N) ∆W (J) Wtotal (J)

0.0 0.0 - 0.0 - - 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Using Excel, create a graph of Fext (vertical axis) vs. x (horizontal axis). Is the graph linear? If the force, Fext,
increases with the displacement in a proportional way, fit the data with a linear function including a trendline
with equation. Print the graph and include a copy with this unit. Use the LINEST function in Excel (see
Appendix D: Excel) to determine the slope of the line and its uncertainty. Use the symbol k to represent the
slope of the line. Record your value of k and its uncertainty here. What are its units? Note: k is known as the
spring constant.

(c) Write the equation describing the relationship between the external force, Fext, and the total displacement, x,
of the spring from its equilibrium using the symbols Fext, k, and x.

Note: Any restoring force on an object which is proportional to its displacement is known as a Hooke’s Law
Force. There was an erratic, contentious genius named Robert Hooke who was born in 1635. He played with
springs and argued with Newton.

Calculating Work when the Force is not Constant

We would like to expand the definition of work so it can be used to calculate the work associated with stretching a
spring and the work associated with other forces that are not constant. A helpful approach is to plot the average
force needed to move an object for each successive displacement ∆x as a bar graph like that shown in the figure
below. The figure shows a graph representing the average applied force causing each unit of displacement of an
object. This graph represents force that is not constant but not the force vs. displacement of a typical spring.

Note: The bar graph below is intended to illustrate mathematical concepts. Any similarity between the values of
the forces in the bar graph and any real set of forces is purely coincidental. In general, the force causing work to
be done on an object is not constant.
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Activity 3: Force vs. Distance in a Bar Graph

(a) Using your data from Activity 2, calculate the width of each displacement, ∆x, and the average external force,
⟨Fext⟩ for each displacement, and record the values in the table above. This means for each mass take an average
of the force value and the previous force value. You now have columns 5 and 6 filled in. Plot ⟨Fext⟩ vs. x as a bar
graph on the grid below. (Choose appropriate scales for the axes before making the graph.) Alternatively, you
can plot the bar graph in Excel.
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How can we calculate the work done in stretching the spring? We can use several equivalent techniques: (1) adding
up little pieces of ⟨Fext⟩∆x from the above bar graph, (2) finding the area under the “curve” you created in
Activity 2, or (3) using mathematical integration.

All three methods should yield about the same result. If you have not yet encountered integrals in a calculus
course, you can compare the results of using the first two methods. If you have studied integrals in calculus you
may want to consult your instructor or the textbook about how to set up the appropriate definite integral to
calculate the work needed to stretch the spring.
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Activity 4: Calculation of Work
(a) Calculate the work needed to stretch the spring by calculating small increments of ⟨Fext⟩∆x (this is ∆W , or
column 7 in your table). Record the running sum in the table (this is Wtotal, or column 8) for each mass. (The
“running sum” is the sum of all the values of ∆W up to that point.) Indicate the final value of Wtotal below.
Don’t forget to specify units.

Wtotal =

(b) Calculate the work needed to stretch the spring by computing the area under the curve in the graph of Fext
vs. x that you created in Activity 2.

(c) Calculate the work needed to stretch the spring by computing the definite integral of the function you found
in Activity 2(c), evaluated from the initial x value to the final x value.

(d) Do the three values of the work done agree with one another? How would you account for any discrepancy?

Defining Kinetic Energy and Its Relationship to Work
What happens when you apply an external force to an object that is free to move and has no friction forces on it?
Obviously it should experience an acceleration and end up being in a different state of motion. Can we relate the
change in motion of the object to the amount of work that is done on it?

Let’s consider a fairly simple situation. Suppose an object is lifted through a distance s near the surface of the
earth and then allowed to fall. During the time it is falling it will experience a constant force as a result of the
attraction between the object and the earth glibly called the force of gravity. You can use the theory we have
already developed for the gravitational force to compare the velocity of the object to the work done on it by the
gravitational field as it falls through a distance y. This should lead naturally to the definition of a new quantity
called kinetic energy, which is a measure of the amount of “motion” gained as a result of the work done on the
mass.

Activity 5: Equations for Falling v vs. y

(a) An object of mass m is dropped near the surface of the earth. What are the magnitude and direction of its
acceleration g?

(b) If the object has no initial velocity and is allowed to fall for a time t under the influence of the gravitational
force, what kinematic equation describes the relationship between the distance the object falls, y, and its time of
fall, t? Assume y0 = 0 and take positive down.
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(c) Do you expect the magnitude of the velocity to increase, decrease or remain the same as the distance increases?
Note: This is an obvious question!!

(d) Differentiate the equation you wrote down in part (b) (i.e. find v = dy/dt) to find a relationship between v,
the acceleration g, and time t.

(e) Eliminate t from the equations you obtained in parts (b) and (d) to get an expression that describes how the
velocity, v, of the falling object depends on the distance, y, through which it has fallen.

You can use the kinematic equations to derive the functional relationship you hopefully discovered experimentally
in the last activity. If we define the kinetic energy (K) of a moving object as the quantity K = 1

2 mv2, then we
can relate the change in kinetic energy as an object falls to the work done on it. Note that for an object initially
at rest the initial kinetic energy is Ki = 0, so the change in kinetic energy is given by the difference between the
initial and final kinetic energies. ∆K = Kf − Ki = 1

2 mv2.

Activity 6: Computing Work and Kinetic Energy of a Falling Mass
(a) Suppose the mass of your falling object is 0.35 kg. What is the value of the work done by the gravitational
force when the mass is dropped through a distance of y = 1.2 m?

(b) Use the kinematic equation you derived in Activity 5(e) that relates v and y to find the velocity of the falling
object after it has fallen 1.2 m.

(c) What is the kinetic energy of the object before it is dropped? After it has fallen 1.2 m? What is the change in
kinetic energy, ∆K, as a result of the fall?

(d) How does the work done by the gravitational force compare to the kinetic energy change, ∆K, of the object?
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Activity 7: The Mathematical Relationship between Work and Kinetic Energy Change During a
Fall

(a) Since our simplified case involves a constant acceleration, write down the equation you derived in Activity
5(e) to describe the speed, v, of a falling object as a function of the distance y which it fell.

(b) Using the definition of work, show that W = mgy when the object is dropped through a distance y.

(c) By combining the equations in parts (a) and (b) above, show that in theory the work done on a mass falling
under the influence of the gravitational attraction exerted on it by the earth is given by the equation W = ∆K.

You have just proven an example of the work-kinetic energy theorem which states that the change in kinetic
energy of an object is equal to the net work done by all the forces acting on it.

W = ∆K [Work-Kinetic Energy Theorem]

Although you have only shown the work-kinetic energy theorem for a special case where no friction is present, it
can be applied to any situation in which the net force can be calculated. For example, the net force on an object
might be calculated as a combination of applied, spring, gravitational, and friction forces.
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Lab 19 Conservation of Mechanical Energy1

Name: Lab Partner(s):

Objectives

• To understand the concept of potential energy.

• To investigate the conditions under which mechanical energy is conserved.

Overview
The last unit on work and energy culminated with a mathematical proof of the work-kinetic energy theorem for a
mass falling under the influence of the force of gravity. We found that when a mass starts from rest and falls a
distance y, its final velocity can be related to y by the familiar kinematic equation

v2
f = v2

i + 2gy or gy = 1
2

(
v2

f − v2
i

)
[Eq. 1]

where vf is the final velocity and vi is the initial velocity of the mass.

We believe this equation is valid because: (1) you have derived the kinematic equations mathematically using the
definitions of velocity and constant acceleration, and (2) you have verified experimentally that masses fall at a
constant acceleration. We then asked whether the transformation of the mass from a speed vi to a speed vf is
related to the work done on the mass by the force of gravity as it falls.

The answer is mathematically simple. Since FG = mg, the work done on the falling object by the force of gravity
is given by

WG = FGy = mgy [Eq. 2]

But according to Equation 1, gy = 1
2 v2

f − 1
2 v2

i , so we can re-write Equation 2 as

WG = mgy = 1
2mv2

f − 1
2mv2

i [Eq. 3]

The 1
2 mv2

f is a measure of the motion resulting from the fall. If we define it as the energy of motion, or, more
succinctly, the kinetic energy, we can define a work-kinetic energy theorem for falling objects:

W = ∆K [Eq. 4]

or, the work done on a falling object by the earth is equal to the change in its kinetic energy as calculated by the
difference between the final and initial kinetic energies.

If external work is done on the mass to raise it through a height y (a fancy phrase meaning “if some one picks
up the mass”), it now has the potential to fall back through the distance y, gaining kinetic energy as it falls.
Aha! Suppose we define potential energy to be the amount of external work, Wext, needed to move a mass at
constant velocity through a distance y against the force of gravity. Since this amount of work is positive while the
work done by the gravitational force has the same magnitude but is negative, this definition can be expressed
mathematically as

U = Wext = mgy [Eq. 5]

Note that when the potential energy is a maximum, the falling mass has no kinetic energy but it has a maximum
potential energy. As it falls, the potential energy becomes smaller and smaller as the kinetic energy increases.
The kinetic and potential energy are considered to be two different forms of mechanical energy. What about the
total mechanical energy, consisting of the sum of these two energies? Is the total mechanical energy constant

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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during the time the object falls? If it is, we might be able to hypothesize a law of conservation of mechanical
energy as follows: In some systems, the sum, E, of the kinetic and potential energy is a constant. This hypothesis
can be summarized mathematically by the following statement.

E = K + U = constant [Eq. 6]

The idea of mechanical energy conservation raises a number of questions. Does it hold quantitatively for falling
masses? How about for masses experiencing other forces, like those exerted by a spring? Can we develop an
equivalent definition of potential energy for the mass-spring system and other systems and re-introduce the
hypothesis of conservation of mechanical energy for those systems? Is mechanical energy conserved for masses
experiencing frictional forces, like those encountered in sliding?
In this unit, you will explore whether or not the mechanical energy conservation hypothesis is valid for a falling
mass.
Activity 1: Mechanical Energy for a Falling Mass
Suppose a ball of mass m is dropped from a height h above the ground.
(a) Where is U a maximum? A minimum?

(b) Where is K a maximum? A minimum?

(c) If mechanical energy is conserved what can you say about the sum of K + U for any point along the path of a
falling mass?

Mechanical Energy Conservation
How do people in different reference frames near the surface of the earth view the same event with regard to
mechanical energy associated with a mass and its conservation? Suppose the president of your college drops a
2.0-kg water balloon from the second floor of the administration building (10.0 meters above the ground). The
president takes the origin of his or her vertical axis to be even with the level of the second floor. A student
standing on the ground below considers the origin of his coordinate system to be at ground level. Have a
discussion with your classmates and try your hand at answering the questions below.
Activity 2: Mechanical Energy and Coordinate Systems
(a) What is the value of the potential energy of the balloon before and after it is dropped according to the
president? According to the student? Show your calculations and don’t forget to include units!
The president’s perspective is that y = 0.0 m at t = 0 s and that y = −10.0 m when the balloon hits the student):

Ui =

Uf =
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The student’s perspective is that y = 10.0 m at t = 0 s and that y = 0.0 m when the balloon hits:

Ui =

Uf =

Note: If you get the same potential energy value for the student and the president, you are on the wrong track!

(b) What is the value of the kinetic energy of the balloon before and after it is dropped according to the president?
According to the student? Show your calculations. Hint: Use a kinematic equation to find the velocity of the
balloon at ground level.

President’s perspective:

Ki =

Kf =

Student’s perspective:

Ki =

Kf =

Note: If you get the same values for both the student and the president for values of the kinetic energies you are
on the right track!

(c) What is the value of the total mechanical energy of the balloon before and after it is dropped according to the
president? According to the student? Show your calculations. Note: If you get the same values for both the
student and the president for the total energies you are on the wrong track!!!!!

President’s perspective:

Ei =

Ef =

Student’s perspective:

Ei =

Ef =
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(d) Why don’t the two observers calculate the same values for the mechanical energy of the water balloon?

(e) Why do the two observers agree that mechanical energy is conserved?

Activity 3: Energy Analysis for a Falling Mass

(a) Perform a video analysis (i.e. get t, x, and y) of the movie entitled conserveME7.mp4 in the Phys131 folder to
obtain the vertical position of the the ball as a function of time. Make sure you scale the graph. See Appendix B
for details on video analysis.

(b) Calculate the vertical distance the ball moves during the time intervals between adjacent frames. Suppose, for
example, your time data are in column A and your vertical position data are in column D and the first entry is
in row 14. Click in row 14 of an empty column like column F. In the formula box above the spreadsheet table
enter ‘=D15-D14’ (don’t include the quotation marks) and hit Return. This will calculate the distance the ball
covered in going from the first entry in row 14 to the second entry in row 15. Next, click on the new entry you
just made. You should see a small box in the lower right corner of the cell. Grab it and drag it straight down
to the second-to-last row of your data and release. You should now see the distance covered between adjacent
entries in all the rows above. If you don’t see this consult your instructor. Label the column ‘dy (m)’. Verify the
results for one or two cells. Why did you drag down to the second-to-last cell and not the last one?

(c) Calculate the average time interval for each step. Recall our example above. If you calculated the difference
in vertical position between adjacent frames in column F starting in row 14, then click in column G row 14. In
the formula box above the spreadsheet table enter ‘=A15-A14’ and hit Return. Click on the new entry you just
made. You should see a small box in the lower right corner of the cell. Grab it and drag it straight down to the
second-to-last row of your data and release. You should now see the time difference between adjacent frames in
all the rows above. If you don’t see this consult your instructor. Label the column ‘dt (s)’. Verify the results for
one or two cells.

(d) If you calculated the difference in vertical position between adjacent frames in column F starting in row 14
and the difference in time in column G, then click in column H row 14. In the formula box above the spreadsheet
table enter ‘=F14/G14’ and hit Return. What is this quantity?

(e) The step above is the calculation of the average velocity going from cell H14 to cell H15. We will use this as
an approximate measure of the instantaneous velocity. Last, click on the new entry you just made. You should
see a small box in the lower right corner of the cell. Grab it and drag it straight down to the second-to-last row
of your data and release. You should now see the velocity in all the rows above. If you don’t see this consult your
instructor. Label the column ‘v (m/s)’. Verify the results for one or two cells.

(f) Calculate the kinetic energy for each time interval (the mass of the ball is m = 0.058 kg). To do this, recall
our example above. If you calculated the velocity in column H starting in row 14, then click in column I row 14.
In the formula box above the spreadsheet table enter ‘=0.5*0.058*H14*H14’ and hit Return. This will calculate
the kinetic energy for cell I14. Last, click on the new entry you just made. You should see a small box in the
lower right corner of the cell. Grab it and drag it straight down to the second-to-last row of your data and release.
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You should now see the kinetic energy in all the rows above. If you don’t see this consult your instructor. Label
the column KE(J). Verify the results for one or two cells.

(g) Calculate the potential energy PE for each frame using the same techniques you used above. Label the
column PE(J). Verify the results for one or two cells.

(h) Calculate the total energy ME = KE + PE for each frame. Label the column ME(J). Verify the results for
one or two cells.

(i) Create a graph of KE, PE, and ME vs. time. Put all three on the same graph. Print the graph and attach
it to this unit.

(j) Does mechanical energy appear to be conserved within experimental uncertainties? How would you quantita-
tively estimate the value of the experimental uncertainty? Once you establish the method apply it to your data
and record the results here.
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Lab 20 Conservative and Non-Conservative Forces1

Name: Lab Partner(s):

Objectives

• To investigate the conditions under which mechanical energy is conserved.
• To relate conservative and non-conservative forces to the net work done by a force when an object moves in

a closed loop.

Apparatus

• Capstone software (Force_Sensor.cap experiment file)
• CS2000 compact scale
• Meter stick
• Wireless force sensor with hook
• Wooden block with hook
• Wooden board to use as an incline
• Stop watch
• Variety of masses

Introduction

You already know that mechanical energy is conserved for a freely falling object. Let’s investigate whether
mechanical energy is conserved when an object slides down an inclined plane in the presence of a friction force.

Activity 1: Is Mechanical Energy Conserved for a Sliding Block?

For scale 

 

 

A 

B 

(a) Raise the incline until the block slides at a constant velocity
once it is pushed gently to overcome the static friction force.
What is the potential energy of the block at point A relative to
the bottom of the ramp? Show your data and calculation.

(b) What is the potential energy change ∆U of the block when it reaches point B? Explain.

(c) Did the velocity of the block appear reasonably constant as it slid down the ramp?

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(d) Assuming the initial kinetic energy (just after your starter shove) is the same as the final kinetic energy, what
is the kinetic energy change, ∆K, of the block when it reaches point B?

(e) Is mechanical energy conserved as a result of the sliding? Cite the evidence for your answer.

As you examine the activities you just completed you should conclude that the conservation of mechanical energy
will probably only hold in situations where there are no friction forces present.

Conservative and Non-Conservative Forces

Physicists have discovered that certain conservative forces such as gravitational forces and spring forces do no
total work on an object when it moves in a closed loop. Other forces involving friction are not conservative and
hence the total work these forces do on an object moving in a closed loop is not zero. In this next activity you
will try to determine the validity of this assertion.

For scale 

 

 

A 

B 

It is not hard to see that a gravitational force does no net work when an object moves at a constant speed
through a complete round trip. In the above figure, it takes negative external work to lower a mass from point A
to point B, as the force of gravity takes care of the work. On the other hand, raising the mass from point B
to point A requires positive external work to be done against the force of gravity, and thus the net work done
by the gravitational force for the complete trip is zero. When a frictional force is present it always does net
work on an object as it undergoes a round trip. For example, when a block slides from point a to point b on a
horizontal surface, it takes work to overcome the frictional force that opposes the motion. When the block slides
back from point b to point a, the frictional force still opposes the motion of the block so that net work is done.
Let’s make this idea more concrete by sliding a block around a horizontal loop on your lab table in the presence
of a frictional force and computing the work it does. Then you can raise and lower the block around a similar
vertical loop and calculate the work the gravitational force does.

Activity 2: Are Frictional Forces Conservative According to the Loop Rule?

(a) Open the Force_Sensor.cap file in the Phys131 folder. Turn on the force sensor at your station and connect
it to the computer via Bluetooth. The measurements from the force sensor may not be zero when the force is
actually zero. To tare the sensor, select the desired sensor (the Wireless Force Sensor) in the Controls palette
and then click Zero Sensor Now.

(b) Put masses on the wooden block and attach the force sensor to the wooden block. Click the Record button
and use the force sensor to pull the block around a rectangular path on your table top at constant velocity. Draw
arrows along the path for the direction of motion and the direction of the friction force exerted on the block.
At constant velocity, the friction force will have the same magnitude as the force you measure on the sensor,
but in the opposite direction. List the measured forces and distances for each of the four segments of the path,
and calculate the work done by friction around the closed path (from a to b to a again, as shown the figure that
follows). Remember how we calculated the work done by friction in Activity 2 of Experiment 17.
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Work (done by friction) around closed loop =

(c) Is the frictional force conservative or non-conservative (i.e., is the total work done by the friction force zero or
non-zero) according to the loop rule? Explain.

Let’s return once again to our old friend the gravitational force and apply an external force to move the same
block (without the masses) in a vertical loop above the table. Be very, very careful to pay attention to the
direction of the gravitational force relative to the direction of the motion. Remember that work is the dot product
of this force and the displacement in each case so that the work done by the gravitational force when the block
moves up and when it moves down are not the same. What happens to the work when the gravitational force is
perpendicular to the direction of motion, as is the case in moving from left to right and then later from right to
left?

Activity 3: Are Gravitational Forces Conservative?

(a) Use the force sensor to raise and lower the wooden block around a rectangular path above your tabletop at a
constant speed. Draw arrows along the path for the direction of motion and the direction of the gravitational
force exerted on the block. Use your measured distances, the measurement of the mass of the block and the dot
product notation to calculate the work done by the gravitational force on the block over each of the four segments
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of the path, and over the entire path a to b to a as shown. Don’t forget to specify the units! Hints: (1) In path 1
∆x = x1 − x0, ∆y = y1 − y0, etc. (2) Keep track of the signs. For which paths is the work negative? positive?

Work (done by gravitational force) around closed loop =

(b) Is the gravitational force conservative or non-conservative according to the loop rule? Explain.

The “Missing” Energy
We have seen in the case of the sliding block (Activity 1) that the Law of Conservation of Mechanical Energy
does not seem to hold for forces involving friction. The question is, where does the “missing” energy ∆E go
when frictional forces are present? The energy in the system might not all be potential energy or kinetic energy.
If we are clever and keep adding new kinds of energy to our collection, we might be able to salvage a Law of
Conservation of Energy. If we can, this law has the potential to be much more general and powerful than the
Law of Conservation of Mechanical Energy.
Activity 4: What Happens to the Missing Energy?
(a) Rub the sliding block back and forth vigorously against your hand? What sensation do you feel?

(b) How might this sensation account for the missing energy?

Physicists call the energy which is lost by a system as a result of work done against frictional forces thermal
energy. This thermal energy may lead to an increase in the system’s internal energy. Using the symbol Eth
to represent the internal energy of a system that experiences frictional forces allows us to express the Law of
Conservation of Total Energy mathematically with the expression

Esys = U + K + Eth = constant

An alternative way to express energy conservation is to note that when energy exchanges take place, the total
system energy does not change, so that

∆Esys = ∆Emech + ∆Eth = 0

We are not prepared in this part of the course to consider the nature of internal energy or its actual measurement,
so the Law of Conservation of Energy will for now remain an untested hypothesis. However, we will re-consider
the concept of internal energy next semester when we deal with heat and temperature.
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Lab 21 Momentum and Momentum Change1

Name: Lab Partner(s):

Objectives

• To understand the definition of momentum and its vector nature as it applies to one- dimensional collisions.

• To reformulate Newton’s second law in terms of change in momentum, using the fact that Newton’s “motion”
is what we refer to as momentum.

• To develop the concept of impulse to explain how forces act over time when an object undergoes a collision.

• To use Newton’s second law to develop a mathematical equation relating impulse and momentum change
for any object experiencing a force.

Overview

In the next few units we will explore the forces of interaction between two or more objects and study the changes
in motion that result from these interactions. We are especially interested in studying collisions and explosions in
which interactions take place in fractions of a second or less. Early investigators spent a considerable amount of
time trying to observe collisions and explosions, but they encountered difficulties. This is not surprising, since
the observation of the details of such phenomena requires the use of instrumentation that was not yet invented
(such as the high speed camera). However, the principles of the outcomes of collisions were well understood by
the late seventeenth century, when several leading European scientists (including Sir Isaac Newton) developed
the concept of “quantity of motion” to describe both elastic collisions (in which objects bounce off each other)
and inelastic collisions (in which objects stick together). These days we use the word momentum rather than
motion in describing collisions and explosions.

We will begin our study of collisions by exploring the relationship between the forces experienced by an object
and its momentum change. It can be shown mathematically from Newton’s laws and experimentally from our
own observations that the integral of force experienced by an object over time is equal to its change in momentum.
This time-integral of force is defined as a special quantity called impulse, and the statement of equality between
impulse and momentum change is known as the impulse-momentum theorem.

Apparatus

• One dynamics cart, one collision cart and track

• Set of weights

Defining Momentum

In this session we are going to develop the concept of momentum to predict the outcome of collisions. But you
don’t officially know what momentum is because we haven’t defined it yet. Lets start by predicting what will
happen as a result of a simple one-dimensional collision. This should help you figure out how to define momentum
to enable you to describe collisions in mathematical terms.

??? 80 mph

8000 lbs

2000 lbs

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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It’s early fall and you are driving along a two lane highway in a rented moving van. It is full of all of your
possessions so you and the loaded truck were weighed in at 8000 lbs. You have just slowed down to 15 MPH
because you’re in a school zone. It’s a good thing you thought to do that because a group of first graders is
just starting to cross the road. Just as you pass the children you see a 2000 lb sports car in the oncoming lane
heading straight for the children at about 80 MPH. What a fool the driver is! A desperate thought crosses your
mind. You figure that you just have time to swing into the oncoming lane and speed up a bit before making a
head-on collision with the sports car. You want your truck and the sports car to crumple into a heap that sticks
together and doesn’t move. Can you save the children or is this just a suicidal act? For simulated observations of
this situation you can use two carts of different masses set up to stick together in trial collisions.

Activity 1: Can You Stop the Car?
(a) Predict how fast you would have to be going to completely stop the sports car. Explain the reasons for your
prediction.

(b) Try some head on collisions with the carts of different masses to simulate the event. Describe some of your
observations. What happens when the less massive cart is moving much faster than the more massive cart? Much
slower? At about the same speed?

(c) Based on your intuitive answers in parts (a) and (b) and your observations, what mathematical definition
might you use to describe the momentum (or motion) of a moving vehicle traveling with a known mass and
velocity?

Just to double check your reasoning, you should have come to the conclusion that momentum is defined by the
vector equation

p⃗ = mv⃗.

Expressing Newton’s Second Law Using Momentum
Originally Newton did not use the concept of acceleration or velocity in his laws. Instead he used the term
“motion,” which he defined as the product of mass and velocity (a quantity we now call momentum). Let’s
examine a translation from Latin of Newton’s first two laws (with some parenthetical changes for clarity).

Newton’s First Two Laws of Motion

1. Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to
change that state by forces impressed on it.

2. The (rate of) change of motion is proportional to the motive force impressed: and is made in the direction
in which that force is impressed.

The more familiar contemporary statement of the second law is that the net force on an object is the product
of its mass and its acceleration where the direction of the force and of the resulting acceleration are the same.
Newton’s statement of the law and the more modern statement are mathematically equivalent, as you will show.
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Activity 2: Re-expressing Newton’s Second Law

(a) Write down the contemporary mathematical expression for Newton’s second law relating net force to mass
and acceleration. Please use vector signs and a summation sign where appropriate.

(b) Write down the definition of instantaneous acceleration in terms of the rate of change of velocity. Again, use
vector signs.

(c) If an object has a changing velocity and a constant mass then m
dv⃗

dt
= d (mv⃗)

dt
. Explain why.

(d) Show that
∑

F⃗ = ma⃗ = dp⃗

dt
.

Momentum Change and Collision Forces

What’s Your Intuition?

You are sleeping in your sister’s room while she is away at college. Your house is on fire and smoke is pouring into
the partially open bedroom door. The room is so messy that you cannot get to the door. The only way to close
the door is to throw either a blob of clay or a super ball at the door — there’s not enough time to throw both.

Activity 3: What Packs the Biggest Wallop-A Clay Blob or a Super ball?

Assuming that the clay blob and the super ball have the same mass, which would you throw to close the door:
the clay blob (which will stick to the door) or the super ball (which will bounce back with almost the same
velocity it had before it collided with the door)? Give reasons for your choice, using any notions you already have
or any new concepts developed in physics such as force, momentum, Newton’s laws, etc. Remember, your life
depends on it!

Momentum Changes

It would be nice to be able to use Newton’s formulation of the second law of motion to find collision forces, but
it is difficult to measure the rate of change of momentum during a rapid collision without special instruments.
However, measuring the momenta of objects just before and just after a collision is usually not too difficult. This
led scientists in the seventeenth and eighteenth centuries to concentrate on the overall changes in momentum
that resulted from collisions. They then tried to relate changes in momentum to the forces experienced by an
object during a collision. In the next activity you are going to explore the mathematics of calculating momentum
changes.
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Activity 4: Predicting Momentum Changes

Which object undergoes the most momentum change during the collision with a door: the clay blob or the super
ball? Explain your reasoning carefully.

Let’s check your reasoning with some formal calculations of the momentum changes for both inelastic and elastic
collisions. This is a good review of the properties of one-dimensional vectors. Recall that momentum is defined
as a vector quantity that has both magnitude and direction. Mathematically, momentum change is given by the
equation

∆p⃗ = p⃗f − p⃗i

where p⃗i is the initial momentum of the object just before and p⃗f is its final momentum just after a collision.

Activity 5: Calculating 1D Momentum Changes

(a) Suppose a dead ball (or clay blob) is dropped on a table and “sticks” in such a way that it has an initial
momentum just before it hits of p⃗i = −piy ĵ where ĵ is a unit vector pointing along the positive y axis. What is
the final momentum of the dead ball (after it stops on the table)?

(b) Calculate the change in momentum of the dead ball as a result of its collision with the table, using the
equation above for ∆p⃗ and the p⃗i and p⃗f from part (a). Use the same type of unit vector notation to express
your answer. Show the calculation.

(c) Suppose that a live ball (or a super ball) is dropped on a table and “bounces” on the table in an elastic
collision so that its speed just before and just after the bounce are the same. Also suppose that just before it
bounces it has an initial momentum p⃗i = −piy ĵ, where ĵ is a unit vector pointing along the positive y-axis. What
is the final momentum of the ball in the same vector notation? Hint: Does the final p⃗ vector point along the +y
or −y axis?

(d) Calculate the change in momentum of the ball as a result of the collision, using the equation above for ∆p⃗
and the p⃗i and p⃗f from part (c). Use the same type of unit vector notation to express your result. Show the
calculation.

(e) The answer is not zero. Why? How does this result compare with your prediction?
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(f) Now we will do the same thing with numbers. Suppose the mass of each ball is 0.2 kg and that they are
dropped from 1 m above the table. Using this value for the mass of each ball and a calculated value for the
velocity of each ball just before it hits the table, calculate the momentum just before the collision p⃗i for each of
the balls. Also calculate the momentum of each ball just after the collision p⃗f and the change in momentum ∆p⃗
for each ball. Show your calculations in the space below.

Applying Newton’s Second Law to the Collision Process (The Egg Toss)

Suppose somebody tosses you a raw egg and you catch it. In physics jargon, one would say (in a very official tone
of voice) that “the egg and the hand have undergone an inelastic collision.” What is the relationship between the
force you have to exert on the egg to stop it, the time it takes you to stop it, and the momentum change that the
egg experiences? You ought to have some intuition about this matter. In more ordinary language, would you
catch an egg slowly or fast?

Activity 6: Momentum Changes and Average Forces on an Egg: What’s Your Intuition?

(a) If you catch an egg of mass m that is heading toward your hand at speed v, what is the magnitude of the
momentum change that it undergoes?

(b) Does the total momentum change differ if you catch the egg more slowly or is it the same?

(c) Suppose the time you take to bring the egg to a stop is ∆t. Would you rather catch the egg in such a way
that ∆t is small or large? Why?

(d) What do you suspect might happen to the average force you exert on the egg while catching it when ∆t is
small?

147



LAB 21 MOMENTUM AND MOMENTUM CHANGE

 
𝐹𝐹 Δ𝑡𝑡  = change in momentum 𝐹𝐹  Δ𝑡𝑡 = change in momentum 

You can use Newton’s second law to derive a mathematical relationship between momentum change, force, and
collision times for objects. This derivation leads to the impulse-momentum theorem. Let’s apply Newton’s second
law to the egg catching scenario.

Activity 7: Force and Momentum Change

(a) Sketch an arrow representing the magnitude and direction of the force exerted by your hand on the egg as
you catch it.

 
 

(b) Write the mathematical expression for Newton’s second law in terms of the net force and the time rate of
change of momentum. (See Activity 2(d) for details.)

(c) Show that for a constant force F⃗ the change in momentum is given by ∆p⃗ = F⃗ ∆t. Hint: Begin with expression
you wrote in part (b).
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Lab 22 Impulse, Momentum, and Interactions1

Name: Lab Partner(s):

Objectives

• To verify the relationship between impulse and momentum experimentally.
• To study the forces between objects that undergo collisions and other types of interactions in a short time

period.

Apparatus

• Capstone software (Impulse-Momentum.cap experiment file)
• CS2000 compact scale
• Dynamics track with track ends
• Wireless smart cart with spring

The Impulse-Momentum Theorem

Real collisions, like those between eggs and hands, a tennis ball and a wall, or a falling ball and a table top are
tricky to study because ∆t is so small and the collision forces are not really constant over the time the colliding
objects are in contact. Thus, we cannot calculate the impulse as F ∆t. Before we study more realistic collision
processes, let’s redo the theory for a variable force. In a collision, according to Newton’s second law, the force
exerted on a falling ball by the table top at any infinitesimally small instant in time is given by

F⃗ = dp⃗

dt
(1)

To describe a general collision that takes place between an initial time ti and a final time tf , we must take the
integral of both sides of the equation with respect to time. This gives

∫ tf

ti

F⃗ dt =
∫ tf

ti

dp⃗

dt
dt = (p⃗f − p⃗i) = ∆p⃗. (2)

Impulse J⃗ is a vector quantity defined by the equation

J⃗ =
∫ tf

ti

F⃗ dt, (3)

which represents the area under the F vs. t curve. By combining equations (2) and (3) we can formulate the
impulse-momentum theorem in which

J⃗ = ∆p⃗. (4)

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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Activity 1: Predicting Collision Forces That Change
Let’s see qualitatively what an impulse curve might look like in a real collision in which the forces change over
time during the collision. In particular, let’s consider the collision of a tennis ball with a wall as shown below.

𝑝𝑝𝑖𝑖 𝑝𝑝𝑓𝑓

(a) Suppose a tennis ball is barreling toward a wall and collides with it. If gravity and air friction are neglected,
what is the net force exerted on the object just before it starts to collide?

(b) When will the magnitude of the force on the ball be a maximum?

(c) Roughly how long does the collision process take? Half a second? Less? Several seconds?

(d) Attempt a rough sketch of the shape of the force the wall exerts on a moving object during a collision.

Time

Fo
rc

e
F

w
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l

Activity 2: Verification of the Impulse-Momentum Theorem
To verify the impulse-momentum theorem experimentally we will show that for an actual collision involving a
single force on an object, the equation ∫ tf

ti

F⃗ dt = ∆p⃗

holds, where the impulse integral can be calculated by finding the area under the curve of a graph of F vs. t.

Area =
∫ tf

ti

F⃗ dt

t

F
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The experimental setup is shown in the figure below. Open the file Impulse-Momentum.cap in the Phys131 folder.
Turn on the cart at your station and connect it to the computer via Bluetooth. To tare the cart’s built-in sensors,
select the desired sensor (either the Smart Cart Acceleration Sensor or the Smart Cart Force Sensor) in
the Controls palette and then click Zero Sensor Now. When taring the sensors, the cart should be at rest and
there should be no applied force on the spring.

 

cart 
track end 

spring 

(a) Measure the mass m of the cart + spring, using the compact scale, and record it here:

(b) With the track horizontal, give the cart a gentle shove towards the track end. The spring attached to the
cart’s built-in force sensor will measure the force as a function of time during the cart’s collision with the track
end. Record data in the table below for several trials, using the initial and final velocities of the cart to calculate
its change in momentum ∆p. To calculate the impulse, J⃗ , you will measure the area under the force curve. (See
Appendix A: Capstone for instructions on how to measure the area.)

If your instructor requests it, print the graphs for one of your trials and include it with this report. Also, you can
use Excel to make your table instead if you prefer, but be sure to print it and attach it at the end of this unit.

vi (m/s) vf (m/s) ∆p (kg·m/s) J (N·s) difference % difference

(c) For each trial above, calculate the difference between J and ∆p, expressing it as a percentage difference as
well.

(d) Do your results verify the impulse-momentum theorem? Explain, quantitatively.
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(e) What do you expect for the values in the last column of your table (Percent diff)? Make a histogram of your
results in the % difference column and calculate the average and standard deviation. For information on making
histograms, see Appendix D. For information on calculating the average and standard deviation, see Appendix
E (can also be done in Excel). Record the average and standard deviation here. Attach the histogram to this
unit. Is your data consistent with your expectation?

(f) What does the histogram of your data tell you?

(g) Is there any indication of a systematic uncertainty? What are the possible sources of error?
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Lab 23 Newton’s Laws and Momentum Conservation1

Name: Lab Partner(s):

Objectives

• To study the forces between objects that undergo collisions and other types of interactions in a short time
period.

• To formulate the Law of Conservation of Momentum as a theoretical consequence of Newton’s laws and to
test it experimentally.

Apparatus

• Pasco 550 Interface
• Capstone software (Two_Force_Probes.cap experiment file)
• Force probes (x2)
• Rubber bumpers, hooks and springs for the force probes
• Pasco collision carts (x2)
• A track for the carts
• A video analysis system (Tracker)
• A movie scaling ruler
• Graphing and curve fitting software (Excel)
• Circular bubble level

Predicting Interaction Forces Between Objects

We recently focused our attention on the change in momentum that an object undergoes when it experiences a
force that is extended over time (even if that time is very short!). Since interactions like collisions and explosions
never involve just one object, we would like to turn our attention to the mutual forces of interaction between two
or more objects. As usual, you will be asked to make some predictions about interaction forces and then be given
the opportunity to test these predictions.

Activity 1: Predicting Interaction Forces

(a) Suppose that two identical objects are moving toward each other at the same speed so that m1 = m2 and
v⃗1 = −v⃗2.

𝑚𝑚1

object 1 object 2

𝑚𝑚2

𝑣⃗𝑣 −𝑣⃗𝑣

Predict the relative magnitudes of the forces between the objects. Place a check next to your prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) Suppose the masses of two objects are the same and that object 1 is moving toward object 2, but object 2 is
at rest, so that m1 = m2 and v⃗1 > v⃗2.

𝑚𝑚1

𝑣⃗𝑣object 1 object 2

𝑚𝑚2

Predict the relative magnitudes of the forces between the objects. Place a check next to your prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

(c) Suppose the mass of object 1 is much less than that of object 2 and that it is pushing object 2, which has a
dead motor. Both objects move in the same direction at speed v, so that m1 ≪ m2 and v⃗1 = v⃗2.

𝑚𝑚1

𝑣⃗𝑣

object 1
object 2

𝑚𝑚2

Predict the relative magnitudes of the forces between the objects. Place a check next to your prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

(d) Suppose the mass of object 1 is greater than that of object 2 and that the objects are moving toward each
other at the same speed so that m1 > m2 and v⃗1 = −v⃗2.

𝑚𝑚1

𝑣⃗𝑣 −𝑣⃗𝑣

object 1

object 2

𝑚𝑚2

Predict the relative magnitudes of the forces between the objects. Place a check next to your prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

154



LAB 23 NEWTON’S LAWS AND MOMENTUM CONSERVATION

(e) Suppose the mass of object 1 is greater than that of object 2 and that object 2 is moving in the same direction
as object 1 but not quite as fast, so that m1 > m2 and v⃗1 > v⃗2.

𝑚𝑚1
𝑣⃗𝑣

𝑣⃗𝑣/2

object 1 object 2
(mosquito)

𝑚𝑚2

Predict the relative magnitudes of the forces between the objects. Place a check next to your prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

(f) Suppose the mass of object 1 is greater than that of object 2 and that both objects are at rest until an
explosion occurs, so that m1 > m2 and v⃗1 < v⃗2.

𝑚𝑚1

object 1 object 2

𝑚𝑚2

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your
prediction.

Object 1 exerts more force on object 2.

The objects exert the same force on each other.

Object 2 exerts more force on object 1.

(g) Provide a summary of your predictions. What are the circumstances under which you predict that one object
will exert more force on another object?

Measuring Mutual Forces of Interaction

In order to test the predictions you made in the last activity you can study gentle collisions between two
force probes attached to carts. First, open the file Two_Force_Probes.cap in the Phys131 folder. To make the
interpretation of your data easier you should flip the sign of one of the force probes. To do this first click on
Hardware Setup on the left side of the CapStone window, then click the gear symbol on Forces Sensor Ch A,
and check the box labeled Change sign. To get back out click OK and then Hardware Setup. You can strap
additional masses to one of the carts to increase its total mass so it has significantly more mass than the other. If
a compression spring is available you can set up an “explosion” between the two carts by compressing the spring
between the force probes on each cart and letting it go. You can make and display the force measurements with
the Two Force Probes file already opened. You can also determine the areas under the force vs. time graphs to
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find the impulses experienced by the carts during the collisions. See Appendix A: Capstone for instructions
on finding the area under a curve.

Activity 2: Measuring Slow Forces

(a) Play a gentle tug-of-war in which you pull the ends of the two force probes away from each other for about 10
seconds with your partner using the hooks on the force probes hooked together. What do you observe about the
mutual forces?

(b) Remove the hooks and attach rubber bumpers to the two force probes. Play a gentle tug-of-war in which
you push the ends of two force probes against each other for about 10 seconds with your partner. What do you
observe about the mutual forces?

(c) Now that you’re warmed up to this two force measurement technique go ahead and try some different types
of gentle collisions between two carts of different masses and initial velocities. To do this, remove the rubber
bumpers and attach springs to the two force probes.

Activity 3: Measuring Collision Forces

(a) Use the two carts to explore various situations that correspond to the predictions you made about mutual
forces. Your goal is to find out under what circumstances one object exerts more force on another object. Describe
what you did in the space below and attach a printout of at least one of your graphs of force 1 vs. time and force
2 vs. time.

(b) What can you conclude about forces of interactions during collisions? Are there any circumstances under which
one object experiences a different magnitude of force than another during a collision? How do the magnitudes
and directions of the forces compare on a moment by moment basis in each case? Compare your answers here
with your predictions.

(c) Do your conclusions have anything to do with Newton’s third law?
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(d) How does the vector impulse due to object 1 acting on object 2 compare to the impulse of object 2 acting on
object 1 in each case? Are they the same in magnitude or different? Do they have the same sign or a different
sign? Remember J⃗ =

∫ tf

ti
F⃗ dt.

Newton’s Laws and Momentum Conservation

In your investigations of interaction forces, you should have found that the forces between two objects are equal
in magnitude and opposite in sign on a moment by moment basis for all the interactions you studied. This is
of course a testimonial to the seemingly universal applicability of Newton’s third law to interactions between
ordinary masses. You can combine the findings of the impulse-momentum theorem (which is really another
form of Newton’s second law since we derived it mathematically from the second law) to derive the Law of
Conservation of Momentum shown below.

Law of Conservation of Momentum∑
p⃗ = p⃗1i + p⃗2i = p⃗1f + p⃗2f = constant in time

where 1 refers to object 1 and 2 refers to object 2 and i refers to the initial momenta and f to the final momenta.

Activity 4: Deriving Momentum Conservation

(a) What did you conclude in the last activity about the magnitude and sign of the impulse on object 1 due to
object 2 and vice verse when two objects interact? In other words, how does J⃗1 compare to J⃗2?

(b) Since you have already verified experimentally that the impulse-momentum theorem holds, what can you
conclude about how the change in momentum of object 1, ∆p⃗1, as a result of the interaction compares to the
change in momentum of object 2, ∆p⃗2, as a result of the interaction? Remember J⃗ = ∆p⃗.

(c) Use the result of part (b) to show that the Law of Conservation of Momentum holds for a collision, i.e.∑
p⃗ = p⃗1i + p⃗2i = p⃗1f + p⃗2f = constant in time.

In the next few units you will continue to study one- and two-dimensional collisions using momentum conservation.
Right now you will attempt to test the Law of Conservation of Momentum for a simple situation by using video
analysis. To do this you will make and analyze a video movie in which two carts of DIFFERENT masses undergo
a one-dimensional elastic collision. You may not be able to finish this in class, but you can complete the project
for homework.
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Testing Momentum Conservation

You just used theoretical grounds to derive momentum conservation. This idea still must be tested against
experiment. You will make this test by colliding two carts (of different masses) on a track and recording and
analyzing their motion before and after they hit. Measure the masses of the carts and record the total mass of
each cart here:

Activity 5: Colliding Carts

(a) Make a movie of two carts colliding by following these steps.

1. Open Camera and turn on the camera as explained in Appendix B: Video Analysis Using Tracker.
Center the track in the field of view of the camera which should be about 1 m above the center of the track
where one cart (the target) will sit. The target cart should be located straight down below the camera.
Align the track so that it is parallel to the border of the movie image. Make sure the track is level by
using the small level available at each station. Place a ruler somewhere in the field of view where it won’t
interfere with the collision. This ruler will be used later to determine the scale.

2. Make a movie of one cart (the projectile) rolling into the other, stationary cart (the target). See Appendix
B: Video Analysis Using Tracker for details on making the movie. When you save the movie file give it
the name Collision.

(b) Determine the position of both carts (the target and the projectile) during the motion using Tracker. In
Tracker, align one of the axes along the path of the incoming projectile. Track one cart, then the other as functions
of time. For each cart you will have a table showing values of time and x position for each cart.

(c) Within Tracker, create graphs of position versus time for both carts. Print the graphs and include them
with this unit. You can determine the initial and final velocities of each cart from the slopes of the appropriate
segments of the graphs.

(d) Use your data to calculate the momenta of carts 1 and 2 before the collision.

(e) Use the data to calculate the momenta of carts 1 and 2 after the collision.

(f) Using the results of parts (d) and (e), calculate the total momentum before and after the collision. Also
calculate the difference between the total momentum before and after the collision (pf − pi) and the percent
difference (pf − pi)/pave (where pave is the average of pi and pf ), and record them below. Go around to the
other lab groups and get their results for the difference pf − pi. Make a histogram of the results you collect
and calculate the average and standard deviation. For information on making histograms, see Appendix D.
For information on calculating the average and standard deviation, see Appendix E. Record the average and
standard deviation here. Attach the histogram to this unit.
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(g) What is your expectation for the difference between the initial and final momentum? Do the data from the
class support this expectation? Use the average and standard deviation for the class to quantitatively answer this
question.

(h) What does the histogram of the class data tell you?

(i) Within the limits of experimental uncertainty, is momentum conserved (i.e., is the total momentum of the two
cart system the same before and after the collision)?
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Lab 24 Momentum Conservation and Center of Mass1

Name: Lab Partner(s):

Objectives

To explore the applicability of conservation of momentum to the mutual interactions among objects that experience
no external forces (so that the system of objects is isolated). You will calculate momentum changes for an isolated
system consisting of two very unequal masses and to observe momentum changes for a system consisting of two
equal masses.

Apparatus

• Two Pasco dynamics carts with equal masses

• Two Pasco collision carts

• A track for the carts

• A video analysis system (Tracker)

• Variety of masses

• Circular bubble level

• Movie scaling ruler

Overview

You have now tested Newton’s third law under different conditions and it always seems to hold. The implications
of that are profound, because whenever an object experiences a force, another entity must also be experiencing
a force of the same magnitude. A single force is only half of an interaction. Whenever there are interactions
between two or more objects, it is often possible to draw a boundary around a system of objects and say there is
no net external force on it. A closed system with no external forces on it is known as an isolated system. Some
examples of isolated systems are shown in the figure below.

As a consequence of Newton’s laws, momentum is believed to be conserved in isolated systems. This means that,
no matter how many internal interactions occur, the total momentum of each of the systems pictured below
should remain constant. When one of the objects gains some momentum another part of the system must lose
the same amount of momentum. If momentum doesn’t seem to be conserved then we believe that there is an
outside force acting on the system. Thus, by extending the boundary of the system to include the source of that
force we can save our Law of Momentum Conservation. The ultimate isolated system is the whole universe. Most
astrophysicists believe that momentum is conserved in the universe!

You will begin this unit by examining a situation in which it appears that momentum is not conserved and then
seeing how the Law of Conservation of Momentum can hold when the whole isolated system is considered. In the
next activity you will make qualitative observations using two carts of equal mass moving toward each other at
the same speed. You will observe momentum changes for several types of interactions, including an elastic and
inelastic collision and an explosion.

Next, a new quantity, called the center of mass of a system, will be introduced as an alternate way to keep track
of the momentum associated with a system or an extended body. In the next unit, you will use this concept to
demonstrate that the Law of Conservation of Momentum holds for both one-dimensional and two-dimensional
interactions in isolated systems. Several other attributes of the center of mass of a system will be studied.

Examples of isolated systems in which the influence of outside forces is negligible are shown below.
11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
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𝑣⃗𝑣 −𝑣⃗𝑣 

Carts with almost frictionless bearings 
interact but experience only negligible 
forces from the track 

system boundary system boundary 

Pucks riding on a cushion of air on 
an air table interact with each other 
before hitting the walls of the air 
table.  (Friction forces with the 
surface of the table are negligible.) 

system boundary 

Gas molecules interact with each other 
and with the walls of their container.  
(Other forces, such as those of the table 
holding up the container and the 
gravitational force, are considered to 
have a negligible effect on the motions 
of the molecules and container. 

system 
boundary 

An orbiting satellite and the Earth 
interact.  (Forces between these 
objects and others such as the sun 
and moon are considered to have a 
negligible effect on their motion.) 

When an Irresistible Force Meets an Immovable Object

Let’s assume that a superball and the moon (with an astronaut on it) are the objects in a closed system. (The
pull of the earth doesn’t affect the falling ball, the astronaut, or the moon nearly as much as they affect each
other.) Suppose that the astronaut drops the superball and it falls toward the moon so that it rebounds at the
same speed it had just before it hit. If momentum is conserved in the interaction between the ball and the moon,
can we notice the moon recoil?

Activity 1: Whapping the Moon with a Superball

(a) Suppose a ball of mass 0.20 kg is dropped and falls toward the surface of the moon so that it hits the ground
with a speed of 40 m/s and rebounds with the same speed. According to the Law of Conservation of Momentum,
what is the velocity of recoil of the moon?

𝑚𝑚 = 0.2 kg

𝑣𝑣𝑖𝑖 = 40 m/s

mass of moon: 7.4 × 1022 kg
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(b) Will the astronaut notice the jerk as the moon recoils from him? Why or why not?

(c) Consider the ball and the moon as an interacting system with no other outside forces. Why might the
astronaut (who hasn’t taken physics yet!) have the illusion that momentum isn’t conserved in the interaction
between the ball and the moon?

(d) Why might an introductory physics student here on earth have the impression when throwing a ball against
the floor or a wall that momentum isn’t conserved?

Collisions with Equal Masses: What Do You Know?
Let’s use momentum conservation to predict the results of some simple collisions. The diagrams below show
objects of equal mass moving toward each other. If the track exerts negligible friction on them then the two cart
system is isolated. Assume that the carts have opposite velocities so that v⃗1i = −v⃗2i. To observe what actually
happens, you can use relatively frictionless carts with springs, magnets, and Velcro.
Activity 2: Predictions of the Outcome of Collisions
(a) Sketch a predicted result of the interaction between two carts that bounce off each other so their speeds
remain unchanged as a result of the collision. Use arrows to indicate the direction and magnitude of the velocity
of each object after the collision.

𝑣⃗𝑣 −𝑣⃗𝑣 
BEFORE: 

AFTER: 

Bouncy carts (with spring plungers or magnets) 

(b) Observe a bouncy collision (also known as an elastic collision) using two collision carts. Discuss whether or not
the outcome was what you predicted it to be. If not, draw a new sketch with arrows indicating the magnitudes
and directions of the velocities. What is the apparent relationship between the final velocities v⃗1f and v⃗2f ? How
do their magnitudes compare to those of the initial velocities?
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(c) Sketch the predicted result of the interaction between two objects that stick to each other. Use arrows to
indicate the direction and magnitude of the velocity of each object after the collision.

𝑣⃗𝑣 −𝑣⃗𝑣 
BEFORE: 

AFTER: 

Sticky carts (with Velcro) 

(d) Observe a sticky collision (also known as an inelastic collision) using one collision cart and one dynamics cart
with the plunger pushed all the way in. (The velcro pieces on the carts must be facing one another so that the
carts will stick together on impact.) Discuss whether or not the outcome was what you predicted it to be. If not,
draw a new sketch with arrows indicating the magnitudes and directions of the velocities. What is the apparent
relationship between the final velocities v⃗1f and v⃗2f ? How do their magnitudes compare to those of the initial
velocities?

(e) Sketch a predicted result of the interaction between two objects that collide in a “superelastic” way, where
energy is added in the collision due to an explosion. Use arrows to indicate the direction and magnitude of the
velocity of each object after the collision.

𝑣⃗𝑣 −𝑣⃗𝑣 
BEFORE: 

AFTER: 

Exploding carts (with loaded springs or gunpowder) 

(f) Observe an exploding or “superelastic” collision using two dynamics carts with the plungers pushed part
way in and facing one another. Discuss whether or not the outcome was what you predicted it to be. If not,
draw a new sketch with arrows indicating the magnitudes and directions of the velocities. What is the apparent
relationship between the final velocities v⃗1f and v⃗2f ? How do their magnitudes compare to those of the initial
velocities?
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(g) What is the total momentum (i.e., the vector sum of the initial momenta) before the collision or explosion in
all three situations?

(h) Does momentum appear to be conserved in each case? Is the final total momentum the same as the initial
total momentum of the two cart system?

Defining a Center for a Two Particle System

What happens to the average position of a system in which two moving carts having the same mass interact
with each other? That is, what happens to ⟨x⟩ = (x1 + x2)/2 as time goes by? What might the motion of the
average position have to do with the total momentum of the system? To study this situation you will need a
video movie-making and analysis system. In making these observations you’ll need to look at the pattern of data
points that you place over the frames. You will not need to create graphs or work with numbers.

Activity 3: Motion of the Average Position

(a) Imagine interactions between identical carts moving toward each other at the same speed as described in
Activity 2. Do you expect the average position of the carts to move before, during, or after the collision or
explosion in each case? Might this have anything to do with the fact that the total momentum of such a system
is zero? (Do not make a movie for this case.)

(b) Let’s use video analysis to study a real situation in which the total momentum of the system is NOT zero.
Do the following:

1. Turn the video camera on and center the track in the field of view. The camera should be about 1 m above
the center of the track. Align the track so that it is parallel to the border of the movie image. Make sure
the track is flat by using the small bubble level available at each station. Place a ruler somewhere in the
field of view where it won’t interfere with the collision and parallel to one side of the field of view. This
ruler will be used later to determine the scale.

2. Use two collision carts that have small magnets built in. Make a movie of the collision of two equal mass
carts moving in the same direction with different speeds. Orient the carts so they collide on the sides that
hold the magnets. See Appendix B: Video analysis Using Tracker for details on making the movie.
When you save the movie file give it the name Collision.

(c) Determine the motion of the average position of both carts during the collision process using Tracker. In
Tracker, align one of the axes along the path of the carts. Track the average position (the point half way between
the centers of the two carts) as a function of time.

165



LAB 24 MOMENTUM CONSERVATION AND CENTER OF MASS

How does the position average (the point halfway between the centers of the two carts) appear to move? Does it
move at constant velocity? Might this motion have anything to do with the fact that the total momentum of the
system is directed in one direction and is constant?

(d) You should have found that if the momentum of the carts is constant then the average position moves at
a constant rate also. Suppose the masses of the carts are unequal? How does the average position of the two
objects move then? Lets have a look at a collision between unequal masses. Make and analyze a new movie as
you did before, but add a significant amount of mass to one of the carts. Once again track the motion of the
average position by clicking halfway between the centers of the two carts. Is the motion of this average position
uniform? (i.e. does it move at constant velocity?)

(e) You should have found that the average position of a system of two unequal masses does not move at a
constant velocity. We need to define a new quantity called the center of mass that is halfway between two equal
masses but somewhere else when one of the masses is larger. Take a guess as to where the center of mass is
located for the two unequal masses. Make and analyze another movie as you did before, but this time click on
each frame at the place where you think the center of mass is located. Describe in the space below what you did
and whether your “assumed” center of mass position moved at constant velocity.
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Lab 25 Introduction to Rotation1

Name: Lab Partner(s):

Objectives

To understand the definitions of angular velocity and angular acceleration and the kinematic equations for
rotational motion on the basis of observations. We will discover the relationship between linear velocity and
angular velocity and between linear acceleration and angular acceleration.

Apparatus

• A rotator consisting of an axle, a metal disk, and a fixture to hold the disk.

• A stopwatch.

• A meter stick, drawing compass, flexible ruler, protractor, and some string.

Overview

Earlier in the course, we studied centripetal force and acceleration, which characterize circular motion. In general,
however, we have focused on studying motion along a straight line as well as the motion of projectiles. We have
defined several measurable quantities to help us describe linear and parabolic motion, including position, velocity,
acceleration, force, and mass. In the real world, many objects undergo circular motion and/or rotate while they
move. The electron orbiting a proton in a hydrogen atom, an ice skater spinning, and a hammer that tumbles
about while its center of mass moves along a parabolic path are just three of many rotating objects.

Since many objects undergo rotational motion it is useful to be able to describe their motions mathematically.
The study of rotational motion is also very useful in obtaining a deeper understanding of the nature of linear and
parabolic motion.

We are going to try to define several new quantities and relationships to help us describe the rotational motion
of rigid objects, i.e., objects that do not change shape. These quantities will include angular velocity, angular
acceleration, rotational inertia and torque. We will then use these new concepts to develop an extension of
Newton’s second law to describe rotational motion for masses more or less concentrated at a single point in space
(e.g., the electron in the hydrogen atom) and for extended objects (like the tumbling hammer).

Rigid vs. Non-rigid Objects

We will begin our study of rotational motion with a consideration of some characteristics of the rotation of rigid
objects about a fixed axis of rotation. The motions of objects, such as clouds, that change size and shape as time
passes are hard to analyze mathematically. In this unit we will focus primarily on the study of the rotation of
particles and rigid objects around an axis that is not moving. A rigid object is defined as an object that can
move along a line or can rotate without the relative distances between its parts changing.

Shown in the figure below are examples of a non-rigid object in the form of a cloud that can change shape and of
a rigid object in the form of an empty coffee cup that does not change shape.

 

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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A hammer tossed end over end and an empty coffee cup are examples of rigid objects. A ball of clay that deforms
permanently in a collision and a cloud that grows are examples of non-rigid objects.

A Puzzler

Use your imagination to solve the rotational puzzler outlined below. It’s one that might stump someone who
hasn’t taken physics.

Activity 1: Horses of a Different Speed

You are on a white horse, riding off at sunset with your beau on a chestnut mare riding at your side. Your horse
has a speed of 4.0 m/s and your beau’s horse has a speed of 3.5 m/s, yet he/she constantly remains at your side.
Where are your horses? Make a sketch to explain your answer.

Review of the Geometry of Circles

Remember way back before you came to college when you studied equations for the circumference and the area
of a circle? Let’s review those equations now, since you’ll need them a lot from here on in.

Activity 2: Circular Geometry

(a) What is the equation for the circumference C of a circle of radius r? What are the units of C?

 

𝑟𝑟 

(b) What is the equation for the area A of a circle of radius r? What are the units of A?

(c) If someone told you that the area of a circle was A = r, how could you refute them immediately? What’s
wrong with the idea of area being proportional to r?
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Distance from an Axis of Rotation and Speed
Let’s begin our study by examining the rotation of objects about a common axis that is fixed. What happens to
the speeds of different parts of a rigid object that rotates about a common axis? How does the speed of the object
depend on its distance from an axis? You should be able to answer this question by observing the rotational
speed of the rotator at each experimental station.

r1

r2

r3 Light rigid rod

Light rigid 
rods

The axis of rotation is perpendicular to 
the page and points out of the page

Place the disk in the fixture and slowly rotate it a constant speed. The figure below shows the rotator and the
definition of angular displacement.

Reference Axis

θ

Activity 3: Spinning the Rotator: Speed vs. Radius
(a) Measure how long it takes the white marker to sweep through an entire circle. Record the time and the angle
in the space below.

(b) Using the equation for circumference calculate the distance of the paths traced out by the outer edge of the
white marker and the inner edge as it rotated through a complete circle you just recorded. (Note: What do you
need to measure to perform this calculation?) Record your data below.

(c) Calculate the average speed of the outer edge of the white marker and the average speed of the inner edge of
the marker. How do they compare?

(d) How are the speeds related to the distances of inner and outer edges of the white marker from the axis of
rotation? Describe the relationship mathematically (in other words write the equation for v as a function of r
that you used in your calculations above).
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(e) Consider your equation above, if we chose to record data for motion through half a circle how would the
equation change? Can you write the equation in terms of ∆t and ∆θ?

(f) As the disk rotates, does the distance from the axis of rotation to the outer edge of the white marker change?

(g) As the disk rotates, does the distance from the axis of rotation to the inner edge of the white marker change?

(h) At any given time during your rotation, is the angle between the reference axis and the inner edge of the white
marker the same as the angle between the axis and the outer edge of the white marker, or do the angles differ?

(i) At any given time during the rotation, is the rate of change of the angle between the reference axis and the
inner edge of the white marker the same as the rate of change of the angle between the axis and the outer edge,
or do the rates differ?

(j) What happens to the linear velocity, v⃗, of the outer edge of the marker as it rotates at a constant rate? Hint:
What happens to the magnitude of the velocity, i.e., its speed? What happens to its direction?

(k) Is the outer edge of the white marker accelerating? Why or why not?

Radians, Radii, and Arc Lengths

An understanding of the relationship between angles in radians, angles in degrees, and arc lengths is critical in
the study of rotational motion. There are two common units used to measure angles: degrees and radians.

1. A degree is defined as 1/360th of a rotation in a complete circle.
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2. A radian is defined as the angle for which the arc along the circle is equal to its radius as shown in the
figure below.  

𝑟𝑟 𝑠𝑠 

𝜃𝜃 = 1 radian 

𝜃𝜃 = 1 radian 
when 𝑠𝑠 = 𝑟𝑟 

So, s = θr when θ is in radians.
In the next series of activities you will be relating angles, arc lengths, and radii for a circle.

Activity 4: Relating Arcs, Radii, and Angles
(a) Let’s warm up with a review of some very basic mathematics. What should the constant of proportionality be
between the circumference of a circle and its radius? Write the appropriate equation.

(b) Approximately how many degrees are in one radian? Let’s do this experimentally. Using the compass draw a
circle and measure its radius. Then, use the flexible ruler to trace out a length of arc s that has the same length
as the radius. Next measure the angle in degrees that is subtended by the arc.

(c) Theoretically, how many degrees are in one radian? Please calculate your result to three significant figures.
Figure out a general relationship to convert between degrees and radians. Hint: How many degrees are in a
circle? How many radians are in a circle?

(d) If an object moves 30 degrees on the circumference of a circle of radius 1.5 m, what is the length of its path?

(e) If an object moves 0.42 radians on the circumference of a circle of radius 1.5 m, what is the length of its path?
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(f) Remembering the relationship between the speed of the outer edge of the rotator and the distance, r, from the
rotator’s axis the outer edge, what equations would you use to define the magnitude of the average “angular”
velocity, ⟨ω⟩ in terms of v and r? Hint: In words, ⟨ω⟩ is defined as the amount of angle swept out by the object
per unit time.

y

x

t2

θ1

t1

θ2

(g) How many radians are there in a full circle consisting of 360 degrees?

(h) When an object moves in a complete circle in a fixed amount of time, what quantity (other than time) remains
unchanged for circles of several different radii?

Relating Linear and Angular Quantities

It’s very useful to know the relationship between the variables s, v, and a, which describe linear motion and the
corresponding variables θ, ω, and α, which describe rotational motion. You now know enough to define these
relationships.

Activity 5: Linear and Angular Variables

(a) Using the definition of the radian, what is the general relationship between a length of arc, s, on a circle and
the variables r and θ in radians.

(b) Assume that an object is moving in a circle of constant radius, r. Using the relationship you found in part (a)
above, take the derivative of s with respect to time to find the velocity of the object. Show that the magnitude of
the linear velocity, v, is related to the magnitude of the angular velocity, ω, by the equation v = ωr.

(c) Assume that an object is accelerating in a circle of constant radius, r. Using the relationship you found in part
(b) above, take the derivative of v with respect to time to find the tangential acceleration of the object. Show
that the linear acceleration, at, tangent to the circle is related to the angular acceleration, α, by the equation
at = αr.
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The Rotational Kinematic Equations for Constant α

The set of definitions of angular variables are the basis of the physicist’s description of rotational motion. We can
use them to derive a set of kinematic equations for rotational motion with constant angular acceleration that are
similar to the equations for linear motion.

Activity 6: The Rotational Kinematic Equations

The figure below shows a massless string wound around a spool of radius r. The mass falls with a constant
acceleration, a. Refer to this figure and the results of Activity 5 to answer the following questions. NOTE: The
distance y that the mass falls is equal to the arc length s moved by a point on the edge of the spool.

 

𝑟𝑟 

time = 0 

𝑦𝑦0 

𝜃𝜃0 
𝑟𝑟 

time = 𝑡𝑡 

𝜃𝜃 

𝑦𝑦0 

𝑦𝑦 

(a) What is the equation for y in terms of θ and r?

(b) What is the equation for v in terms of ω and r?

(c) What is the equation for a in terms of α and r?

(d) Consider the falling mass in the figure above. Note that the positive y axis is pointing down. Using the
relationships between the linear and angular variables in parts (a), (b), and (c), derive the rotational kinematic
equation for constant acceleration for each linear kinematic equation listed below. Warning: Don’t just write the
analogous equations! Show the substitutions needed to derive the equations on the right from those on the left.

1. v = v0 + at ω =

2. y = y0 + v0t + 1
2 at2 θ =

3. v2 = v2
0 + 2ay ω2 =
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Lab 26 Getting a Feel for Moment of Inertia

Name: Lab Partner(s):

 

 

Apparatus

• four shish-kebab sticks1

• masking tape

Setup

If it hasn’t been done already, tape two pairs of shish-kebob sticks together, as shown above. (One pair taped
end-to-end, the other pair taped like a cross.)

Activity

1. Each pair of sticks should have about the same mass (two sticks plus some tape). Hold each pair of sticks in
your hand, and shake it quickly side to side. They should feel about the same, and really different from, say,
shaking a heavy textbook. Do they?

2. Next, you’ll spin each pair of sticks back and forth between two fingers as shown—but don’t try it yet, until
you make a prediction: will both pairs of sticks be equally easy to spin back and forth, or will one feel harder to
start spinning and stop spinning than the other?

Prediction:

Now try it. Does one feel harder to start spinning? (If yes, which one?)

Experiment:

3. Which pair of sticks “feels heavier” when you spin it?

The effect you feel is that each pair of sticks has a different moment of inertia,
which tells you how hard it is to make an object spin.

• An object’s moment of inertia depends on how its mass is distributed. It is larger when the mass is further
away from the axis of rotation. That’s why the cross is harder to spin, even though both pairs of sticks
have the same mass.

• The moment of inertia also depends on mass: you would feel the difference if you tried to spin two things of
the same shape but different masses. That’s why the crossed sticks “feel heavier” when you spin them.

4. For a quick, qualitative explanation of what mass means, you might say something like:

“Mass tells you how much an object resists accelerating when you apply a force.”

Write a sentence analogous to the one above, using the terms moment of inertia, angular acceleration, and torque.

1In Turkish, şiş means roughly “stick” and kebap means something like “grilled meat.” So, strictly speaking, this lab only uses
the shish part of the shish-kebab. (Also, strictly speaking, the term “veggie kebabs” should really be something like “shish veggies,”
but that’s another story.) Fun facts to know and share!
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Lab 27 Newton’s Second Law for Rotation1

Name: Lab Partner(s):

Objectives

To understand torque and its relation to angular acceleration and moment of inertia on the basis of both
observations and theory.

Apparatus

• A Rotating Disk System
• A hanging mass of 200 g (for applying torque)
• String and pulley
• A movie scaling ruler and a simple cm ruler
• Vernier caliper
• Small water bubble level
• A video analysis system (Tracker).

Overview

We have used the definition of moment of inertia, I, to determine a theoretical equation for the moment of inertia
of a uniform disk. This equation was given by

I = 1
2MR2.

Does this equation adequately describe the moment of inertia of a rotating disk system? If so, then we should
find that, if we apply a known torque, τ , to the disk system, its resulting angular acceleration, α, is actually
related to the system’s moment of inertia, I, by the equation

τ = Iα or α = τ/I

The purpose of this experiment is to determine if, within the limits of experimental uncertainty, the measured
angular acceleration αexp of a rotating disk system is the same as its theoretical value αth. The theoretical value
of angular acceleration can be calculated using theoretically determined values for the torque on the system and
its moment of inertia.

Activity 1: Theoretical Calculations

In this section you’ll take some basic measurements on the rotating disk system to determine the theoretical
value for angular acceleration.

(a) Calculate the theoretical value of the moment of inertia of the metal disk using basic measurements of its
radius and mass. Ignore the small hole in the middle in your calculation (i.e. assume the disk is uniform). Be
sure to state units!

Rd = Md =

I =

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions of
this material may have been modified locally and may not have been classroom tested at Dickinson College.
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(b) In preparation for calculating the torque on your system, summarize the measurements for the falling mass,
m, and the radius of the spool that has the string wrapped around it in the space below. The diameter of the
spool can be measured using the vernier caliper. Don’t forget the units!

m = rs =

(c) Calculate the theoretical value for the torque τ on the rotating system as a function of the magnitude of the
hanging mass and the radius, rs, of the spool, assuming the tension in the string is equal to the weight of the
falling mass (this introduces an error of less than 1 percent if m = 200 g). Remember that torque equals force
(tension in the string) times moment arm (radius of spool). Be sure to include units.

τ =

(d) Based on the values of torque and moment of inertia that you just calculated, what is the theoretical value of
the angular acceleration αth of the disk? (Refer to equations in Overview). Be sure to include units.

αth =

Activity 2: Experimental Measurement of Angular Acceleration

(a) Place the video camera about 1 m above the rotator, and align the camera with the center of the rotator.
Open Camera and turn on the camera as explained in Appendix B: Video analysis Using Tracker. Center
the rotator in the field of view of the camera. Use the small level to ensure that the surface of the rotator is level.
Place a ruler of known length in the field of view of the camera and parallel to one side of the frame.

(b) Place the rotator so the string will pass smoothly over the pulley and put 200 g of mass on the end of the
string. Release the rotator and use the video camera to record the motion of the disk for at least two full turns.
See Appendix B: Video analysis Using Tracker for details on making the movie.

(c) Determine the angular displacement of the rotator as a function of time. Important: Be careful to place the
origin of your coordinate system on the axle of the rotator BEFORE recording data, so the angular displacement
you measure will be the desired one. Using Tracker, track the outer edge of the white marker on the rotating disk
for at least two full rotations. The resulting file should contain three columns with the values of time, x-position,
and y-position for two complete rotations of the disk.

(d) What is the expression for the angular displacement of the disk (relative to the x axis) in terms of the x- and
y-positions of the marker that you recorded above? (Note that these positions will be relative to an origin that
you placed on the axle of the rotator in part (c).)

θ =

(e) We want to graph the angular displacement of the disk as a function of time. To do this:

1. Click on the word Table immediately above your data in Tracker and select θ in the Visible Table Columns
window that pops up. A new column of data labeled θ should appear.

2. Next right click on the θ column label in the data table and select Number and Units. At the bottom of
the window that pops up select radians.

3. Use this new data of the angular displacement to plot the angular displacement as a function of time.
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(f) We now want to extract the angular acceleration αexp from the data.

1. To describe the time dependence of the angular displacement what type of function should we use to fit
the data? (Refer to Activity 6 part (d) of the lab Introduction to Rotation.) Which coefficient of the
polynomial is related to the angular acceleration?

2. Add a trendline to the data with a polynomial fit of order 2 and display the resulting equation for the time
dependence on the graph. (See Appendix B for help with doing this in Tracker or export your data to
Excel.) Write the equation for the angular position as a function of time in the space below. Be sure to
include the proper units with the coefficients. Determine the experimental value for the angular acceleration
αexp from the fit and record it below.

Activity 3: Comparing Theory with Experiment

(a) Summarize the theoretical and experimental values of angular acceleration. Be sure to include the proper
units.

αth =

αexp =

(b) Do theory and experiment agree within the limits of experimental uncertainty? Calculate the percent
difference.

179



LAB 27 NEWTON’S SECOND LAW FOR ROTATION

180



LAB 28 ROTATIONAL KINETIC ENERGY

Lab 28 Rotational Kinetic Energy

Name: Lab Partner(s):

Objective
To determine the change in kinetic energy of a rotating disk and falling mass system and compare with the
change in potential energy of the system.

Apparatus
• Rotating Disk System and string
• Hanging mass of 100 g
• Table clamp and rotary motion sensor
• Capstone software (rotational_KE.cap experiment file)
• meter stick
• scale
• calipers

Overview
Conservation of energy states that the change in energy of an isolated system equals zero. Therefore, for our
isolated system any change in potential energy should be equal to the change in kinetic and thermal energy. By
minimizing friction we will observer the conversion of potential energy to kinetic energy. We will compare a
system with purely translational motion to one with both translational and rotational motion.
Since many objects undergo rotational motion it is useful to be able to describe their motions mathematically.
The study of rotational motion is also very useful in obtaining a deeper understanding of the nature of linear and
parabolic motion.
In this experiment kinetic energy arises from allowing a mass to fall while attached to a disk, which is free to
spin. If the mass falls a distance h, the mass loses gravitational potential energy and gains kinetic energy.
Kinetic Energy of the system
(a) What objects begin to move once the weight begins to fall?

(b) What type of kinetic energy does each object have? Write the equation for the kinetic energy for each object.

Moment of Inertia
We have used the definition of moment of inertia I to determine a theoretical equation for the moment of inertia
of a uniform disk. The equation was given by

I = 1
2MR2.

Does this equation adequately describe the moment of inertia of the rotating disks?

(a) Calculate the moment of inertia of the disk on the rotational motion apparatus. (Which radius do you use?)
Ignore the small hole in the middle in your calculations; assume the disk is uniform.
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(b) Estimate the moment of inertia for the disk on the front of the rotary motions sensor. We will ignore
the motion of the rotary motion sensor in this lab. Is it reasonable to assume the rotational kinetic energy is
dominated by the disk on the rotational motion apparatus and ignore the motion of the of the rotary motion
sensor? Why or why not?

Activity 1: Theoretical Calculations

(a) Determine the height h through which your mass will fall.

(b) Calculate the final velocity of a 100 g mass dropped from from this height (assuming a simple system with no
rotation).

(c) Using conservation of energy, write an equation (in terms of variables such as I, ω, R, r, m...) for the change
in potential and kinetic energy of our experimental system.

(d) Rewrite the equation for energy substituing in the linear velocity of the string and mass for the angular
velocity of the disk. Below the equation indicate which radius each r or R in the equation is refering to, and
which mass each m or M is refering to.

(e) We will measure the angular velocity of the rotary motion sensor. How does the angular velocity of the rotary
motion sensor ωms relate to the linear velocity of the string vs? What radius do you use?

vs =

(f) Record the radius of the rotary motion sensor.

rms =

(g) Calculate the final velocity of the mass in your system, assuming a 100 g mass falling through the height you
recorded above.
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Activity 2: Measuring motion

(a) Open the file rotational_KE.cap.

(b) Place the 100 g mass on the string and place the string over the middle (medium) pulley grove on the rotary
motion sensor.

(c) Record the starting position of the mass.

hi=

(d) Click run and release the mass.

(e) Analyze your data. You may need to repeat parts (c) and (d) multiple times to obtain good interpretable
data. What was the maximum angular velocity of the rotatory motion sensor?

(f) What is the linear velocity of the string and mass vs (see part e above)?

(g) How does your theoretical velocity from Activity 1, part (g) compare with your experimental velocity? Suggest
some reasons for any differences.

(h) Repeat two additional times, to check that your results are reproducible.
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Lab 29 Conservation of Angular Momentum

Name: Lab Partner(s):

(tape keeps mass 
from sliding off) 

Apparatus
• Rotating disk system, with paper tabs
• Photogate and Pasco interface
• Masses of 500 g, 1 kg
• Simple cm ruler
• Vernier caliper
• Small water bubble level
• Capstone software (conserve_ang_mom.cap experiment file)
• Masking tape

Overview
As a consequence of Newton’s laws, angular momentum like linear momentum is believed to be conserved in
isolated systems. This means that, no matter how many internal interactions occur, the total angular momentum
of any system should remain constant if there are no external torques. When one of the objects gains some
angular momentum another part of the system must lose the same amount. If angular momentum isn’t conserved,
then we believe that there is some outside torque acting on the system.
In this unit you will test the notion of the conservation of angular momentum. As in the test of the conservation
of linear momentum, we will investigate what happens when two bodies undergo a “rotational” collision. You
will drop a large weight onto a rotating disk and determine the angular momentum of the rotator-disk-weight
system before and after this perfectly inelastic collision.

Activity 1: The Moment of Inertia Before and After the Collision
(a) Calculate the theoretical value of the moment of inertia of the disk using basic measurements of its radius
and mass. Be sure to include units and show the expression you used!

Rd = Md =

Id =

After dropping the weight on the rotating disk, the system will have a new moment of inertia.
(b) First, record the mass mw and radius rw of the weight, as well as the distance d that the center of weight will
be from the center of the disk once it slides all the way to the masking tape. You can use the vernier calipers to
measure the weight’s diameter.

mw = rw = d =

(c) Next, write down a formula for the moment of inertia Iw of the weight as it revolves with the disk, and
calculate its value based on your measurements above. (If you know how to use the parallel axis theorem, use it!
If not, you can treat the weight as just a point mass a distance d from the center of the disk, which turns out to
be a reasonable approximation here.)

Iw =
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(c) What is the moment of inertia Ifinal of the whole system after the mass has been dropped on the disk?

Ifinal =

Activity 2: Measurement of Angular Velocity and Angular Momentum
Open the experiment file conserve_ang_mom.cap in the Phys131 folder. You will be using a photogate to measure
the angular speed ω of the rotating disk. The photogate simply measures the elapsed time whenever its beam is
broken. The experiment file has already been set up to calculate ω from these measured times. (You’re welcome!)
Set up your photogate so that its beam is periodically broken by the paper sticking out from between the disks.
When you are ready, give the disk a moderate spin (≈ 10 rad/sec should be good), and hit record in the program.
Wait a few seconds to get a stable measurment of the initial angular speed, then drop the weight gently on the
spinning disk, continuing to record the speed for a few seconds. Print out your graph of ω vs. time if your
instructor requests it.
(a) From your graph, determine the angular speeds ωinitial and ωfinal of the system both before and after the
collision. Note that there’s probably a little bit of friction in the system, which means the speed won’t ever
be exactly constant. You’ll need to think about how to handle this, and use this to estimate and record the
uncertainty ±δω for each of your measurements.

ωinitial =

ωfinal =

(b) How did you estimate your uncertainties ±δω, above?

(c) Calculate the angular momentum L before and after the collision (including units!). Be sure to include the
uncertainty ±δL for each.

Linitial =

Lfinal =

(d) Was the angular momentum of the system conserved during this collision, to within the precision of your
measurement? If not, can you think of any reasons why it might not have been?

(e) Go around to the other lab groups and get their results for the difference ∆L = Lfinal − Linitial between the
angular momenta before and after the collision. Make a histogram of the results you collect and calculate the
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average and standard deviation. For information on making histograms, see Appendix D. For information on
calculating the average and standard deviation, see Appendix E. Record the average and standard deviation
here. Attach the histogram to this unit.

(f) What is your expectation for the difference between the initial and final angular momentum? Do the data
from the class support this expectation? Use the average and standard deviation for the class to quantitatively
answer this question.

(g) What does the histogram of the class data tell you? Be quantitative in your answer.

(h) Does the class data indicate a systematic error? What do you suppose causes this?

(i) Would the procedure you followed above change if the weight was moving horizontally at a constant velocity
when you dropped it? If it changed, what would be different?
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Lab 30 Hooke’s Law

Name: Lab Partner(s):

Apparatus

• Two springs and supports
• Collection of masses
• Two-meter stick

Introduction

There is no such thing as a perfectly rigid body. The stiffest of metal bars can be twisted, bent, stretched,
and compressed. Delicate measurements show that even small forces cause these distortions. Under certain
circumstances (typically, when the forces are not too large), a body deformed by forces acting upon it will return
to its original size and shape when the forces are removed, a capacity known as elasticity. Permanent distortion
from large forces is referred to as plastic deformation. In this lab, you will stay within the elastic limit.

Activity

(a) Suspend one of the springs from the support. Using the meter stick, observe the position of the lower end of
the spring and record the value in the table below.

(b) Hang 50 grams from the lower end of the spring and again record the position of this end.

(c) Repeat part (b) with loads of 100, 200, 300, and 400 grams hung from the spring.

(d) Repeat parts (b) and (c) with the second spring.

Mass on
spring 1

Force on
spring 1

(N)

Position
reading (m)

Elongation
(m)

Mass on
spring 2

Position
reading (m)

Elongation
(m)

0 0 0 0 0

50 50

100 100

200 200

300 300

400 400

(e) Determine the elongation produced by each load.

(f ) Plot a curve using the values of the elongation as the abscissas (x values) and the forces due to the
corresponding loads as ordinates (y values) for each spring. Make sure you use compatible units. Write the
equation for each curve in the space below.
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Questions

(a) What do your curves show about the dependence of each spring’s elongation upon the applied force?

(b) List the proportionality constant (including proper units) for each spring in the space below.

(c) The slope of each line (the proportionality constant) is known as the force constant, k. Use the LINEST
function in Excel (see Appendix D: Excel) to determine the slope of the line and the uncertainty in the slope.
Write the force constant as k = slope ± ∆slope. Be sure to include the proper units.
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Lab 31 Periodic Motion

Name: Lab Partner(s):

Objectives
• To learn about some of the characteristics of periodic motion, namely period, frequency, and amplitude.
• To investigate the relationships between position, velocity, acceleration, and force in periodic motion.
• To investigate energy in simple harmonic motion.

Apparatus
• Capstone software (P_V_Graphs.cap and SHM.cap experiment files)
• Spring
• Support with cross bar
• Variety of masses
• Wireless force sensor
• Wireless motion sensor

Introduction
Periodic motion is motion that repeats itself. You can see the repetition in graphs of position, velocity, or
acceleration vs. time. The length of time to go through one complete cycle is called the period. The number of
cycles in each second is called the frequency. The unit of frequency, cycles per second, is called Hertz.

Activity 1: Periodic Motion of a Mass-Spring System
(a) Open the file P_V_Graphs.cap in the Phys131 folder. Turn on the motion sensor at your station and connect
it to the computer via Bluetooth. Hang the large spring from the force sensor’s hook with the large diameter
coils down and hang a 200-g mass from the spring. Place the motion sensor facing up directly below the spring.
Lift the mass straight upward about 10 cm, and let go. You may need to adjust the height of the support for the
sensor to see the mass well. Record data for a few seconds to display position-time and velocity-time graphs of
the motion. Sketch the graphs on the following axes.
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Note that when an object returns to the same position, it does not necessarily mean that a cycle is ending. It
must return to the same position, and the velocity and acceleration must also return to the same values in both
magnitude and direction for this to be the start of a new cycle.

(b) Do the position and velocity graphs appear to have the same period? Do their peaks occur at the same times?
If not, how are the peaks related in time, i.e. what fraction of a period is their phase difference?

(c) Use the Delta Tool to measure the period of the motion. (For better accuracy, measure the total time over
as many cycles as possible and divide by the number of cycles.)

(d) Using the Statistics function, determine and record the maximum and minimum displacement. Determine
the amplitude of the motion from A = (xmax − xmin)/2.

(e) Save the graph. You will be using it again in Activity 5.

Activity 2: Predictions: What Factors Determine the Period of the Mass-Spring System?

The motion of a mass hanging from a spring that you looked at in Activity 1 is a close approximation to a kind
of periodic motion called simple harmonic motion (abbreviated SHM).

(a) What can you do to change the period of the SHM of the mass-spring system? What will happen to the
period if you increase the amplitude? Increase the mass? Increase the spring constant (use a stiffer spring)?

(b) Repeat the procedure of Act 1, but with a different starting position (other than 10 cm). (Warning: Do not
make the amplitude so large that the mass comes closer than 15 cm from the motion sensor.) When you have
good graphs, find and record the period and the amplitude using the methods described in Activity 1.

(c) Is there evidence that the period depends on amplitude? (Did the change in amplitude result in a comparable
change in period?) How does this compare with your prediction?

192



LAB 31 PERIODIC MOTION

(d) Carefully measure the period for four other masses. Record the masses and the measured periods in a table
in the space below along with the mass and period from Activity 1. Note: Add one third of the mass of the
spring to each mass value. This accounts for the fact that the theory of SHM neglects the mass of the spring.

(e) Does the period depend on the mass? Does it increase or decrease as mass is increased?

(f) Determine the mathematical relationship between the period T and the mass m by finding a function that fits
the data. Do this by using Excel to plot a graph of T vs. m (use the total mass, including one third of the mass
of the spring) and fitting the data with a POWER function. Write the equation that provides the best fit to the
data in the space below. What is the power of m for your best fit? Print the graph and include with this unit.

You should have found that T is independent of amplitude and proportional to
√

m. The actual expression for
the period is

T = 2π

√
m

k
.

Activity 3: Determination of the Spring Constant

Measure the distance the spring stretches for four different masses and use these data to determine the spring
constant, k, as you did in either the Work and Kinetic Energy experiment or the Hooke’s Law experiment. Record
your data and the result for k in the space below.
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Activity 4: Velocity, Acceleration, and Force for SHM
(a) Consider the motion you looked at in Activity 1 when the mass was 200 g and the initial position was 10 cm.
Sketch the position and velocity graphs that you observed on the axes below using dashed lines.
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(b) Based on what you know about the relationships between velocity, acceleration, and force, use dashed lines to
sketch your predictions for the acceleration and force graphs.
(c) Open the file SHM.cap in the Phys131 folder. Turn on the motion and force sensors at your station and
connect them to the computer via Bluetooth. Tare the force sensor with noe applied force on the sensor’s hook.
Hang the large spring from the force sensor’s hook with the large diameter coils down and hang a 200-g mass
from the spring. Place the motion sensor facing up directly below the spring. Start the mass oscillating with an
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amplitude of 10 cm and record data for a few seconds. When you have obtained good graphs, sketch the results
on the above axes using solid lines. Print your graph and attach to this unit.

(d) When the mass is at its maximum distance from the motion sensor, is the absolute value of the velocity
maximum, minimum or some other value according to your graphs? Does this agree with your predictions? Does
this agree with your observations of the oscillating mass? Explain.

(e) When the mass has its maximum positive velocity, is its distance from the motion sensor maximum, minimum,
the equilibrium value or some other value according to your graphs? What about when it reaches maximum
negative velocity? Does this agree with your predictions? Does this agree with your observations of the oscillating
mass? Explain.

(f) According to your graphs, for what distances from the motion sensor is the acceleration maximum? For what
distances is the acceleration zero? What is the velocity in each of these cases?

(g) Compare the force and acceleration-time graphs. Describe any similarities. Does the force graph agree with
your prediction?

(h) From your graphs, what would you say is the relationship between force and acceleration?

(i) Compare the force and distance(position)-time graphs. What would you say is the relationship between force
and position?

Activity 5: Energy of a Mass Undergoing SHM

Now use the graphs from Activity 1 to examine the energy relationships in simple harmonic motion. To do this
you will need to print the graphs and draw a horizontal line through the equilibrium position on the position
vs. time graph. The x values must be determined relative to this equilibrium position (which represents a
displacement of zero).

(a) At what points is the kinetic energy of the mass zero? Label these points on your distance and velocity graphs
above with “K = 0”.
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(b) Calculate the elastic potential energy due to the spring at one of these points. Label the point you use on
your velocity and distance graphs with a 1. Use U = 1

2 kx2, where x is the distance from the equilibrium position
and k is the force constant of the spring, which you have already measured. Use the Delta Tool in the menubar
(see Appendix A) to measure position, then subtract the equilibrium position to determine x. Show your data
and calculations in the space below.

(c) At what points is the potential energy zero? Label these points with a “U = 0” on your distance and velocity
graphs.

(d) If you measured the kinetic energy at one of these points, what would you expect its value to be? Explain.

(e) Check your prediction. Calculate the kinetic energy at one of these points. Label the point you use on your
velocity graph with a 2. Use K = 1

2 mv2, where m is the total mass including half the mass of the spring. Use
the Delta Tool to determine v. Show your data and calculations in the space below.

(f) Did your calculated kinetic energy agree with your prediction?

(g) If you calculated the potential and kinetic energies at a point where neither of these was zero, what would
you expect the total energy to be? Explain.

196



LAB 31 PERIODIC MOTION

(h) Check your prediction. Make a table below with headings for v (m/s), position (m), x (m) where x is the
difference between the position of the mass and the equilibrium position, K, U , and the total energy. Pick 5 or 6
points where the mass has both kinetic and potential energy, calculate them both (K and U), and then calculate
the total energy for each point (K + U). Label these points on your distance and velocity graphs with numbers.
Make a histogram of your results for the total energy and calculate the average and standard deviation. For
information on making histograms, see Appendix D. For information on calculating the average and standard
deviation, see Appendix E. Record the average and standard deviation here. Attach the histogram to this unit.

(i) What does the histogram of the total energy tell you? Be quantitative in your answer.

(j) Is the total energy conserved? Be quantitative in your answer.
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Lab 32 The Derivatives of the Sine and Cosine Function

Name: Lab Partner(s):

Objectives

• Develop mathematical tools to study the harmonic oscillator.
• To apply an oft-used approximation to the sine and cosine functions function to calculate their derivatives.
• To compare the previous results to analytical methods.

Overview

Periodic motion is common in nature and the simple harmonic oscillator (i.e. a spring) is a common example.
The motion of a system undergoing such motion is usually described with sine and/or cosine functions like the
following

x(t) = A cos(ωt + ϕ) (1)

where A is the amplitude of the oscillation, ω is the angular frequency, ϕ is the phase angle, and t is time.
Inserting this expression for x(t) into Newton’s Second Law for an oscillator with spring constant k

Fs = −kx = ma = m
d2x

dt2 (2)

which shows we need to take derivatives of the sine and cosine to study the harmonic oscillator.

Activity 1: The Derivative of the Sine

The definition of the derivative of a function f(t) is

d f(t)
dt

= lim
∆t→0

f(t + ∆t) − f(t)
∆t

(3)

which can be approximated as
d f(t)

dt
≈ f(t + ∆t) − f(t)

∆t
(4)

if ∆t is small enough. We will use this approximation to calculate derivatives and compare the results with the
analytical form of the derivatives.

(a) First make a plot of the sine function using Excel. There are instructions in Appendix E of Physics For Doing!
Use the first column to hold the angles for the points along the curve. Go to the top row of the first column and
enter ‘Angle’ (cell A1). Go to the cell below (cell A2) and enter ‘=(ROW()-2)*0.1’ where the ‘ROW()’ function
returns the value of the row for that cell. We subtract two from the row number so the sine curve will start at
zero, and then multiply by a scale factor 0.1 which corresponds to a time step of 0.1 s.

(b) Click in the A2 cell and then click and drag down on the small square in the lower, right corner of the cell.
Drag down to row 65 of so. Excel will fill the cells with the angle data. Enter ‘Sine’ in cell B1 at the top of the
second column. Click in cell B2, enter ‘=SIN(A2)’. Click and drag down on the square in the lower, right corner
of cell B2 to the same bottom row you used before.

(c) Now make a scatterplot the data in columns A and B. Highlight both columns of data and go to Insert and
select scatterplot in the Charts menu. You should see a plot of the sine.
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(d) Now go to cell C1 and enter ‘dx/dt’. In cell C2 calculate the slope of the sine function between the time for
this row and the next one (row 3). Click and drag the small square in the lower, right corner of cell C2 to the
second to last row of your angle calculation. Why shouldn’t you go all the way to the last row?

(e) Add the data in column C to your plot. Right-click in your plot and then left-click on ‘Select data’. You
should see the ‘Select Data Source’ window. Click Add. You should now get the ‘Edit Series’ window. Make the
appropriate entries for the series name, x values, and y values. When you’re done making the plot, click on the
large plus sign at upper, right and check the boxes for ‘Legend’ and ‘Axis Titles’.

(f) What familiar function does the approximate derivative curve look like? If you’re having trouble with this,
consult your instructor.

(g) Your curve for dx/dt should closely resemble a cosine which is equal to the derivative of the sine function. To
check the accuracy of your approximation add a cosine curve to your plot using the same techniques described in
steps (b) and (e). How does the cosine curve compare with your approximate derivative of the sine?

You should have found your approximate derivative of the sine function closely resembles the cosine. This is
the type of approximation routinely used in physics, for example, in the labs where you measure velocity and
acceleration extracted from position measurements. Keep your spreadsheet and plot for Activity 2. Print your
plot and attach it to this unit.

Activity 2: The Derivative of the Cosine

Since we will also need the derivative of the cosine function in our study of the harmonic oscillator, we now apply
the same approximate derivative formula (Eq. 4) to the cosine.

(a) You should already have the data for a cosine curve in your spreadsheet. Use that data and the same procedures
used in Activities 1.(d)-(e) to calculate the derivative of the cosine and add that data to your spreadsheet.

(b) Add the data for the approximate derivative of the cosine to your plot. What familiar function does the
approximate derivative curve resemble? If you’re having trouble with this, consult your instructor.

(c) How does the sine curve on your plot from Activity 1 compare with your approximate derivative of the cosine?

You should have found your approximate derivative of the cosine function closely resembles the negative of the
sine. We will use both of these derivatives demonstrated here frequently when investigating the simple harmonic
oscillator.
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Lab 33 Oscillators with Damping and Driving Forces

Name: Lab Partner(s):

Apparatus:

• Capstone software (Damping.cap experiment file)
• Collection of masses
• Lab stands, to support spring, vibrator, and motion sensor
• Light duty spring
• PASCO 550 Universal Interface
• Masking tape
• String vibrator with two banana cables
• Two index cards
• Wireless motion sensor

Activity 1: An Introduction to Damping

In your study of oscillations so far, you have seen that a mass and spring system with a “restoring force” of
F = −kx leads to simple harmonic motion that can be described by

x(t) = A cos(ωt) (1)

where ω =
√

k/m is the system’s angular frequency. But Equation (1) implies that the system keeps vibrating
forever, and your experience tells you that’s not true. You know that if you start a mass vibrating, the amplitude
will gradually decrease over time; it certainly won’t still be going if you come back to check on it an hour later.
Something is missing from our description of simple harmonic motion so far.

(a) Make a prediction: if you hang a mass from a spring and start it oscillating up and down, which graph below
looks most like the motion you would see? Why do you think so?

t

x

(a)

t

x

(b)

t

x

(c)

Well, let’s try it! Hang a 50 g mass on the spring, over the edge of the table. Move the “string vibrator” box out
of the way for now; you’ll use that in Activity 4. Adjust the height of the spring so the bottom of the mass is
about 60 cm above the floor. Use masking tape to stick an index card on the bottom of your mass. Open the
file Damping.cap in the Phys131 folder. Turn on the sensor at your station and connect it to the computer via
Bluetooth. It will be most convenient if you set the equilibrium position of your mass to be at x = 0. To do this,
let your mass hang at equilibrium over the motion sensor, click on Hardware Setup on the left sidebar, click on
the gear icon to the right of Wireless Motion Sensor, and click on the Zero Sensor Now button.
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(b) Now take some data: lift your mass up 10 cm above its equilibrium position, let it go, and hit Record. You’ll
want to take data for about one minute. Was your prediction correct? If not, which graph does your data most
resemble?

The piece that was missing from our description of simple harmonic motion so far is an additional “damping force”
that slows the system down over time. The damping force could be a frictional force, Ffric = µkFnormal, from two
things rubbing together, or it could be a drag force, Fdrag = 1

2 CdAρv2, from an object moving through the air.
(Here A is the object’s cross-sectional area, ρ is the density of the air, and Cd is a dimensionless “drag coefficient”
that depends on the object’s shape.) But both of those are mathematically difficult to analyze. Instead, we’ll use
a slightly different model for drag force that assumes Fdrag is proportional to v, not v2:

Fdrag = −bv, (2)

where the proportionality constant b, also called the “damping coefficient,” presumably depends on things like
the size and shape of the object, and the density and viscosity of the medium the object moves in.

(c) What does the negative sign in Equation (2) indicate?

When we include the damping force as well as the restoring force, then Newton’s second law Fnet = ma for our
object becomes

−kx − b
dx

dt
= m

d2x

dt2 . (3)

Actually deriving the solution for the function x(t) that satisfies Equation (3) would require more advanced math
than fits in this course. Instead, we’ll simply present the solution here without any proof:

x(t) = A0e−bt/2m︸ ︷︷ ︸
A(t)

cos(ωt) (4)

You can see that while the amplitude in Equation (1) was just a constant A, the amplitude above is now a
function A(t) that decays exponentially with time, according to A(t) = A0e−bt/2m.

(d) What is the initial amplitude A0 in your data?

(e) Equation (4) says that A(t) decays to about one third of its initial value (actually 1
e

A0, or ≈ 0.37A0) at time
t = 2m/b. At what time t does that happen in your data?

(f ) From your answer above, what is the value of the damping coefficient b for your system? What are the units
of b?
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(g) Make a prediction: if you reduced the surface area of the index card under your weight to 1/2 of its original
size? Would the damping coefficient b increase, decrease, or stay the same? Why do you think so?

(h) Test your prediction by folding your index card in half, and securing it with a small piece of masking tape.
(Folding is better than cutting, because it doesn’t change the mass.) Note: do not delete your previous data.
You’ll refer to it again later. Start your mass by lifting it up by the same 10 cm as before and letting it go. What
is the value of b for your system with a half-size card? Was your prediction correct?

Activity 2: Damping and Frequency
It turns out that the damping coefficient b also affects the frequency of an oscillator. There probably wasn’t
a noticeable change in the two trials you did in Activity 1, because the damping coefficients here are just too
small. But you can probably imagine what would happen if you increased the damping coefficient b by a lot, for
instance by putting your system under water, or even inside a big vat of molasses.

(a) Would doing this experiment under water make the frequency of your system increase, decrease, or stay the
same?

Again, the derivation is more than we can do here, but the actual angular frequency of a damped oscillator is
given by

ω =

√
k

m
−

(
b

2m

)2
. (5)

You can see from the equation above that any increase in b reduces the angular frequency ω of the system from
its undamped value of ω0 =

√
k/m.

(b) Remove the index card from the bottom of your mass, and record a few cycles of the mass oscillating up
and down. Make a careful measurement of the angular frequency by measuring the time of ten complete cycles.
Record your values of the period T , the angular frequency ω0, the frequency f0, and the spring constant k below.

(c) Use the value of b that you calculated in Activity 1, part (f ), to calculate what the angular frequency ω
should be with the full index card stuck to the bottom. How big a difference in frequency do you expect?
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Activity 3: Driving Forces (the Theory Part)
In addition to a damping force, we can also add a periodic driving force, Fdrive = F0 sin(ωdt) to our system. This
is an external force that keeps the oscillations going—just as you would be doing if you pumped your legs back
and forth on a swing at a playground. Such a system eventually reaches a steady state where the effect of the
driving force (increasing the oscillations) and the damping force (decreasing the oscillations) exactly balance each
other. The steady state motion is described by

x = A cos(ωdt + ϕ), (6)

where it’s important to note that the resulting angular frequency of the oscillator is the driving frequency ωd,
not the natural frequency ω0 =

√
k/m of the mass and spring. The amplitude A of the motion is given by the

(admittedly intimidating) expression

A = F0/m√(
ω2

d − ω2
0

)2
+

(
bωd

m

)2
. (7)

There’s a lot packed into this last equation, so let’s step through it piece by piece.

(a) If you keep everything constant, but increase only the magnitude of the sinusoidal1 driving force Fdrive, what
happens to the amplitude A? Does it increase, decrease, or stay the same?

(b) If you keep everything constant, but increase only the damping coefficient b, does the amplitude A increase,
decrease, or stay the same?

(c) If the damping force is negligibly small, what value of the driving frequency ωd would you choose to make
the resulting amplitude A as large as possible?

(d) If the driving frequency is much, much bigger than the natural frequency, do you expect the resulting
amplitude to be very large, or very small?

(e) If the driving frequency is much, much smaller than the natural frequency, do you expect the resulting
amplitude to be very large, or very small?

1Shaped like a sine or cosine function.
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Activity 4: Driving Forces (the Experiment Part)

You should have found in the previous activity that the limit of light damping, amplitude A of a damped, driven
oscillator is maximized when the driving angular frequency ωd exactly matches the natural frequency ω0 of the
oscillator.2 This phenomenon is called resonance, and it occurs at the resonance frequency.

To observe this effect, you will add a small sinusoidal driving force to your system, and measure its resulting
steady-state amplitude. The “string vibrator” should be clamped onto the table near your spring. Move it over
slightly, and insert the end of its metal arm in between two coils of the spring, about 3 or 4 coils from the top.
You may need to readjust the height of the vibrator so that the metal arm is roughly in the middle of its travel
range.

The vibrator should be plugged into the red and black jacks on the right side of the Pasco 550 interface, which will
provide a sinusoidally varying voltage to power the vibrator. To turn on this voltage, click the Signal Generator
button on the left toolbar. The Waveform should be set to “Sine.” In the Frequency box, enter “1.00 Hz”. You
may also need to click the little curved arrow buttons just to right of that to increase the number of digits shown.
Finally, set both the Amplitude and the Voltage Limit to 8 Volts, and click the On button to start it.

(a) With the half index card taped to the bottom of your mass and the vibrator set to a frequency of fd = 1.00 Hz,
allow the amplitude of the mass to reach a steady state. Record the resulting amplitude in the table below. If
you find that the amplitude never stabilizes, but goes through regular cycles of smaller and larger amplitudes,
then record the largest amplitude that you observe.

Response curve data for damping with half index card, b = (see Activity 1, Part (h))

Frequency fd (Hz) Amplitude A (m) Notes (was amplitude stable, etc.)

(b) Continue to take data for several additional values of fd, initially adjusting the frequency in steps of 0.1 Hz.
Record the steady state amplitudes you observe for driving frequencies ωd both above and below ω0. Remember
that the output of the signal generator is given as an f , in Hz, so you will want to compare that to the natural
frequency f0 in Hz rather than to ω0 in rad/s. (See Activity 2, Part (b)). What is the maximum amplitude A that
you can achieve, and what frequency fd do you observe it? (That frequency is called the resonance frequency.)

2For systems with significant damping, the resonant angular frequency is slightly lower than ω0, and is given by

ωd =

√
k

m
− 2

(
b

2m

)2
.

Note that this is also slightly smaller than the frequency of the damped oscillator of Equation (5), in that the expression includes an
extra factor of 2.
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(c) The values of A for each f in the table above is called the response curve of the system. Make a prediction:
how would the response curve change if you used a full index card instead of a half index card?

(d) Replace the half index card with a full index card. Take data again to see if there is any effect on the response
curve.

Response curve data for damping with full index card, b = (see Activity 1, Part (f ))

Frequency f (Hz) Amplitude A (m) Notes

(e) Plot your two response curves in Excel, and print out a copy. Be sure to annotate your graphs (by hand is
fine) labeling the two response curves with the values of the damping coefficient b for the full and half index
cards, and showing the resonance frequency f0.
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Lab 34 Galilean Relativity

Name: Lab Partner(s):

Objective

To investigate the relationship between different inertial reference frames and develop the equations of Galilean
relativity.

Overview

Before we begin our study of Einstein’s special theory of relativity we will first investigate the effects of observing
a phenomenon in two different inertial frames of reference. A spring-launched projectile will be “fired” from a
moving platform and we will discover how the description of this phenomenon changes (or doesn’t change) in a
frame that moves along with the platform. You will use the video analysis software and mathematical modeling
tools to find the equations that describe the horizontal motion (x vs. t) and the vertical motion (y vs. t) of the
projectile in a stationary frame and then in an inertial frame moving at constant speed with the launcher. The
set of relationships between the inertial reference frames forms Galilean relativity. These relationships provide an
intuitive, “common sense” picture of the world that works well at low velocities, but fails in many surprising
ways at high velocities. At high velocities we must resort to Einstein’s special theory of relativity, which we will
discuss later. To do the activities in this unit you will need:

• A video analysis system (Tracker).

• The video Galilean_Transformation.mov

• Graphing and curve fitting software (Excel).

Activity 1: Observing Projectile Motion From a Moving Launcher

(a) Use Tracker to analyze the film Galilean_Transformation.mov and determine the position of the projectile in
each frame with a fixed origin. To do this task follow the instructions of Appendix B: Video Analysis for
“Analyzing the Movie.” When analyzing the movie, place the fixed origin at the dark spot that appears in front
the cart the launcher rides. This makes the comparison with the activities below easier. Change the position of
origin in the frame by performing the following steps.

1. Click on the axes icon on the menu bar. The axes will appear over the movie.

2. Click on the origin (where the axes cross each other) and drag it to the desired location.

3. Click on the Create icon located on the menu bar and then select “Point Mass.”

(b) Collect the data for analysis by following the instructions in Appendix B. The data table should contain
three columns with the values of time, x-position, and y-position. Copy this data into an Excel spreadsheet for
analysis.

(c) Determine the position of the launcher at the first and last frames of the movie. Using these results, what is
the horizontal and vertical speed of the launcher during the movie?

x0 = x1 = ∆t = (vlauncher)x =

y0 = y1 = (vlauncher)y =

(d) Plot and fit the position versus time data for the horizontal and vertical positions of the projectile. See
Appendix D: Introduction to Excel for details. Print each plot and attach it to this unit. Record the
equation of each fit here. Be sure to properly label the units of each coefficient.
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x(t) =

y(t) =

What is the horizontal speed of the projectile? How did you determine this?

Activity 2: Changing Reference Frames

(a) We now want to consider how the phenomenon we just observed would appear to an observer that was riding
along on the launcher at a constant speed. Assume the moving observer places her origin at the same place you
put your origin on the first frame of the movie. Predict how each graph will change for the moving observer.

Horizontal position versus time:

Vertical position versus time:

(b) Use Tracker to analyze the film Galilean_Transformation.mov again and determine the position of the projectile
in each frame. This time, though, use a moving origin that is placed at the same point on the cart on each frame.
Use the same point on the launcher that you used to define the origin in the first frame during the previous
activity. To change the origin from frame to frame follow these instructions.

1. Open the movie again in Tracker and click on the Axes icon to add your coordinate system (note that the
origin will again appear over the movie). Next click the Coordinate System drop down menu and unselect
the “Fixed Origin” option. This will allow you to move the position of the origin as you advance frames.

2. Click on the origin (where the axes cross each other) and move the origin to the dark spot that appears in
front the cart the launcher rides.

3. Click on the Create icon located on the menu bar and then select “Point Mass.” To begin collecting data
you will need to click on mass A in the Track Control box each time before marking the position of the
projectile. Additionally, you will need to move the location of the origin to the dark spot that appears in
front the cart the launcher rides each time after the position of the projectile is marked. The film will
advance as usual. Repeat this procedure to accumulate the x and y positions relative to the origin you’ve
defined in each frame.

(c) Collect the data for analysis. The data table should contain four columns with the values of time, x-position,
and y-position and the position of the origin. Print the data table and attach it to this unit.
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(d) Plot and fit the position versus time data for the horizontal and vertical positions. See Appendix D:
Introduction to Excel for details. When you have found a good fit to the data, record your result below, print
the graph, and attach a copy to this unit. Be sure to properly label the units of each coefficient in your equation.

x(t) =

y(t) =

What is the horizontal speed of the projectile? How did you determine this?

Activity 3: Relating Different Reference Frames

(a) Compare the two plots for the vertical position as a function of time. How do they differ in appearance? Are
the coefficients of the fit for each set of data different? Do these results agree with your predictions above? If not,
record a corrected “prediction” here.

(b) Compare the two plots for the horizontal position as a function of time. How do they differ in appearance?
Are the coefficients of the fit for each set of data different? Do these results agree with your predictions above? If
not, record a corrected “prediction” here.

(c) What is the difference between the horizontal velocities in the two reference frames? How does this difference
compare with the horizontal velocity of the launcher? How are the horizontal velocities of the projectile in each
inertial reference frame and the velocity of the launcher that you determined above related to one another? Does
this relationship make sense? Why or why not?

(d) Consider a point r⃗ = x î + y ĵ on the ball’s trajectory in the stationary observer’s reference frame. If the
moving observer’s time frame is moving at the speed (vlauncher)x then what would the moving observer measure
for x? Call this horizontal position of the moving observer x′.
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(e) What would the moving observer measure for y? Call this vertical position of the moving observer y′.

(f) The relationships you found above are from Galilean relativity. You should have obtained the following results.

x′ = x − (vlauncher)xt

y′ = y

vx = v′
x + (vlauncher)x

The primes refer to measurements made in the moving frame of reference in this case. If you did not get these
expressions consult your instructor.

Activity 4: Testing Galilean Relativity

You can test your mathematical relationships with Excel. You will use your data for the stationary observer and
the relationship you derived to calculate what the observer moving with the launcher would measure.

In your data table for the stationary observer, you have columns giving x, the horizontal position, as a function
of time, t. Using an Excel formula, apply the Galilean transformation above to these numbers to determine x′,
the horizontal position as measured by the moving observer. Make a plot showing x′ as a function of t.

Your “transformed” data for the stationary observer should closely resemble the results for the moving observer. Is
this what you observe? If not, consult your instructor. Print and attach a copy of your plot to this unit.
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Lab 35 The Twins Paradox

Name: Lab Partner(s):
Objective
To investigate some of the unusual implications of Einstein’s special theory of relativity.
Overview
Einstein’s theory of special relativity leads to a variety of apparent paradoxes that depart radically from our
everyday expectations. One of the most celebrated is the twins paradox, in which an identical twin makes a
long interstellar journey while the other twin remains on the (roughly) stationary Earth. When the space-faring
twin returns she finds her partner has aged considerably more than she has. In this unit you will explore the
quantitative aspects of the paradox and some of the surprising consequences.
Activity 1: Setting Things Up
Problems in special relativity are often very counterintuitive, so it is instructive to consider the situation non-
relativistically first. Investigate this problem without applying any of the new ideas you have learned about the
theory of special relativity.
One member of a pair of identical twins has decided to embark on a long space voyage. The two twins have lived
their lives in close proximity to one another and are very similar in appearance. The adventurous twin boards a
fast spacecraft and leaves the Earth behind at a speed of 0.99c or 99% of the speed of light. The space-faring
twin’s itinerary is rather monotonous, and she simply travels at this constant speed for a time, turns around,
and returns to the Earth at the same speed. She measures the time of her trip to be ∆t0. In the meantime the
Earth-bound twin has seen twenty years pass by. We will refer to this time as ∆t.
(a) In mathematical terms, what is the relationship between the times ∆t0 and ∆t?

(b) Which time is associated with which twin?

(c) When the twins are reunited will their appearances differ?

Activity 2: Applying Special Relativity
(a) Now we want to apply the lessons of special relativity. Time dilation implies that moving clocks run more
slowly when observed by someone in a different inertial frame. For the twins paradox what does this imply about
the time interval the space-faring twin measures during her trip? Will it be less than, equal to, or greater than
the interval measured by the Earth-bound twin? Will the space-faring twin age more, less, or the same amount
as the Earth-bound twin?

(b) What is the mathematical relationship between ∆t0 and ∆t according to the special theory of relativity?
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(c) How much time has passed on the Earth-bound twin’s clock?

(d) How much time has passed on the space-faring twin’s clock?

(e) If this result is inconsistent with your prediction above how should you resolve the contradiction?

(f) How will the two twins’ appearances differ, if at all? Is the difference only in the measurement of the time
intervals or are there real physiological differences between the twins after the trip?

(g) If the average speed of the space-faring twin was more like the typical orbital speed of the space shuttle (about
7.4 km/s) what would the time difference between the twins’ clocks be?

Activity 3: Graphical Analysis

(a) Find a mathematical relationship for the ratio of the time interval measured by the space-faring twin to the
time interval measured by the Earth-bound twin. Show your work and record your result here.

(b) You will now use Excel to make a plot showing how this ratio behaves as a function of β (the speed expressed
as a fraction of the speed of light). To do this, start up Excel, and create a column headed “beta.” This column
should contain the series of numbers 0,0.05,0.10,0.15,. . .,1. To create such a column of numbers, enter the first
two rows and highlight them. Then grab the lower-right corner of the second cell with the mouse and drag down
(in the same way as if you were dragging down a formula).

After you have created the β column, create a second column containing the ratio of time intervals (i.e., the
relationship you found in part (a)). Use an Excel formula.

(c) Make a plot of the ratio of the time interval measured by the space-faring twin to the time interval measured
by the Earth-bound twin. At what speed does the effect of time dilation become significant? Is there a limit to
the ratio? Is there any reason to restrict the range of β to 0-1? Clearly state your reasoning. Print your plot and
attach a copy to this unit.
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(d) Consider the following scenario. As the space-faring twin’s craft recedes from the Earth it is moving at a
constant speed. Since no inertial frame can be considered “better” than any other there is nothing physically
inconsistent with the view that the space-faring twin is observing the Earth recede from her at a constant velocity.
Hence, the space-faring twin will observe clocks on the Earth to move slowly and the Earth-bound twin will age
at a slower rate than the space-faring one. Is this reasoning flawed? How?

(e) If the scenario is not flawed how can it be that the space-faring twin was found to have aged less in the
original problem?
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APPENDIX A INTRODUCTION TO CAPSTONE

Appendix A: Introduction to Capstone

Quick Reference Guide

What You Want To Do How You Do It Button
Start Recording Data Click the Record button

Tour the Controls Palette
The Controls Palette is used to start/stop data collection, set the data monitoring mode,
set the sampling rate,delete data runs, define Start/Stop conditions, and playback syn-
chronized video.

Record / Play Selection
Icon Description

Toggle between:
Recording Mode Use to switch to recording Controls Palette
Playback Mode Use to switch to playback Controls Palette

Record / Monitor
Icon Description

Capstone toggles between:
Record Begin recording all measurements from each connected sensor

Monitor Start monitoring measurements from connected sensors

 Record Mode Selection
Icon Description

Toggle between:
Continuous
Mode Set to record data at the current sample rate settings

Keep Mode Set to keep data points when commanded
Fast Monitor
Mode

Set to acquire data without recording; required for high speed
sampling in Scope and FFT displays

See "How do I record data in PASCO Capstone? ": 78

012-14016C 11

3   Tour the Interface
Tour the Controls Palette 

Stop Recording Data Click the Stop button

Behavior

l All measurement Data1 continuously records as soon as Record is clicked in
the Controls Palette until the Stop is clicked (or the hardware is no longer
able to process the data–at which time data collection will stop with an error mes-
sage).

l Data records at the specified sample rate(s).

See "What is Continuous Mode?": 165

Procedure

1. Select Continuous Mode in the Controls Palette.
2. Adjust the sample rates of each of the measurements:

 Ensure sensors are sufficiently responsive for desired data while low enough so
that the computer system can keep up with data sampling and does not generate
excessive file sizes.

3.

Sample Rate

4. Click Record in the Controls Palette.

Record

Capstone begins recording all available data.

Record toggles to Stop .

5. Click Stop in the Controls Palette to stop data collection.
 Collected data appear in all displays of the current page.
 The data run is listed in the legend for each display.

1A data set including measurement and user-defined data from sensors and time
data.
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5   How do I...
How do I... Data and Measurements

Re-scale the data so it fills
the Graph display window

Click the Scale to Fit button

Tour the Scope
Overview

The scope is designed to view high-frequency oscillating data or single high-speed
events that the graph display may not be able to capture. 

Maximum Sampling Rate: The maximum supported sampling rate is a function of the
computer-sensor interface that is connected to the computer (for example: 850 Universal
Interface → 10 MHz, ScienceWorkshop 750 → 250 kHz).

Features See 
Continuous Mode "What is Continuous Mode?": 165
Fast Monitor Mode "What is Fast Monitor Mode?": 166
Single shot "What does Single Shot do?": 175
Multiple triggers "How do I select the scope trigger?": 138
Pre-trigger "How do I pre-trigger?": 141
Image freeze "How do I freeze and record the Scope display?": 142

Toolbar
Icon Description

Adjust y-axis scale to fit data
Activate and control scope trigger

Stop collection after one trace
Automatically adjust sample rate based on time-axis scale
Activate to view multiple runs; Select visible run(s)

Increase trace offset

Set trace offset value to zero

Decrease trace offset

Show data coordinates and access Delta Tool

Creates a data set from active traces

Increase number of data points in trace

Decrease number of data points in trace

Add new y-axis to scope display

Remove active element or axis

Allow rearrangement of axes

012-14016C 19

3   Tour the Interface
Tour the Scope

Read exact x and y
coordinates from a graph

Click the Coordinates/Delta Tool button.
See instructions below.

Tour the Scope
Overview

The scope is designed to view high-frequency oscillating data or single high-speed
events that the graph display may not be able to capture. 

Maximum Sampling Rate: The maximum supported sampling rate is a function of the
computer-sensor interface that is connected to the computer (for example: 850 Universal
Interface → 10 MHz, ScienceWorkshop 750 → 250 kHz).

Features See 
Continuous Mode "What is Continuous Mode?": 165
Fast Monitor Mode "What is Fast Monitor Mode?": 166
Single shot "What does Single Shot do?": 175
Multiple triggers "How do I select the scope trigger?": 138
Pre-trigger "How do I pre-trigger?": 141
Image freeze "How do I freeze and record the Scope display?": 142

Toolbar
Icon Description

Adjust y-axis scale to fit data
Activate and control scope trigger

Stop collection after one trace
Automatically adjust sample rate based on time-axis scale
Activate to view multiple runs; Select visible run(s)

Increase trace offset

Set trace offset value to zero

Decrease trace offset

Show data coordinates and access Delta Tool

Creates a data set from active traces

Increase number of data points in trace

Decrease number of data points in trace

Add new y-axis to scope display

Remove active element or axis

Allow rearrangement of axes
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3   Tour the Interface
Tour the Scope

Select a section of data Click the Highlight button. See
instructions below.

Select from the Statistics
menu

Click the Statistics button, use menu. See
instructions below.

Find area under a curve Click the Display Area button after
selecting data of interest

Reading Exact Coordinates

1. After clicking the Coordinates/Delta Tool button, select “Add Coordinates/Delta Tool.”

2. Click on the gray box that appears and move it to the data point you want to read.

3. For more significant digits, right-click on the box around the data point, and select Tool Properties →
Numerical Format → Horizontal (or Vertical) Coordinate. Click the box to “Override default number
format” and increase the “Number of Deximal Places” to the value you want.

4. To delete Delta Tool: Hold cursor over the Delta Tool square, right click and select “Delete Tool”.

Selecting a Section of Data

1. To select a data section, click the Highlight button. Drag the pink rectangle to the data you wish to
highlight. Adjust the width and height using horizontal and vertical arrows at edges of highlighted region.

2. To unselect the data, with cursor in highlighted region, right click and select “Delete highlighter”.

Finding Average and Standard Deviation of a Section of Data

1. Select the section of data of interest, as described above.

2. Click on the Statistics button on the Graph Toolbar. Use the menu on this button to select maximum,
minimum, mean, standard deviation, or any combination.

3. To remove the results, click on the Statistics button again.
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Finding the Area Under a Curve

1. Select the section of data that you want to integrate under, using the procedure described above.

2. Click the Display Area button on the Graph Toolbar. The results of the integration will be displayed on
the graph.

3. To undo the integration, click on the Display Area button again.

Calibrating Force Sensors

1. Check to see that the force sensor is connected to the Pasco interface.

2. Open whatever experiment file you will be using.

3. Click the Calibration icon in the tools panel on the left side of the screen.

4. Verify that the type of measurement is set to “Force”, then click Next.

5. Choose “Two standards” as calibration type, then click Next.

6. In this step, you will apply known forces to the sensors using weights. You can either hang masses from the
sensor directly, or using a string looped over a pulley. If you are hanging masses directly while holding the
force sensor in your hand, try resting it against the edge of the table to keep it stable.

(a) With no mass attached, set the standard value to 0 N for the first point, click “set current value to
standard value”, then click Next.

(b) Hang a mass (say 200 g) from the sensor, set the standard value to its weight (say 1.96 N), click “set
current value to standard value”, then click Next.

7. After reviewing calibration, click Finish.

8. Click the Calibration icon again to close the dialog.

9. If you calibrated the sensor by holding it vertically but will now use it horizontally, you will need to account
for the weight of the hook. Turn the sensor to horizontal, without any applied force, and press the “TARE”
button on the side of the force sensor.

10. The force sensor should now be calibrated for the rest of your experiment. But it’s a good idea to try taking
a tiny bit of data with a known weight to make sure your results aren’t totally nuts.

Appendix B: Video Analysis Using Tracker

Making a Movie with "Camera”

To make a movie, perform the following steps:

1. Make sure the camera is connected to a USB port on your computer. Close all windows, applications,
programs, and browsers.

2. Click the Start button in the lower-left corner of your screen and type "camera’ in the Search programs
and files box. Once the search results appear, click on Camera at top of window.

3. Position the camera 2-3 meters from the object you will be viewing. Adjust the camera height and orientation
so that the field of view is centered on the expected region where the object will move.
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4. Place a meter stick or an object of known size in the field of view where it won’t interfere with the experiment.
The meter stick should be the same distance away from the camera as the motion you are analyzing so the
horizontal and vertical scales will be accurately determined. It should also be parallel to one of the sides of
the movie frame. Make sure that the meter stick is not far away from the central region of field of view,
and that it is perpendicular to the line of sight of camera.

5. To start recording click the video camera icon on the right of the window. When you are done, click the
red square.
The video will save to camera roll located in This PC → Pictures → Camera Roll

Analyzing the Movie

To determine the position of an object at different times during the motion, perform the following steps:

1. Start up Tracker by going to Start → Programs → Physics Applications → Tracker. When Tracker
starts it appears as shown below. The menu icons and buttons that we will use are identified by arrows.

Figure 1: Initial Tracker window for video analysis.

2. Click the Open Video button on the toolbar to import your video. After your video is imported, Tracker
will warn you that the video frames don’t have the same time duration. This is okay since Camera uses a
variable frame rate. Click OK on the warning window to ignore Tracker’s recommendation.

3. Click the Clip Settings button to identify the frames you wish to analyze. A clip settings dialog box
appears. Here, you only need to identify and set the start and end frames. Leave everything else in
the dialog box unchanged. To find and set the start frame, drag the player’s left slider to scan forward
through the video, and stop when you get to the first frame of interest. Now, the start frame is set and the
corresponding frame number should be displayed in the dialog box. If not, then click on the Start Frame
in the dialog box, enter the number of the frame (printed in the lower left part of the Tracker window), and
click outside the box. Then, click the Play video button to go to the last frame in the video. Next, drag
the player’s right slider to scan backward through the video to find the last frame of interest. Stop when

217



APPENDIX C VERNIER CALIPERS

you get to the frame of interest. Now, the end frame is also set and the corresponding frame number should
be displayed in the dialog box. If not, then click on the End Frame in the dialog box, enter the number of
the frame, and click outside the box. Finally, click the OK button to close the dialog box, and then click
the player’s Return button to return to the start frame.

4. Click the Calibration button and select the calibration stick. A blue calibration line appears on the
video frame. Drag the ends of this blue line to the ends of your calibration meter stick. Then click the
readout box (the number indicating length) on the calibration line to select it. Enter the length of the
meter stick in this box (without units). For example, if your calibration meter stick is 1.00 meter long,
enter 1.00 in the box (if not already there) and then click outside the box to accept the value. At this point,
you can right-click the video frame to zoom in for more accurate adjustment of the ends of the calibration
stick. Right-click the video again to zoom out.

5. Click the Axes button to set the origin and orientation of the x-y coordinate axes. Drag the origin of
the axes to the desired position. Sometimes this will be the initial position of the object of interest. For
rotating objects it will typically be the axis of rotation. Click the video outside the origin to fix the position
of the origin. To change the orientation (angle) of the axes, drag the x axis. Click the video to fix the new
orientation.

6. Click the Create button to track the object of interest in the video. From the menu of choices select Point
Mass for the track type. Make sure the video is at the start frame, which shows the initial position of the
object of interest. Mark this position by holding down the shift key and clicking the mouse (crosshair
cursor) on the object. As the position is marked, the video automatically advances to the next frame.
Similarly, mark the position of the object on this and subsequent frames by holding down the shift key
and clicking the mouse. Do not skip any frames.
After marking the position on the end frame, you can adjust any one of the marked positions. Advance the
video to the frame where you would like to make a fine adjustment. Right-click the video frame to zoom in
and drag the marked position with the mouse.
If you would like to track additional objects, repeat the procedure outlined here for each object.

7. Plotting and Analyzing the Tracks: The track data (position versus time) are listed in the Table View
and plotted in Plot View sections of the Tracker screen. Click the vertical axis label of the plot to change
the variable plotted along that axis. To plot multiple graphs, click the Plot button, located above the plot,
and select the desired number. Right-click on a plot to access display and analysis options in a pop-up
menu. To fit your data to a line, parabola, or other functions, select the Analyze option. On the Data-Tool
window that opens up, click the Analyze button and check the Curve Fits box from the drop-down menu.
Then select the fit type from the Fit Name drop-down menu (lower left). Make sure the Auto fit box is
checked. Note that the curve fitter fits the selected function to the data in the two leftmost columns of
the displayed data table. The leftmost column, identified by a yellow header cell, defines the independent
variable, and the second leftmost column, identified by a green header cell, defines the dependent variable.
So, to fit the data in other columns, their corresponding headers must be dragged to the two leftmost
columns. To print out the displayed plot and data table on the Data Tool screen, select Print from the
File menu on the Data Tool screen.

8. Printing and Exporting Data: Track data can also be easily exported to Excel for further analysis by
copying the data from the data table to the clipboard and pasting into Excel. Select the desired data (on
Data Tool screen), go to Edit → copy → selected data (on Data Tool screen). Open Excel (in Microsoft
Office folder), click on “HOME”, and click the Paste clipboard. Data should appear in Excel. Graph can
now be plotted in Excel (see Appendix D: Excel) and printed.

Appendix C: Vernier Calipers

A vernier is a small auxiliary scale that slides along the main scale. It allows more accurate estimates of fractional
parts of the smallest division on the main scale.
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On a vernier caliper, the main scale is engraved on the fixed part of the instrument. The vernier scale, engraved
on the movable jaw, has ten divisions that cover the same spatial interval as nine divisions on the main scale:
each vernier division is 9

10 the length of a main scale division.

0 1 2 3 main scale 

vernier scale 
⟹   reading: 0.00 cm 

Position of left edge of vernier scale 
gives first two digits: “0.0” here… 

0 1 2 3 main scale 

vernier scale 
⟹   reading: 1.20 cm 

…and “1.2” here.

0 1 2 3 main scale 

vernier scale 
⟹   reading: 1.27 cm 

(“7” on the vernier scale 
lines up exactly with a mark 
above it on the main scale.)  

To measure length with a vernier caliper, close the jaws on the object and read the two scales.

• The first digit is read from the main scale. Look at where the left-most edge of the vernier scale lines up
with the main scale, and read the digit from the main scale.

In the top example above, the first digit is “0”. In the second and third examples, it’s “1”.

• The second digit is also read from the main scale. Again, look at where the left-most edge of the vernier
scale lines up, and read the closest subdivision from the main scale.

In the second and third examples above, the second digit is “2”.

• The third digit is read from the vernier scale. Read which mark on the vernier scale lines up exactly with a
mark above it on the main scale.

In the third example, it’s clear that the left edge of the vernier scale is a little above 1.2 on the
main scale, but it’s hard to tell from the main scale exactly what the third digit is. (Maybe 1.25?
or 1.26?) But look at the marks on the vernier scale: the 6 and 8 don’t quite line up with any
marks on the main scale, but the 7 lines up exactly, so the last digit is “7”.

If the zero lines of the main and vernier scales do not align when the jaws are closed, all measurements will be
systematically shifted. The magnitude of this shift, called the zero reading or zero correction, should be noted
and recorded, so that length measurements made with the vernier caliper can be corrected, thereby removing the
systematic error.

Appendix D: Introduction to Excel

Microsoft Excel is the spreadsheet program we will use for much of our data analysis and graphing. It is a
powerful and easy-to-use application for graphing, fitting, and manipulating data. In this appendix, we will
briefly describe how to use Excel to do some useful tasks. The current version is Excel 2013.
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D.1 Data and Formulas

Figure 1 below shows a sample Excel spreadsheet containing data from a made-up experiment. The experimenter
was trying to measure the density of a certain material by taking a set of cubes made of the material and
measuring their masses and the lengths of the sides of the cubes. The first two columns contain her measured
results. Note that the top of each column contains both a description of the quantity contained in
that column and its units. You should make sure that all of the columns of your data tables do as well. You
should also make sure that the whole spreadsheet has a descriptive title and your names at the top, as indicated
in the sample spreadsheet below.

In the third column, the experimenter has figured out the volume of each of the cubes, by taking the cube of the
length of a side. To avoid repetitious calculations, she had Excel do this automatically. She entered the formula
=B5∧3 into cell C5. Note the equals sign, which indicates to Excel that a formula is coming. The ∧ sign stands
for raising to a power. After entering a formula into a cell, you can grab the square in the lower right corner of
the cell with the mouse and drag it down the column, or you can just double-click on that square. (Either way,
note that thing you’re clicking on is the tiny square in the corner; clicking somewhere else in the cell won’t work.)
This will copy the cell, making the appropriate changes, into the rest of the column. For instance, in this case,
cell C6 contains the formula =B6∧3, and so forth.

Column D was similarly produced with a formula that divides the mass in column A by the volume in column C.

At the bottom of the spreadsheet we find the mean and standard deviation of the calculated densities (that
is, of the numbers in cells D5 through D8). Those are computed using the formulas =average(D5:D8) and
=stdev(D5:D8).

D.2 Graphs

Here’s how to make graphs in Excel. First, use the mouse to select the columns of numbers you want to graph.
(If the two columns aren’t next to each other, rearrange them so that they are next to each other. The variable
you want on the horizontal axis needs to be to the left of the variable you want on the vertical axis). Then click
on the Insert tab at the top of the window. In the menu that shows up, there is a section called Charts. Almost
all of the graphs we make will be scatter plots (meaning plots with one point for each row of data), so click on

the Scatter icon, which is the lower one in the group that looks like this

APPENDIX F INTRODUCTION TO EXCEL F.3 Making Histograms

on the Insert tab at the top of the window. In the menu that shows up, there is a section called Charts. Almost
all of the graphs we make will be scatter plots (meaning plots with one point for each row of data), so click

on the Scatter icon, which is the lower one in the group that looks like this . Several possible scatter plots
appear. Select the first one with the same icon as before, and your graph will appear.

Next, you’ll need to customize the graph in various ways, such as labeling the axes correctly.

This is done in the Chart Elements menu which is accessed by clicking on the plus sign (+) in a box, at the
upper right corner of your graph. Click on Axis Titles, and places appear for axis titles. Edit the text inside of
the two axis titles so that it indicates what’s on the two axes of your graph, including the appropriate units for
each.

Next, give your graph an overall title. Click on Chart Title and a box appears around it. Delete “Chart Title”
and enter a proper title such as “Position vs Time” or whatever.

Usually you want your graph to contain a best-fit line passing through your data points. To do this, right click
on one of the data points and select Add Trendline. A number of options appear such as “linear”, “polynomial”,
“power”, and so on. Select the one you want, and also check the Display Equation on chart option near the
bottom. You can then drag the equation to someplace else on the chart so you can read it better. Remember
that Excel won’t include the correct units on the numbers in this equation, but you should. Also, Excel will
always call the two variables x and y, even though they might be something else entirely. Bear these points in
mind when transcribing the equation into your lab notebook.

Sometimes, you may want to make a graph in Excel where the x column is to the right of the y column in your
worksheet. In these cases, Excel will make the graph with the x and y axes reversed. Here’s how to fix this
problem: Before you make your graph, make a copy of the y column in the worksheet and paste it so that it’s
to the right of the x column. Then follow the above procedure and everything will be fine.

F.3 Making Histograms

A histogram is a useful graphing tool when you want to analyze groups of data, based on the frequency at
given intervals. In other words, you graph groups of numbers according to how often they appear. You start
by choosing a set of ‘bins’, i.e., creating a table of numbers that mark the edges of the intervals. You then go
through your data, sorting the numbers into each bin or interval, and tabulating the number of data points that
fall into each bin (this is the frequency). At the end, you have a visualization of the distribution of your data.

Start by entering your raw data in a column like the one shown in the left-hand panel of Figure 2. Look over
your numbers to see what is the range of the data. If you have lots of values to sift through you might consider
sorting your data is ascending or descending order. (You don’t need to do this if you can easily see the range
of data.) To do this task, choose the column containing your data by clicking on the letter at the top of the
column, go to Data in the menubar, select Sort, and pick ascending or descending. The data will be rearranged
in the order you’ve chosen and it will be easier to see the range of the data. For an example, see the middle
column of data in the left-hand panel of Figure 2.

Now to create your bins pick a new column on your spreadsheet and enter the values of the bin edges. Bins
should be of equal size with the bin edges given by simple numbers. Make sure the bins you choose cover the
range of the data. See the left-hand panel of Figure 2 again for an example.

124

. Several possible scatter plots appear.
Select the first one with the same icon as before, and your graph will appear.

Next, you’ll need to customize the graph in various ways, such as labeling the axes correctly.
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Appendix F: Introduction to Excel

Microsoft Excel is the spreadsheet program we will use for much of our data analysis and graphing. It is a
powerful and easy-to-use application for graphing, fitting, and manipulating data. In this appendix, we will
briefly describe how to use Excel to do some useful tasks. The current version is Excel 2013.

F.1 Data and Formulas

Figure 1 below shows a sample Excel spreadsheet containing data from a made-up experiment. The experimenter
was trying to measure the density of a certain material by taking a set of cubes made of the material and
measuring their masses and the lengths of the sides of the cubes. The first two columns contain her measured
results. Note that the top of each column contains both a description of the quantity contained in
that column and its units. You should make sure that all of the columns of your data tables do as well. You
should also make sure that the whole spreadsheet has a descriptive title and your names at the top, as indicated
in the sample spreadsheet below.

In the third column, the experimenter has figured out the volume of each of the cubes, by taking the cube of the
length of a side. To avoid repetitious calculations, she had Excel do this automatically. She entered the formula
=B5∧3 into cell C5. Note the equals sign, which indicates to Excel that a formula is coming. The ∧ sign stands
for raising to a power. After entering a formula into a cell, you can grab the square in the lower right corner
of the cell with the mouse and drag it down the column, or you can just double-click on that square. (Either
way, note that thing you’re clicking on is the tiny square in the corner; clicking somewhere else in the cell won’t
work.) This will copy the cell, making the appropriate changes, into the rest of the column. For instance, in this
case, cell C6 contains the formula =B6∧3, and so forth.

Column D was similarly produced with a formula that divides the mass in column A by the volume in column
C.

At the bottom of the spreadsheet we find the mean and standard deviation of the calculated densities (that
is, of the numbers in cells D5 through D8). Those are computed using the formulas =average(D5:D8) and
=stdev(D5:D8).

F.2 Graphs

Here’s how to make graphs in Excel. First, use the mouse to select the columns of numbers you want to graph.
(If the two columns aren’t next to each other, rearrange them so that they are next to each other. The variable
you want on the horizontal axis needs to be to the left of the variable you want on the vertical axis). Then click

Figure 1: Sample Excel spreadsheet
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Figure 1: Sample Excel spreadsheet
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This is done in the Chart Elements menu which is accessed by clicking on the plus sign (+) in a box, at the upper
right corner of your graph. Click on Axis Titles, and places appear for axis titles. Edit the text inside of the two
axis titles so that it indicates what’s on the two axes of your graph, including the appropriate units for each.

Next, give your graph an overall title. Click on Chart Title and a box appears around it. Delete “Chart Title”
and enter a proper title such as “Position vs Time” or whatever.

Usually you want your graph to contain a best-fit line passing through your data points. To do this, right click
on one of the data points and select Add Trendline. A number of options appear such as “linear”, “polynomial”,
“power”, and so on. Select the one you want, and also check the Display Equation on chart option near the
bottom. You can then drag the equation to someplace else on the chart so you can read it better. Remember
that Excel won’t include the correct units on the numbers in this equation, but you should. Also, Excel will
always call the two variables x and y, even though they might be something else entirely. Bear these points in
mind when transcribing the equation into your lab notebook.

Sometimes, you may want to make a graph in Excel where the x column is to the right of the y column in your
worksheet. In these cases, Excel will make the graph with the x and y axes reversed. Here’s how to fix this
problem: Before you make your graph, make a copy of the y column in the worksheet and paste it so that it’s to
the right of the x column. Then follow the above procedure and everything will be fine.

D.3 Making Histograms

A histogram is a useful graphing tool when you want to analyze groups of data, based on the frequency at
given intervals. In other words, you graph groups of numbers according to how often they appear. You start
by choosing a set of ‘bins’, i.e., creating a table of numbers that mark the edges of the intervals. You then go
through your data, sorting the numbers into each bin or interval, and tabulating the number of data points that
fall into each bin (this is the frequency). At the end, you have a visualization of the distribution of your data.

Start by entering your raw data in a column like the one shown in the left-hand panel of Figure 2. Look over
your numbers to see what is the range of the data. If you have lots of values to sift through you might consider
sorting your data is ascending or descending order. (You don’t need to do this if you can easily see the range of
data.) To do this task, choose the column containing your data by clicking on the letter at the top of the column,
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You now have the ingredients for making the histogram. Go to Data in the menubar, select Data Analysis (on
the right) and choose Histogram. Click OK. You should see a dialog box like the one in the right-hand panel
of Figure 2. Click in the box labeled Input Range and then highlight the column on the spreadsheet containing
your data. Next, click in the box labeled Bin Range and highlight the column on the spreadsheet containing the
bins. Under Output Options, select Chart Output and click OK. The histogram should come up. If it doesn’t,
go to Insert in the menubar and select the histogram icon in the Charts section (the first icon in that section).
Change the horizontal axis label to whatever you are plotting (including units). The vertical axis should already
be labeled “Frequency”. Change the chart title to an appropriate title for whatever you are plotting. The result
should look like the right hand panel of Figure 3.

Figure 2: Column data and bins (left-hand panel) and dialog box (right-hand panel) for making a histogram in
Excel.

Figure 3: Newly-created worksheet (left-hand panel) and final plot (right-hand panel) for histogram worksheet
in Excel.
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Figure 2: Column data and bins (left-hand panel) and dialog box (right-hand panel) for making a histogram in
Excel.
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go to Data in the menubar, select Sort, and pick ascending or descending. The data will be rearranged in the
order you’ve chosen and it will be easier to see the range of the data. For an example, see the middle column of
data in the left-hand panel of Figure 2.
Now to create your bins pick a new column on your spreadsheet and enter the values of the bin edges. Bins
should be of equal size with the bin edges given by simple numbers. Make sure the bins you choose cover the
range of the data. See the left-hand panel of Figure 2 again for an example.
You now have the ingredients for making the histogram. Go to Data in the menubar, select Data Analysis (on
the right) and choose Histogram. Click OK. You should see a dialog box like the one in the right-hand panel of
Figure 2. Click in the box labeled Input Range and then highlight the column on the spreadsheet containing
your data. Next, click in the box labeled Bin Range and highlight the column on the spreadsheet containing the
bins. Under Output Options, select Chart Output and click OK. The histogram should come up. If it doesn’t,
go to Insert in the menubar and select the histogram icon in the Charts section (the first icon in that section).
Change the horizontal axis label to whatever you are plotting (including units). The vertical axis should already
be labeled “Frequency”. Change the chart title to an appropriate title for whatever you are plotting. The result
should look like the right hand panel of Figure 3.
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Figure 3: Newly-created worksheet (left-hand panel) and final plot (right-hand panel) for histogram worksheet in
Excel.

D.4 LINEST

LINEST is a function in Excel which gives a LINear ESTimate of the slope and the uncertainty in the slope for
any linear data set. It can also give the y-intercept and the uncertainty in the y-intercept. The uncertainties
are based on the scatter of the data points about a perfect straight line. To use LINEST in Excel, perform the
following steps:

1. Select a 2 x 2 group of cells (not including any cells with data)

2. In the function line type =LINEST(

3. Select range of y values

4. Type comma (,)

5. Select range of x values

6. Type comma (,)
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7. To estimate both the slope and the y-intercept: Type 1,1)
OR, to estimate only the slope, forcing a y-intercept of zero: Type 0,1)

8. Hold down Control AND Shift buttons, and press Enter

9. The result should look like this (if you typed “1,1”):

slope intercept
δ slope δ intercept

where δ slope represents the uncertainty in the slope value. You will still need to round off both numbers,
depending on the relative magnitudes of the two numbers. It is also common practice to express both numbers to
the same power of 10.

Appendix E: Treatment of Experimental Data

Recording Data

When performing an experiment, record all required original observations as soon as they are made. By “original
observations” is meant what you actually see, not quantities found by calculation. For example, suppose you
want to know the stretch of a coiled spring as caused by an added weight. You must read a scale both before and
after the weight is added and then subtract one reading from the other to get the desired result. The proper
scientific procedure is to record both readings as seen. Errors in calculations can be checked only if the original
readings are on record.

All data should be recorded with units. If several measurements are made of the same physical quantity, the data
should be recorded in a table with the units reported in the column heading.

Significant Figures

A laboratory worker must learn to determine how many figures in any measurement or calculation are reliable,
or “significant” (that is, have physical meaning), and should avoid making long calculations using figures which
he/she could not possibly claim to know. All sure figures plus one estimated figure are considered significant.

The measured diameter of a circle, for example, might be recorded to four significant figures, the fourth figure
being in doubt, since it is an estimated fraction of the smallest division on the measuring apparatus. How this
doubtful fourth figure affects the accuracy of the computed area can be seen from the following example.

Assume for example that the diameter of the circle has been measured as .5264 cm, with the last digit being
in doubt as indicated by the line under it. When this number is squared the result will contain eight digits, of
which the last five are doubtful. Only one of the five doubtful digits should be retained, yielding a four-digit
number as the final result.

In the sample calculation shown below, each doubtful figure has a short line under it. Of course, each figure
obtained from the use of a doubtful figure will itself be doubtful. The result of this calculation should be recorded
as 0.2771 cm2, including the doubtful fourth figure. (The zero to the left of the decimal point is often used to
emphasize that no significant figures precede the decimal point. This zero is not itself a significant figure.)

(.5264 cm)2 = .27709696 cm2 = 0.2771 cm2

In multiplication and division, the rule is that a calculated result should contain the same number of significant
figures as the least that were used in the calculation.

In addition and subtraction, do not carry a result beyond the first column that contains a doubtful figure.

Statistical Analysis

Any measurement is an intelligent estimation of the true value of the quantity being measured. To arrive at a
“best value” we usually make several measurements of the same quantity and then analyze these measurements
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statistically. The results of such an analysis can be represented in several ways. Those in which we are most
interested in this course are the following:

Mean - The mean is the sum of a number of measurements of a quantity divided by the number of such
measurements. (In other words, the mean is the same thing as what people generally call the “average.”) It
generally represents the best estimate of true value of the measured quantity.

Standard Deviation - The standard deviation (σ) is a measure of the range on either side of the mean within
which approximately two-thirds of the measured values fall. For example, if the mean is 9.75 m/s2 and the
standard deviation is 0.10 m/s2, then approximately two-thirds of the measured values lie within the range 9.65
m/s2 to 9.85 m/s2. A customary way of expressing an experimentally determined value is: Mean±σ, or (9.75±
0.10) m/s2. Thus, the standard deviation is an indicator of the spread in the individual measurements, and a
small σ implies high precision. Also, it means that the probability of any future measurement falling in this range
is approximately two to one. The equation for calculating the standard deviation is

σ =

√∑
(xi − ⟨x⟩)2

N − 1

where xi are the individual measurements, ⟨x⟩ is the mean, and N is the total number of measurements.

% Difference - Often one wishes to compare the value of a quantity determined in the laboratory with the best
known or “accepted value” of the quantity obtained through repeated determinations by a number of investigators.
The % difference is calculated by subtracting the accepted value from your value, dividing by the accepted value,
and multiplying by 100. If your value is greater than the accepted value, the % difference will be positive. If your
value is less than the accepted value, the % difference will be negative. The % difference between two values in a
case where neither is an accepted value can be calculated by choosing either one as the accepted value.

Appendix F: A Single-Page Summary on Handling Uncertainties

Uncertainties in measurements:
When you estimate the uncertainty of a measurement, there should be a reasonable probability that the actual
value of what you’re measuring lies within your stated range of x ± δx, where x is your best guess of its value and
δx is the uncertainty. “Reasonable probability” usually means either 67% or 95%, called the confidence level.
Sometimes you can only know the uncertainty from reading the manual for the measuring device. Other times
you can use common sense to determine whether you would be willing to bet a cup of coffee on the final result.

Propagating uncertainties:
When a calculated quantity depends on a measurement that has uncertainty, do the calculation using both
your best-guess value and one of the two worst-case values, then take the difference of the results. Example:
calculating circumference C from measured diameter of (50 ± 2) cm.

• Best guess: C = πD = π(50 cm) = 157.1 cm
• Worst case: C = πD = π(52 cm) = 163.4 cm
• Difference of: 6.3 cm. =⇒ C = (157 ± 6) cm.

As long as the uncertainties are smallish, you only need to calculate one worst case.

Two or more sources of uncertainty:
When a calculated quantity depends on two or more measurements that have uncertainty, start by finding the
uncertainty in the calculated quantity from each ONE of the measurements separately, as above. Then combine
those individual uncertainties “in quadrature,” like legs of a right triangle. Example: calculating W = F∆x,
where F = (45 ± 3) N and ∆x = (100 ± 9) cm.

• Uncertainty in F only: F = (45 ± 3) N, ∆x = 100.000 cm =⇒ W = (45 ± 3) Joules.
• Uncertainty in ∆x only: F = 45.000 N, ∆x = (100 ± 9) cm =⇒ W = (45 ± 4) Joules.
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• Combine in quadrature:
√

(3 J)2 + (4 J)2 = 5 J. =⇒ W = (45 ± 5) Joules.

Three or more sources of uncertainty combine the same way:
√

( )2 + ( )2 + ... + ( )2.

Correlated uncertainties:
Combining uncertainties in quadrature as above is what you do when the uncertainties are uncorrelated: each
measurement could be either high or low, independent of the other one. But if the uncertainties are correlated
(one measurement high means the other is high too), then calculate a single worst-case scenario with both
measurements too high, or both too low. Example: You want the difference between two masses, m2 − m1,
each measured on the same scale, which might be miscalibrated by up to 1%. Suppose m2 = (400 ± 4) g, and
m1 = (300 ± 3) g.

• Best guess: ∆m = m2 − m1 = 400 g − 300 g = 100 g
• Worst case: ∆m = m2 − m1 = 404 g − 303 g = 101 g
• Difference of: 1 g. =⇒ ∆m = (100 ± 1) g.

You can see right away that adding the uncertainties in quadrature would give (100 ± 5) g, which is crazy. (If they
were measured by different scales, then you really could have m2 = 403 g and m1 = 298 g, so ∆m = (100 ± 5) g
would be reasonable, not crazy.) Also note that for adding the masses, a shortcut is to add the uncertainties
directly, not in quadrature: mtotal = (700 ± 7) g.

Disclaimer:
There are enough shortcuts, special techniques, definitions, and rigorous justifications to fill a book. If you want
them, go find a book. This is just a single page.
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