Chapter 3

LAGRANGIAN METHOD

The form that Newton’s equations of motion take depends on the coor-
dinate system used. For instance, the equations in a polar system are
different from those in a cartesian system. The Lagrangian method is
a reformulation which makes it simple to write the equations of motion ‘
in any coordinate system. In addition, it provides a straightforward and
systematic way to handle constraints and to identify conserved quantities.
The Lagrangian method allows an attack on many problems whose equa-
tions of motion would not otherwise be easy to find. Lagrange’s equations
(and the related Hamilton’s equations) are of fundamental importance in
classical mechanics and quantum mechanics. '

3.1 Lagrange Equations

For a system consisting of N particles moving in three dimensions a
total of 3N cartesian coordinates are required. The first particle’s co-
ordinates are labeled Ty, the second ry, and so on up to ry. There is
a Newton’s equation for each of these coordinates. As a first step in.
the Lagrange approach we choose a new set of coordinates §,,qy;..-Q3
called general coordinates, collectively denoted by {qj}, to describe the
configuration of the system. These coordinates do not necessarily have
the dimensions of distance; in fact they are often angles. Newton’s equa-
tions can be expressed in terms of the new coordinates by everywhere
substituting for each cartesian coordinate its expression in terms of the
new coordinates. These expressions relate the values of the new coor-
dinates to the corresponding cartesian coordinate values which describe
the same configuration of the system:.

r= r1(q1,q27- . 'qSN; t)
Ty = r2(q1a Qg -« 3N t)

(3.1)

rN = I'N(qpqz’---an? t)

Note that the expressions (or coordinate transformations) may be differ-
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ent at different times. We use the common physics shorthand notation
that the same symbol r is used for the function r(g) and its value r. A
simple specific example of the transformation (3.1) might be the choice
of spherical polar coordinates (r, 0, ¢) as general coordinates. For one
particle, (3.1) becomes

z = rsinfcos¢
y = rsinfsin ¢ . (3.2)

z=rcosf

If the particle moves on the surface of a sphere of radius ¢ centered at the
origin we may set 7 = £ in (3.2) and only two of the general coordinates,
6 and ¢, will vary in time. A relation of this type is called a constraint.

The equations of motion which result directly from the substitutions
of (3.1) in Newton’s equations are usually a mess. A much nicer set
of equations, both because they exhibit explicitly the simplifications of
symmetries and constraints, and because they are easier to write down,
are Lagrange’s equations. They are not the same as Newton’s but are
equivalent; in fact, each Lagrange equation is a linear combination of
Newton’s equations, and wvice versa.

3.2 Lagrange’s Equations in One Dimension

We will first derive the Lagrange equation for one particle moving in one
dimension. With this as a guide we can then extend the derivation to a
system with an arbitrary number of degrees of freedom. The derivation
is purely mathematical and involves formal manipulations with partial
and total derivatives.

We introduce a general coordinate ¢(t) expressed in terms of = by
q(t) = qfz(1), ] (3.3)
or inversely, as in (3.1),
z(t) =z [q(t), 1] (3.4)
An explicit dependence on ¢ in the transformation allows for the possibil-

ity that the ¢- and z-coordinates are related differently at different times.
The velocity @ = dz/dt can be expressed in terms of the general velocity
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§ by chain differentiation

. Oz, Oz
= g—q-q T (3.5)
where 8z/0q and 0z /8t are by (3.4) functions of ¢ and ¢.
The momentum p = mi of the particle can be written in terms of the
kinetic energy K (2) = yma? as
dK
P="0
We introduce a new momentum p(¢) called the general momentum by a
formula analogous to (3.6)

(3.6)

P(t) = ?(?Lq{(qa q t) (3'7)

where K (g, 4,t) means %mi:z with & expressed by (3.5). By chain differ-

entiation the general momentum 7 is related to the ordinary momentum p

KOs _ 0i

P=% a3~ Pag

By. use of (3.4) and (8.5), the partial derivative 9¢/0q (q held fixed)
simplifies to -

(3.8)

oz Oz

89  0q
Therefore we have )
z
=p— (3.10)
P=r3 :
Newton’s equation of motion is
p=F(z, i,1) (3.11)

The corresponding Lagrange equation of motion has p instead of p on
the left-hand side; it is derived by differentiating both sides of (3.10)
with respect to ¢

Jz d [0z
p=pr+ o | o . (3.12)
p_p8q+pdt(6q) (
To simplify the second term, we interchange the order of differentiation,

d (3_‘”) _ o (3.13)
dt \dq) ~ 94
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We briefly digress to justify the result in (8.13). Proceeding just as
in Eq. (3.5), the total time derivative of dz/dq is

i(GQJ)_i Oz .+6 Oz 3.14
dt \dq)  9q 8qq dt \ 9q (3.14)
An important point must now be addressed. In the Lagrangian for-
malism we regard ¢ and § as independent variables in the sense that
04/8q = 0. Other quantities such as the general momentum defined in

(3.7) are derived since they ultimately depend on ¢, ¢ and ¢. Differenti-
ating (3.5) with respect to q (and treating § as an independent variable)

we obtain
%_i(ﬁ 0 i _a_x 3.15
g~ aq\aq) 1T 8q \ 5 (3-15)

Since the right-hand sides of (3.14) and (3.15) are identical, (3.13) follows.

Returning to the derivation, we multiply (3.13) by p and replace p on
the right-hand side by the expression (3.6) to obtain

d [0z dK 0z oK
p%(a_q)*m—q*a - (819

The substitution of (3.11) and (3.16) into (3.12) yields the following equa-
tion of motion in the ¢-coordinate system

. a oK
p= Fﬁ% 50 (3.17)

The first term on the right-hand side is called the general force

. Jz
Q4,9 1) = F(?_q (3.18)
Then the equation of motion
. 0K
P=Q+ En (3.19)

is of universal form for an arbitrary choice of coordinate q. The term
OK/dq in this equation represents a “fictitious” force which appears
whenever the coefficients 8z/9¢ or 8z/dt in (3.5) vary with q.
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If the force F is separated into a part —dV(x)/dx which is derived
from a potential energy, and a part F ' which cannot be expressed (or
which we do not choose to express) in terms of a potential energy, the
general force can be separated into corresponding parts.

dV (z) 0z O 9V (9 , :
Q———£—5+Faw——ar+Q (3.20)
What we mean by V(q) is the quantity at each point that is the same
as V(z), that is, V[z(q)]. For simplicity, we use the notation V(g),
although it is not the same function as V(z). Notice that the potential
(conservative) part of the general force has the same form, -dV/dq, as
the conservative cartesian force —dV/0z.

If (3.20) for Q is substituted into (3.19) the terms 0K /8qand —0V/0q
can be combined, giving the Lagrange equation of motion
oL

LN 3.21
p aq+Q (3.21)

where
L(q7 q: t) = I{(qv q7 t) - V(q) (322)
is the Lagrangian function. Since

_ 0K _oL (3.23)

95 09
follows from (3.7) and 8V (q)/8q = 0, the Lagrange equation of motion
(3.21) can also be written

@ \d5)  0q
The general force Q' must include all forces F' on the particle which are
not included in the potential energy.

4 (‘%) o _ o (3.24)
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3.3 Lagrange’s Equations in Several Dimensions

The derivation of the Lagrange equation in § 3.2 was for the motion of one
particle in one dimension. The generalization to the motion of N particles
in three dimensions is made by repeating, step by step; the derivation in
the one-dimenensional case.

There are now 3V cartesian components z; and likewise 3N general
coordinates ¢;. In analogy to (3.6) the k" cartesian momentum is py =

0K /82y, and from (3.8) and (3.10) the general momentum can be written
as

P —-?_Ii—é_liaik - azk (3 25)

iT 9y, 93,09, TFy, '

where the generalization of (3.9), the identity 0ix/09; = 0z4/0q;, has
been used. In (3.25) and subsequent equations a summation over repeated
indices (in this case k) is implied. As in (3.12) the time derivative of the
general momentum is

. 3zk 6’zk

] :p’“a_qj +Pka—qj (3.26)

In parallel to the derivation in one dimension we find

. ov 0 0K 01
b= (- 1) G SO

6:ck

oV 0K
=+ Qi+ 5
be; 9y,
d
=—(K-V)+Qj
8qj( )
_ 9 !
= aqu+Qj

where L is the Lagrangian

L{gh {1 = K ({9}, {¢ht) - V({a})
The general forces derived from a potential are

oz, v
QHOt = E—l - -
’ 99; 99




90 Chapter 8 LAGRANGIAN METHOD

and 5
1 prO%i (3.30)

are the other general forces. It follows from (3.25) and 9V/9¢; = 0 that
the general momentum can be written as

oL 31

J

and so (3.27) becomes

d (oL 0oL _ (3.32)
%<5&Tj> T

As an elementary application of Lagrangian techniques, we determine
the r and 6 equations of motion for a particle moving in 2 plane }1nder
the influence of a central potential energy V (r). As general coordinates

we take

q1 =r, qZ =f (333)

in terms of which the cartesian coordinates are

z = rcosf

(3.34)

y=rsiné

The kinetic energy

K = im(i* + %) (3.35)

is easily expressed in polar coordinates by taking the time derivative of
(3.34) to get the cartesian velocities

% =rcosf —rfsind

(3.36)

y:fsin9+r96050

and therefore

K =1lm(**+ ) (3.37)

This result for K also follows from (2.126) with K = Lm(v} + v}). We
note that K is a function of q;, §,, and g, but not of q,. The Lagrangian
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L=K-V=1lm@# +26%) - v(r) (3.38)

In this case there are no constraint forces or non-conservative forces S0
that Q. = Qj = 0. Using this in the Lagrange equations of motion

(3.32), with @} =0
d (9L\ 0L
dat\ar ) " ar

d (m:) oL (8:39)

dat\ag) 90
we find
mit — mré? = —%—V
d ) " . (3.40)
E(mrzé’) = r(mrf + 2mrd) = 0

These correspond to (2.130), obtained from direct application of Newton’s
Laws, with F,. = —0V/dr and F; = 0.

Since L does not depend on 6, p, = 0 from (3.39); hence the general
momentum P, is constant,

L

= — = mr?f = constant (3.41)
00

Ps

This conserved quantity is the angular momentum I ,.

This conservation law is an example of a general principle that can
be deduced from the Lagrange equation (3.32): if a general coordinate
q; does not appear in the Lagrangian and Qg- = 0, the corresponding
general momentum p;= aL/an. is constant in time — it is a constant of
the motion (a conserved quantity).

3.4 Constraints

As a simple example of a constrained system we return to the simple
pendulum. A mass m moves in a vertical plane as illustrated in Fig. 3-1,
subject to gravitational force and to the tension force of an attached
string of length £ which constrains the mass to always be at a distance £
from the other end of the string. To begin with, we shall suppose that
this other end of the string is held at a fixed position; later it will be
allowed to move arbitrarily. The essence of the problem is that we are to
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find the motion of the mass according to Newton’s equations, b_ut we are
not given all the forces; instead, we are given partial mformz‘atlon.about
the motion, namely the constraint(s). The unknown force, in this case
the tension, is called the constraint force, and is whatever it has to be
for the given motion to obey the constraint(s). Note that the number
of the unknown components of constraint force must be the Sfmme as the
number of constraints on the motion, otherwise the motion will be over-

or under-determined.

N

g cos 8

mg sin 0

FIGURE 3-1. Simple pendulum

How can we systematically treat a mechanical system Wi'ﬁ.h cor'xstrah.lts?
The first step is to find combinations of the Newton equations in which
the constraint forces are absent. As we shall more-or-less derTlonstra,tle be-
low, these are precisely Lagrange equations, for an approprlat.e choice .of
coordinates. One has enough information to solve these equations (Wl}ﬂe
assuming the constraints to hold), and the solutions to these f‘leterrmne
the motion. The remaining equations, into which one substitutes the
solution to the motion, then determine the constraint forces; if only the

3.4 Constraints 93

solution for the motion were desired, this step would be unnecessary. The
above procedure was carried out already for the pendulum in §2.7. By
expressing Newton’s laws in polar coordinates we found (2.133) that the
¢ equation did not contain the string tension. We solved this equation
for 6 as a function of # and then substituted back into the radial equation
(2.132) to find the tension, the constraint force.

We now proceed with the simple pendulum using the Lagrangian
method. As in Fig. 3-1, let z (horizontal) and y (vertically downward)
be cartesian coordinates of the mass and let the origin be at the other
(fixed) end of the string, so that the constraint is £ = r = /22 +y2. We
first do the calculation in an awkward but informative way. Consider the
following Lagrangian in polar coordinates

1 : .
L= 3m <7‘“2 + r292> + mgrcos § — Veonstraint () (3.42)

where V(r,) = —mgrcos# is the gravitational potential energy —mgy
and Veenstraint (1) s 5 potential energy that will enforce the constraint
7 = £ by having a deep and narrow minimum at r = £. It is understood
here that only motions with low energies are being considered so that
vibrations about the constraint (here r = £) are of negligible amplitude.

In the real world a little friction rapidly damps these high frequency
motions.

The radial Lagrange equation for the pendulum is

d (0L oL’
i (7) ~ o =0 (343)
or
N constraint
mi — mré® — mgcosf + dth =0 (3.44)
r

Due to the deep and narrow minimum of }/constraint (r) only r = £ is
allowed. Thus the constraint force necessary to keep r = £ is

constraint

dvconstraint
" dr

= —mld?> — mgcosé (3.45)

This constraint force is directed inward if the string is taut and is the
negative of the string tension 7,.. One sees from (3.43) and (3.44) that




94 Chapter 3 LAGRANGIAN METHOD

. . AL _ . oL gy constraint
the condition for r = constant is = =0, i.e. §2 — &———=~0or
Qconstraint — _a_L (346)
" - or
r=£{

The angular Lagrange equation for the pendulum is

‘() *
dt \ 9 06 (3.47)

% (r2é> +grsinf =0

Imposing the constraint r = £ here leads to the usual pendulum equation

i+ %sin@ -0 (3.48)

The result of the above excercise is that:

1. We can impose constraints directly in the Lagrangian and determine
the correct equations of motion without ever explicitly referring to the
constraint forces.

9. Tf we wish to find the force required to enforce a constraint, we choose
an additional general coordinate (in this case r) so that when it is held to
be a particular constant (r = £ here) the constraint is maintained. The
constraint force then follows as in (3.46).

We can now describe the general case: let the system, with 3V degrees
of freedom, have C constraints, that is, the motion zx(t), k = 1,2,...,3N
is to satisfy

fi({ze(®)}, £) =0, i=12,...,C (3.49)
Choose general coordinates so that C' of them are

;= f{z®}t)  i=12...,C (3.50)
so that the constraint conditions read

;=0 j=12..,C (3.51)

In our pendulum case this would mean g, = r — £. The constraint forces
can be imagined to be from a potential Yeonstraint (g g, ..., Gs;t) which
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has a deep and narrow minimum at ¢, = q, = --- = g, = 0; the La-
grangian is

=K — V-~ Vconstraint = I — Vconstraint (352)

with L = K —V. Then the combinations of Newton’s equations in which
no constraint forces appear, and which therefore determine the motion,
are the Lagrange equations for the “non-constraint” coordinates,

d { oL oL
— | == | = 1, C+2,...,3N .
a7 (8%) g, 1=CFTL O+, (3.53)

j
where L = K — V and the “constraint” coordinates g ; are taken to obey
(3.561). Consequently to determine the motion K and V need only be
known for constrained configurations of the system. As in the pendulum

example, the constraint forces are given by 0 = % ZP, = g? = 384: B
4 i d
constraint
GVT, ie.
. oL .
;onstramt =——— j= 1, 2, RN C (354)
8q;

Asin (3.53) L =K —V and the q; are all zero. (Note that Q;"“S"ai"t is
a general force, so for example it will be a torque if q; is an angle.)

The type of constraint f;({z}, t) = 0 is called a holonomic con-
straint. An important holonomic constraint is the rigid body constraint,
in which the distances between every point in the body remain constant.
The rigid body constraint can be expressed as

ri — ;] = di (3.55)

where d;; is the constant distance between particles i and j. As we will
discuss in Chapter 6, the result of the rigid body constraints is that the
configuration of a rigid body is described by six general coordinates —
three angles and the three coordinates of the center of mass.

For completeness we should mention that some mechanical systems
have constraints which cannot be expressed as relations among the coor-
dinates; these are called non-holonomic constraints. An important class
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of these are expressed as constraints on the velocities

aij qj +b;=0 (3.56)
(the a;; and b; may depend on the q,’s) where the equations cannot be
integrated. If such a set of relations could be integrated, the result would
be relations between coordinates and the constraints would actually be
holonomic. Consider the example of a ball rolling without slipping on a
surface. There are two types of constraints here. One is that the ball
touches the surface; this is holonomic and can be expressed by saying
that the distance of the center of the ball above the surface is always
equal to the radius of the ball. The other is the “rolling without slip-
ping” constraint which can be expressed by saying that the ball at the
point of contact must be at rest relative to the plane. This constraint is
non-holonomic because it cannot be integrated to a relation among the
coordinates. This is evident from the fact that the ball can be rolled to
any position and orientation (note that the ball can rotate around the
point of contact).

An example of another class of non-holonomic constraints is given by
a pendulum bob on a flexible string; the distance r between the bob and
the other end of the string cannot exceed the length £ of the string. For
some initial conditions the string may not remain taut and the bob will
then fall inward (i.e., r < £). When this happens the string no longer
exerts any force on the bob and the bob moves as a projectile until the
string becomes taut once more. The precise transition from constrained
to unconstrained motion and back to constrained motion requires the
solution of the equations of motion at each step and cannot be cast in
the usual holonomic form.

3.5 Pendulum With Oscillating Support

You may have wondered if the Lagrangian method is actually advanta-
geous, since the examples we have solved are just as easy to do by New-
ton’s second law. To illustrate the merits of the Lagrangian approach, we
chall treat the motion of a pendulum with an oscillating support,” This
example also provides a simple demonstration of the forced harmonic
oscillator.

The point of suspension (zs,Yys) of a simple pendulum is moved as a
specified function of time, as shown in Fig. 3-2. We take as coordinates
z,y the relative coordinates of the bob to the point of suspension; thus
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FIGURE 3-2. Simple pendulum with a moving suppor e direction o S1t1V
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the bob has position (z+z,,y+y,) with respect to a fixed system, where
z,(2) anfi ys(t) are given functions of time representing the horizontal
and vertically downward coordinates of the support and

z = {sinf

y=4Lcosl (3.57)

The bob’s kinetic energy is

_1 S22 © N2 . . .. .

K=im[(@+4:)%+ 5+ g |= %m(zz + 9% + 28, + 2579, + &2+ 97
. 3.

and its potential energy is 559

V = —mglcos 8 — mgy, (3.59)

Thus the Lagrangian L = K — V is

L = 3m(£*6°+2003 , cos 9420613, sin 0+42+92)+mgl cos 6+mgy, (3.60)
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For the general coordinate 6, the derivatives appearing in the Lagrange
equation are

% = mf20 + mli, cos b + mhy,sin 6

% (_Q_L) =m0 + mli, cos§ + mlij,sin 6 + mféys cosf — m[é:bs sin 6

06

%g — b, cos § — mlfi,sin § — mglsin @
(3.61)
The resulting equation of motion is
6+ (%—I—y—Z) sinﬁz—% cos (3.62)

(Note the cancellation of 03, and éys terms.) For small angular displace-
ments (§ < 1) and a horizontal sinusoidal motion of the support,

s = Lo COSWE ys =0

2

. (3.63)
Iy = —w“zgcoswt

the equation of motion (3.62) becomes

? coswt (3.64)

] + wg 6= Lo w
L
where wy = 4/g/{ is the natural frequency. This equation is mathe-
matically identical with that of a forced harmonic oscillator [see (1.115)].
Because of this similarity a pendulum with a horizontally oscillating sup-
port can be used to demonstrate the properties of a driven harmonic

oscillator.

We stress that the advantage of using Lagrangian methods is the
methodical and straightforward procedure. Once a Lagrangian function is
constructed from the kinetic and potential energies, the task of obtaining
the equations of motion is simply a matter of differentiation. In complex
problems there is less chance of error using this method.

FIGURE 3-3. Two nearby trajectories having the same initial and final values, for the
case of one coordinate.
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3.6 Hamilton’s Principle and Lagrange’s Equations

An elegant method known as Hamilton’s Principle provides an instruc-
tive demonstration that Lagrange’s equations are equivalent to Newton’s
equations. Given the Lagrangian L({g}, {4}, t), one defines for a given
motion ¢;(t) of the system between the times ¢, and t; the quantity S
called the action of the motion

tg

5= [ Llia (@, e - (365)

ty

We will be interested in how S changes when the motion is changed to
another motion. More specifically, we will be interested only in a slightly
restricted class qf motions, namely those which have a specified initial
point, ¢, (t1) = qy“itial, and likewise a specified final point, ¢.(t2) = ¢fmal,
as illustrated in Fig. 3-3. As the motion is varied, subject Jto the ﬁ)](ed—
end-point conditions just stated, the value of .S varies (in general). We
can now state Hamilton’s principle as the following theorem: If any small
variation (satisfying the fixed-end-point conditions) of a motion produces
no variation of S (to first order) then the motion satisfies Lagrange’s
equations and vice versa.

qinitial
¥
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In other words, the action S is stationary at just those motions which
satisfy Lagrange’s equations. [Often, a stationary value of S is a minimum
value, that is, all variations of the motion raise the value of 5. For
this reason, Hamilton’s principle is often (misleadingly) called the Least
Action Principle.]

The demonstration is as follows. We consider a particular motion
q;(¢) and a slightly different motion 4;(t) = q;(t) + 69;(t), where ’?he
difference of motions, §¢;(t), is small. To satisfy the ﬁxed—end—po.mt
conditions, 49 ; must vanish at t; and #,. The variation of the action
when the motion is varied from g, @) to f]j(t) is

ta

w:jﬁd@A%O—fﬁdm¢%0=/ﬂM

131
(oL oL
AeB Y,
/dt<8q 49; +8q )

t1

(3.66)

where sums over j are implied. The final step used chain differentiation,
ie 6f(z,y,..)= %595 + %éy—l— «-+. Clearly, for §S to vanish it is suffi-
cient that 0L/9q; = 0 and 0L/0q; = 0; however, this is not a necessary
condition because the functions d¢; and §q; are not independent. This is
dealt with as follows. Note that

5. = 8q,(t+dt) - 6q.(t) 4

;= — = =(61;) (3.67)

Thus the terms in qu can be integrated by parts

oL oL d oL _ - / d { 0L
_ s st (22 ) s (3.68
dtaq 5g, = [ dt— 57, 57 g0 aqj&q] @i \ 3, q9; (3.68)

and (3.66) becomes
7 Jor 4 (or
o= [alg- 2 ()]

ty

The last term vanishes by the fixed-end-point condition, § §;=0att=1y
and t =t;. Thus 6 vanishes for arbitrary small §¢,(t) if and only if the

aL b2

i+ 5 q] (3.69)

i1
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square-bracketed expression vanishes for all ¢ between #; and ty and for all
values of the coordinate index j. This vanishing is Lagrange’s equations

(3.32),

d (0L oL

— =) -==0 .

dt <8qj> B9; 310
and so Hamilton’s Principle has been shown. We remark that Hamilton’s

Principle is an example of a variational principle, and our treatment of
it is an example of the calculus of variations.

It is now easy to see that Lagrange’s equations have the same form in
any coordinate system. According to Hamilton’s Principle, the statement
that a motion ¢(t) satisfies Lagrange’s equations (3.32) is equivalent to
the statement that the action of the motion is stationary. The latter
statement is independent of the choice of coordinates, and so the former
statement must be as well. To be more explicit, if we change coordinates
from ¢ to G [c¢f. Eq. (3.1)] then the reexpression of the action in terms of
the new description §(¢) of the orbit goes as follows:

S = /dtL({q(t)}, {i)}, 1)

= [ @ (taeny, 14, i, 93, (3.71)
= [ @@y, o), 9

ty

where the last step defines I to be the function of the q q and ¢ which

results from substituting into L ({q}, {3}, ) the expressions of the old
coordinates and velocities g, § in terms of the new,

=¢; (g9
. 0q.. 0q, (3.72)
4= aqfq +7

Thus Hamilton’s Principle tells us that if the motion q(t) satisfies La-
grange’s equations with Lagrangian L ({¢}, {4}, t) then its description in
terms of the new coordinates, §(¢), satisfies Lagrange’s equations with

Lagrangian L ({3}, {q}, t).
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Now that we have shown that Lagrange’s equations have the same
form in any coordinates, it follows that they are equivalent to Newton’s
equations if I, = K — V because if the {q} and {q} are chosen to be
cartesian coordinates, then K = %Zk myi} and Lagrange’s equations
(3.70) become

WK -V)_ av
Pr = dry,  Ozk
0L 0K _
Ol

Fy
(3.73)

m:i:k

A final remark is that if the motion is to satisfy holonomic constraints,
the equations which determine the motion of the system result from using
in Hamilton’s Principle only motions which satisfy the constraints.

3.7 Hamilton’s Equations

The Lagrange equations of motion, which are equivalent to Newton’s
equations, are a set of second-order differential equations. An alterna-
tive formulation of Newton’s law consists of twice as many first-order
differential equations known as Hamilton’s equations.

In Lagrangian mechanics the independent variables are g;, g I and %,
and the general momentum P, is given in terms of these by (3.31).

0K 0L

In Hamiltonian mechanics, 95 P and t are chosen as independent vari-
ables and g ;s a dependent quantity.

qj:qj(qlqua"'vqn; pl)p2a""pn; t) (375)

The Hamiltonian function H is defined as

H(qy,995 1955 P11Pase--1Pps t)zquj~L (3.76)

where a summation over the repeated index j on the right-hand side is
implied. In this definition the variables qj are understood to be functions
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of the general coordinates, momenta, and time as i
! 3 sin (3.75). F
the total differential of H is (3.75). From (3.76)

. . 0L oL . oL
dH = q.dp. +7p.dj. — ——dg; — = g5 I~
J J 7 q] 3% q] aq] C]J 8t dt
3.77)
. oL i (
fydp; = g doi ~ gy

where in the second line we have used p. = q.. Si i

dent differentials are now dp ., dq. and T e s e ndepen-
‘ P;, dq; and dt, we see that the replacement of

the g, b}f the p, as the fundamental variables is achieved by the definition

H =p,q; — L. This cancellation of the coefficient of dq is an example

of a Legendre transformation. Such variable changes are encountered

frequently in the study of thermodynamics.

To derive Hamilton’s equations of motion i
. we compare (3.77
total differential pae | Jith the

am = 91 0H oH

= _——dp. +—dg. + =
8P]' Pit 8q], dqf + at dt (3.78)

and use (3.32) to find

on_,

op, Y

oH _ _or .

oq; —3—% =P+ Q; (3.79)
OH _ oL

a ot

T<.) c‘establish the physical significance of the Hamiltonian we relate the
quant.ltles on the right-hand side of (3.76) to the kinetic and potential
energies of the system. In cartesian coordinates the kinetic energy is

K=} mid} = ipin (3.80)
k

By use of the chain rule expression for @ the kinetic energy can be
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rewritten in the form

1 Oz . Oz _ }. . 1 % 381
K=gm (5{,%*%) LT T
i
Solving for p;{; from (3.81),
d
p;4; = 2K —pi % (3.82)

and substituting the result into (3.76), we obtain

d
H=2K —py -gt—’“ .y
: (3.83)
. Oz,
—K4V —p

ot

Hence if the transformation between the cartesian and general coordinates
in (3.1) has no explicit time dependence,

9z _
a

the Hamiltonian is the total energy of the system,

0 (3.84)

H=K+V (3.85)

Of course this equation holds only in cases where the potential energy
exists.
To find the conditions under which the Hamiltonian is a conserved
quantity, we compute the total time derivative.
dH 0H . OH . 0H

i _ o,  oH, | o1 (3.86)
it~ aq, 0 T ap, i

Upon use of (3.79), this reduces to
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As an elementary example of the Hamiltonian method, we consider
the one-dimensional harmonic oscillator, for which

-1 -2
K—;mx

V= she? (3.88)
L=K-V= %mxz — %k$2

In this case ¢ = z and Q' = 0. The momentum is found by differentiation

according to (3.74),

p= % = maz (3.89)

The Hamiltonian from (3.76) is

H = pi = (§mi? - i)
? (3.90)
P a1
= o + zkx

where (3.89) has been used to eliminate ¢ in favor of p. This Hamiltonian
is immediately recognizable as the total energy of the oscillator.

Hamilton’s equations of motion from (3.79),

oH OH .
' z 9z = P (3.91)
yield
=i ko = ~p (3.92)
m

When p is eliminated between these two first-order equations, we obtain
the usual second-order differential form of Newton’s second law:

dZ
T = ke (3.99)

M _ g4 (3.87)
TR A T (

Thus, if the forces are derivable from a potential energy (Q; = 0) :'md
H has no explicit time dependence (0H/0t = 0), the Hamiltonian is a
constant of the motion. This constant is the total energy of the system
if (3.84) holds.

Because of the similar role that coordinate and momentum play in
Hamilton’s equations they provide the jumping off point for the formula-
tion of abstract mechanics, celestial mechanics, and quantum mechanics.
In the latter the generalization to subatomic mechanics begins with the
classical Hamiltonian. The coordinates and momenta are now operators;
for example, in coordinate space Top = 2 and pyop = -ih%, where A is
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the reduced Planck’s constant i = h/2x. In quantum mechanics all in-
formation on a physical system resides in the wavefunction t(r,t) which
satisfies the Schrodinger equation

_a
Hy = ih (3.94)

Since r and p have operator forms this amounts to a partial differential
equation for the wavefunction. The introduction of quantum mechanics,
when combined with special relativity, has extended the range of experi-
mental validity of Hamiltonian mechanics down to at least 10~¥m

PROBLEMS

B Two equal masses m; = my = m with coordinates z; and 4 in

“~/ one dimension are connected by a spring of spring constant k. Use
Lagrangian methods to find the equations of motion. What is the
angular frequency of simple harmonic motion for the relative dis-
placement z; — z2 of the two masses?

3-2. Two equal masses are constrained by
the spring-and-pulley system shown in
the accompanying sketch. Assume a
massless pulley and a frictionless sur-
face. Let z be the extension of the
spring from its relaxed length. Derive
the equations of motion by Lagrangian
methods. Solve for z as a function
of time with the boundary conditions
z=0,t=0att=0
3(3.)Use Lagrangian methods to find the equations of motion for Prob-
" lem 2-21.

3-4. Use Lagrangian methods to find the equations of motion for Prob-
lem 2-22.

3.5) Two masses mq and mg are connected by a spring of rest length

£ and spring constant k. The system slides without friction on a

horizontal surface in the direction of the spring’s length.
a) Set up the Lagrangian for the motion.

b) Find the normal modes of this system and the corresponding fre-
quencies.

Al
@A double pendulum consists of
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¢) Give general solutions to the equations of motion. Note that an
equation of motion with a zero angular frequency is not simple
harmonic.

d) For the initial conditions z1(0) = 0, #1(0) = vg, z,(0) = 0,
#3(0) = 0, find the subsequent motion.

e) Using the solution from part d), evaluate the center of mass co-

ordin:.ite zeM = [mazy + me(zy + £0)]/(my + m2) and the relative
coordinate z; — z, as a function of time.

3-6. A bead of mass m is constrained to move without friction on a
hoop of radius B. The hoop rotates with constant angular velocity
w around a vertical diameter of the hoop. Use a polar angle ¢ and
an azimuthal angle ¢ to describe the position of the bead on the
hoop, with w = ¢. Take § = 0 at the bottom of the hoop.

a) Set up the Lagrangian and obtain the equation of motion on the
bead.

b) Find the critical angular velocity w = € below which the bottom
of the hoop provides a stable equilibrium position for the bead.

¢) Find the stable equilibrium position for w > Q.

two weightless rods connected to
each other and a point of sup-
port, as illustrated. The masses
my and mgy are not equal, but
the lengths of the rods are. The
pendulums are free to swing only
in one vertical plane.

a) Set up the Lagrangian of the system for arbitrary displacements
and derive the equations of motion from it.

b) Find the normal-mode frequencies of the system when both angles
of oscillation are small.

c) Show that the frequencies become approximately equal if m; >
mg; interpret this. For my >» my interpret the normal-mode
frequencies and describe the motion of each mass.
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3-8. A model of a ring molecule consists
of three equal masses m which slide
without friction on a fixed circular
wire of radius R. The masses are con-
nected by identical springs of spring
constant mw3. The angular positions
of the three masses, 0, 03 and 65, are
measured from a rest position.

a) Write down the Lagrangian and show that the equations of motion
are él +w§(201 —02 —03):0
ég +wg(292 - 01 - 03) =0
53 —|—w§(293 — 01 — 02) =0

b) Show that the mode in which f; = 6, = 63 corresponds to con-

3
stant total angular momentum L = 3 p, .
i=1

¢) Assume the total angular momentum is zero and that §;+6,+63 =
0. Find two degenerate oscillatory modes and their frequency.
é\f/3—\9 A triangular molecule
" has three identical atoms .
with rest separations a 3 <§ + 23, —2‘”%)
as shown. The molecule
is represented as a me-
chanical system of masses
and  springs with the
springs representing the
chemical bonds. For center
small motions in the =,y (.4 o

-

planie about the equilib- a é/
rium configuration, the

kinetic and potential en-
ergies are

(a+ 22, 32)

p 3

1 .
K= imZ(zﬁ +47) .

i=1
1 1 2
V= 5/0 [(wz - 371)2 + 7 <\/§y3 ~ 3y + 23 — zl)
1 2
+Z(\/§y3—\/§yz+wz—w3) ]

Problems 109

Use Lagrange’s equations to find the equations of motion.

3.4 Constraints

3-10. A bead slides without friction on a parabolic wire of shape y = az?
with the force of gravity in the negative y direction. Write down
the Lagrangian in terms of z and y coordinates. Then use the
constraint equation to express the Lagrangian solely in terms of z.
Find the equation of motion and then simplify it for the case of
small oscillations.

3.6 Hamilton’s Principle and Lagrange’s Equations

3-11. A particle of mass m falls vertically in a constant gravity field g.
Assume that the position as a function of time is

y(t) = co + et + cot® 4 c3t®
where y increases upward and the {cj} are constant coefficients to

be determined.

a) Evaluate the action S between ¢ = 0, where y(0) =0, and t = T
where y(T') = £. As a function of ¢y, c3, T and £ show that

S £l g 1
T8 o (f — gTZ) + (E) cs + (E) C%

T gT 272\
+ 5 ) ccs + =) + 5 )%
b) For fixed T and £ show that the action is an extremum for ¢, =

—g/2 and ¢3 = 0.
¢) What kind of extremum does S have at this point?

3-12. Using the methods of the calculus of variations show that the curve
of shortest length connecting the two points (z1,y1) and (z3,y;) in
the z,y plane is a straight line.

2
Hint: the length is s = ["* L [y, ili, ¢} de where L=4/14 {2%) .
2] dz dz

3-13. A bead slides without friction on a wire in the vertical z,y plane
as shown. The elapsed time for the trip between the origin (0,0)

(0,0)
is the element of arc length and v is the velocity (v = +/2gy from

2
and the point (zg,yo) is ¢t = f(z"’yO) %, where ds = dz4/1 + (g—z)
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energy conservation). Assuming that the bead is released at rest,
the shape of the wire y(z) is to be found for which the elapsed
time is minimum. This famous brachistochrone problem (or curve
of quickest descent), first proposed and solved by John Bernoulli in
1696, led to the development of the calculus of variations.

(x0,Y0)

a) Show that the differential equation defining the wire shape is

Py | (dy)’
%ﬁ*(a;) =0

b) Demonstrate that the solution is a cycloid

T = a(¢ —sin $)
y = a(l —cos @)

How are the parameter ¢ and the values of ¢ at the endpoints

determined?

3.7 Hamilton’s Equations

3-14. For a particle moving in a plane under the influence of a central
potential energy V(r), find the Hamiltonian as a function ofr, 8, p,,
and pg. Find the four Hamilton equations of motion. Show that
the results are equivalent to Eqgs. (3.40).

3-15. In a 2N-dimensional phase space with coordinates (qj, Pj) show that
L . . 8y,  9p,

the “flow velocity” (qj7 pj) in this space satisfies TZJ. + 3_%-— =0, as-
7 7

suming that the general forces appear only in H. This indicates

that the “flow” in this space is incompressible. This result is fun-

damental to statistical mechanics.

Chapter 4
MOMENTUM CONSERVATION

The conservation of linear momentum is a universal law for all of physics.

In classical mechanics this conservation law is a direct consequence of
, .

Newton’s laws. In the absence of external forces, the equation of motion

P _p

dt
implies that p is independent of time. In other words, a particle with defi-
nite mass moves with constant velocity v in a force-free region. The most
interesting ramifications of momentum conservation concern systems of
more than one particle.

=0 (4.1)

For a two-particle system, internal forces F'* between the particles
and external forces F®*¢ on the particles can be present. The laws of
motion for particles 1 and 2 are

% — Filnt + Fixt
dp2 int ext (42)
o STt
The total momentum of the system
obeys an equation given by the sum of (4.2)
dP . .
o = EHFY) + (FP + F5) (4.4)
If the total external force is zero,
F =F +F§ =0 (4.5)
and the internal forces cancel,
Fint = it (4.6)

as implied by Newton’s third law, then the momentum is conserved
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