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rest at the origin (z = 0) at time ¢t = 0. Find the solution of the
equation of motion which satisfies the specified initial condition.

1-25. Find the average power dissipated per driving period by the fric-
tional force of a sinusoidally driven harmonic oscillator in steady
state. (Recall that power = force X velocity.) Show that maximum
dissipation occurs at w = wp and evaluate this maximum.

1-26. A sawtooth wave (see accompanying figure) can be decomposed into
an infinite sum of cosines
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where w, = (2n + 1)w and w is the “angular frequency” of the
sawtooth. Find the steady-state motion of an oscillator driven by
this force per unit mass

i+ 2vi 4 wiz = f(t).

Hint: find the solution for a given w, and use the principle of su-
perposition.
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Chapter 2

ENERGY CONSERVATION

There are three important conservation laws of mechanics: energy, mo-
mentum, and angular momentum. The three laws can be derived from
Newtonian theory. However, their range of validity is much broader, ex-
tending even to the domain of relativistic elementary particles, although
slightly changed in form. In their ramifications in all branches of science,
these conservation laws have exceptionally far-reaching consequences. In
this chapter we discuss energy conservation and then in later chapters we
take up in turn momentum and angular momentum conservation.

2.1 Potential Energy

To derive the energy-conservation law in the case of one-dimensional mo-
tion, we start with the second law of motion for a body of mass m

d
pn (mv) = F(z,v,t) (2.1)

and multiply by v. Since v dv/dt = %d(vz)/dt we obtain the equation
d 19
7 (5mv?) = F(z,v,t)v (2.2)

Stibstituting v = dz/dt on the right-hand side and integrating with re-
spect to t gives

123 d T
Imv? (ta) — tma? (1) :/t F(x(t),v(t),t)%dt = / F(z,v(z),t(z))de
1 z1
(23)
The left-hand side is the difference at two times of the familiar expression
for the kinetic energy
K = Ltmy? (2.4)
Equation (2.3) is the Work-Energy theorem

K; - Ky = AK = Work = / Flz,v(z),t(z)) dz (2.5)

T
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This theorem states that the work done by the force acting on m equals
the change in kinetic energy.

Some forces depend only on position, and then the integrand of (2.5)
is a function only of z and the integral does not depend on the particular
motion z(t). In such cases it is valuable to define the potential energy

Viz)=— /T F(z")dz' (2.6)

where z, is an arbitrary but fixed reference point. The right-hand side
of (2.5) can be expressed in terms of V' as

T2

2 Ty
/ F(z)dz = / F(z)dz +/ F(z)dz = V(z1) - V(zz)  (2.7)

Ty ) T
for any x,, even one which is outside the range z; to z;. Using this in
(2.5) yields

The quantity F is known as the total energy of the body. Since this
E is independent of coordinate, the energy is constant in time; z.e., the
energy is conserved. If I has an explicit dependence on either v or t,
there is no conserved energy of the form (2.8). This does not mean
that the energy of the universe is not conserved, but only that energy is
transferred between the mechanical form (2.8) and other forms such as
thermal energy (microscopic motion of molecules).

The expression for the energy in (2.8) can be simply written as

E=K+V(z)= %mv2(a:) +V(z) (2.9)

for any value of the coordinate z. The term potential energy means that
V is a form of energy which potentially may appear as kinetic energy.
By differentiating (2.6), we can solve for the force in terms of the
potential energy:
dV (z)
dz
A force that is derivable in this way from a potential energy is called

a conservative force. In one-dimensional motion, any force which is a
function only of position is a conservative force. The effect of changing

F(z) = - (2.10)
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from a reference point z, to a new reference point 2’ is just to change
V(z) in (2.6) by a constant, independent of z. The force is unaffected
by a change in reference point since it is calculated from the derivative
of the potential energy. Because the motion of the particle is determined
by the force, all measurable quantities are independent of zg; hence z,
can be chosen arbitrarily.

Since the energy is a constant of the motion for a conservative force
we can use (2.9) to determine v as a function of z, given E. If the energy7
is known for a conservative system, it can be used as one of the initial
conditions. The conservative nature of spring and gravitational forces
?Ilows. the use of energy conservation. The potential energy of the spring
orce is

Viz) = - /Ox(—kz')d:c' = Lka? (2.115

where we have chosen z;, = 0. Equation (1.47) of the archery example is
a special case of (2.11) with this potential energy for z < 0. The total
energy of an oscillator can be calculated from (2.11) using the solutions
for z and v from (1.64) and (1.66). We find

E = jmv? + Lka? = m[~wa sin(wt + oz)}z + tk[a cos(wt + oz)]z (2.12)
which simplifies to
E = lka? (2.13)

where we have used w? = k/m. The energy is proportional to the square
of the maximum displacement a, which is called the amplitude. At the
turning points of the motion, ¢ = +a, the energy is entirely potential
energy. At z = 0, the kinetic energy is greatest; see Fig. 2-1.

2.2 Gravitational Escape _

The gravitational potential energy due to the earth’s attraction on a mass
m at a distance # > Rg from the center of the earth is

V(e) = —/x (—Gﬂ]‘/I—E> do! = —G™Me (2.14)

o] zlz X

We have chosen «, so that the potential energy vanishes at infinite dis-
tance. We may express the gravitational constant G in terms of the




40 Chapter 2 ENERGY CONSERVATION

Energy

FIGURE 2-1. Potential and kinetic energies for motion under the spring force.

gravitational acceleration on the surface of the earth using (1.7,

GMy = gF% (2.15)

to obtain
mg R}, 2.16
V((E):—T, z > Rg ( )

We can use (2.16) in (2.9) to calculate the minimum velocity needed by
a rocket at the earth’s surface to go to @ = oo, that is, to “to escape
from the earth’s gravitational attraction” (see Fig. 2-2). From (2.9) the
velocity at some position z is

v(z) =+ % (E+ m—gf-ZE—) (2.17)

For the velocity to be always teal as @ increases to co, F > 0 is required.
The minimum velocity for escape from the earth’s surface is consequently
obtained by putting E =0, ¢ = Rg in (2.17), yielding

vésc =29 Rg

= /2(9.8)(6.371 x 10°) m/s (2.18)

=11.2 km/s (40,200 km/h)

2.3  Small Oscillations 41

The escape velocity is independent of the mass of the rocket. To get to
the moon, a spacecraft launched from the earth needs a velocity nearly
equal to the escape velocity.

FIGURE 2-2. Gravitational potential energy due to the earth and the minimum
kinetic energy Kesc needed for escape from the earth’s gravitational attraction.

2.3 Small Oscillations

For a general potential energy the velocity can be calculated from (2.9)
to be

o(e) = + %[E —V(2)] (2.19)

This expression determines only the magnitude of the velocity. The sign
depends on the previous history of the motion. Since the velocity must
be real, the accessible region is

V@) <FE (2.20)

The positions at which V(z) = E are turning points, where the velocity
goes through zero and changes sign, i.e., the particle comes to rest and
reverses its direction of motion. The qualitative nature of the motion .of
a particle can be described using (2.19); see Fig. 2-3.

For the potential energy sketched in Fig. 2-4, at the total energy
indicated by the dashed horizontal line there are three turning points,
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FIGURE 2-3. Behavior of a) the potential energy V(z), b) the velocity v(z), c) the
velocity v(t), and d) the position z(t), near a turning point x of the mOthl'l.' We
illustrate here the case of a particle initially moving with a velocity in the positive

direction.

z1, €3, 3. The regions 0 < ¢ < z) and 32 < & < 23 are forbidden by
(2.20). The motion z(t) of a particle in the region z; < & < z3 will be
oscillatory, i.e., the particle will move back and forth between a; and 3.
The sign of the velocity in this region changes at the turning points as
in (2.19). Finally, a particle approaching z3 from infinity will slow down,
reverse its motion at z = z3, and go back out toward infinity.

The motion of a particle in the potential valley, z; < z < 2y, Is
particularly simple if the maximum displacements from the minimum
potential energy at & = &, are small. In such a case, we can approximate
the potential by a few terms of a series expansion about & = z:

R L R o =l JS

e

(2.21)
The derivative dV/dz vanishes at a minimum. Since the second derivative
of V() is positive at a minimum of V(z), a particle at z = w. is in
stable equilibrium, so for small displacements the potential energy can
be approximated by

~ ! _ ' (2.22)

(2.23)
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Energy —»

Allowed

FIGURE 2-4. Allowed and forbidden regions for motion of a particle with energy E
for a potential energy V(z).

The constant term V(z.) can be dropped since it has no consequences for
the physical motion. If we make a change of variable to the displacement
from equilibrium, we see that the potential energy in (2.22) is that of
a simple harmonic oscillator, (2.11), with z replaced by = — z,. Small
oscillations in any system can be approximately treated in terms of simple
harmonic motion. The expansion about a potential-energy minimum as in
(2.22) also provides justification for Hooke’s law on the springlike elastic
deformation in solids.

In the case discussed above, the effective spring constant k was posi-
tive and z. was a stable equilibrium point. If instead, V (z.) were a local

d dz?
Te Te
would be negative. Since the effective spring constant & would be neg-
ative under a small displacement from z., the force would be directed

away from z.. In this instance z. is called an unstable equilibrium point.

maximum, F(z.) would still vanish since %} = 0, but then £¥

As an illustration, we find an approximate solution for the motion of
a particle of mass m in the potential energy

2 2
; -g°  h
V(z) = - + ol (2.24)
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At the equilibrium position,

dv (z) g% 2h%
= —=~-— =0 2.25
[ dz L_Z T2 ozl (2:25)
which gives
2R*
Te = ‘52— (226)
From (2.23) the spring constant for small oscillations about z is
2V (z) —2¢*  6R?
=== = = 2.27
k [ dz? | .o, TS mt (2.27)
or upon substitution from (2.26),
8
g
=2 2.28
k Shs ( )

which is positive so that z, is a point of stable equilibrium. The approx-
imate solution to the equation of motion from (2.28), (1.62) and (1.64)

18 0B wn[(E ) e

where a and « are arbitrary constants to be determined from the initial
conditions.

2.4 Three-Dimensional Motion: Vector Notation

In three dimensions the position of a particle of mass m can be specified
by its cartesian coordinates (z,y,z). Newton’s second law can then be
stated as the three equations

mij = F, (2.30)

where (F, F,, F,) are called the x,y,z components of the force of the
particle. If one chooses to use a different cartesian coordinate system,
which is translated and rotated with respect to the original system, the
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equations of motion must have the same form. In the new coordinate
system the equations of motion are

mi' = Fp
mij = Fy (2.31)
ms = F,

where (z',y’, z') are the coordinates of the particle in the new coordinate
frame. Each of (2.31) is a linear combination of (2.30). As an example,
suppose the new coordinate system has the same origin as the original
system but is rotated by an angle ¢ around the z axis, as illustrated in
Fig. 2-5. The coordinates of the particle in the two frames are related by

' =z cosd+ysing
y' =—zsing+ycos¢ (2.32)

ZlIZ

By time-differentiating, we see that analogous relations hold for velocities
and accelerations; e.g.,

=Zcosd+ §sing
= —Zsing + jcosd (2.33)

3!
-
Y
3 =3

il

Substituting (2.30) into (2.33), we obtain

mi' = Fycos¢ + Fysin ¢
mj' = ~Fysin ¢+ F,cos ¢ (2.34)

m3.=F,

When we identify

Fp = Fpcos¢p+ Fysing

Fy = —Fysin¢ 4 Fycos ¢ (2.35)

Fz’ = Fz
the set of all three new equations is equivalent to the old set; the new
equations are just linear combinations of the old equations. For instance,
mé' = Fp 18 just cos ¢ times the equation m# = F, plus sin ¢ times the
equation mj = F,. Notice that Fy, Fy, F, are related to Fy, F,, F; in
the same way as z', 3y, 2’ are related to z,¥, 2 [(2.32)] .
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FIGURE 2-5. Two coordinate systems related by a rotation by an angle ¢ about the
z axis.

To symbolize the above state of affairs and at the same time realize a
great simplification in notation, we introduce the concept of a vector. A
vector is a set of three quantities (in a three-dimensional coordinate sys-
tem) whose components in differently oriented (i.e., rotated) coordinate
systems are related in the same way as the set of coordinates (z,, 2).
Symbolically, we denote a vector with components (ag, ay,a.) by a. Ex-
amples of vectors which we have already encountered are the ‘position
vector r = (z,y, 2), the velocity vector v = F = (&, 4, 2), the acceleration
vector ¥ = (%,#,%), and the force vector F = (Fy, Fy, F;). The basic
idea of a vector is that it is a quantity with components that change in a
specific way when the coordinate system is changed [e.g., (2.32)].
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In vector notation Newton’s second law can be written as a single
equation

mi=TF (2.36)

This is shorthand for the set of (2.30) or (2.31). An advantage of vector
notation is that no specific reference frame is necessary in this statement
of the laws of motion. Vector notation is also often useful in manipulation
and solving the equations of motion.

The distance of a point (z,y,z) from the origin of the coordinate
system is y/2? 4+ y% + z2. This distance is independent of the rotational

orientation of the coordinate system,

\/zl2 4yt 422 = \/xz +y? + 22 (2.37)

as can easily be checked for the transformation in (2.32). The above
quantity is called the length, or magnitude, of r and is denoted by

rl=r=+22+y>+ 22 (2.38)

For a general vector a = (ag, ay, a,), the length, or magnitude, is similarly

defined as
lal = a = 4/a.% + a,% + a.? (2.39)

Since by the definition of a vector given above the components of a trans-
form under rotations of the coordinate system in the same way as the
components of r, the length of a is independent of the orientation of the
coordinate frame. A quantity, such as |a}, that is independent of frame
orientation is called a scalar, to distinguish it from a quantity such as F,
which is the component of a vector, and therefore is different in different
cartesian coordinate systems [see (2.35)].

If vectors are multiplied by scalars and added together by the rule
aa+ Ob = (aay, + by, aa, + By, aa, + ,Bb;) (2.40)

the resulting quantity is again a vector because its components transform
under coordinate-system rotations according to the definition of a vector.
Since any linear combination of vectors is a vector, many new vectors
can be generated from the position vector r. For instance, the relative
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coordinate of two particles r9—r; = (22 — 21, Y2 — Y1, 22— 21) Is a vector,
as is the change of coordinate of a particle between two times:

Ar = r(t+At) —r(t) = [z(t+At) —z(t), y(t-+AL) —y(t), z(t+At)—2(t)]
(2.41)
It follows that the velocity,
Ar

v=r= Al?BO AL (2.42)

and the acceleration,

azi= pm YEHAY -V

At30 At (2.43)

are vectors. We note that all vectors which are constructed from the
difference of two position vectors (such as rg—ry, Ar, ¥, ¥) are unchanged
by a shift in origin of the coordinate frame. Under a change in origin, all
position vectors r are replaced by r’ = r+s, where s is a constant vector.
It follows that the vectors formed from differences of two position vectors
are independent of s. Since the acceleration is unchanged by a shift in
origin, the force vector must also share this property in order for (2.36)
to hold in translated frames. The position vector r is the only vector
which depends upon the origin of the coordinate system, and therefore is
sometimes said not to be a true vector.

The geometrical representation of a vector as a directed line segment,
or “arrow? is a powerful intuitive tool. We represent the position vector
r = (z, y, 2) by an arrow drawn from the origin to the point (z,y, 2), as

" illustrated in Fig. 2-6. The length of r is then just the length of the arrow.
The components of r are the coordinates of the orthogonal projections
of the arrow’s point onto the coordinate axes. We can also represent an
arbitrary vector a by an arrow, since under rotations of the coordinate
frame the components of a transform the same way as the components of
r. The length of the arrow is proportional to the magnitude of the vector,
and the projections of the arrow on the coordinate axes are proportional
to the components of the vector, as illustrated in Fig. 2-7. The location
of the arrow is arbitrary (so long as the arrow represents a “true” vector,

not the position vector) and may be chosen for convenience. For instance,
arrows representing the velocity, acceleration, or force on a particle may
be attached to the point representing the position of the particle. The
addition of vectors is represented by the head-to-tail construction illus-
trated in Fig. 2-8. '

2.4 Three-Dimensional Motion:, Vector Notation 49

/ A
// // I
/ 7 :
/ / |
fo—p———————— |
} |l‘|=\/x2+y2+22 I |
| \ ]
| f ! f
I8 T
[ } y
| X¥ ¥ | /-
| [
| | /x
| |/
| 1/
_____________ v

FIGURE 2-6. Position vector r and coordinate-system unit vectors X, ¥, 2.
The dot product of two vectors is defined as
a-b=agby +ayby+ asbh, (2.44)

The dot product is a scalar (i.e., independent of the frame orientation),
as we can readily demonstrate from the identity

a b =uazb,+ayb,+ab, = %[(%_*_bz)z —al -2 (ay-i—by)z

-} = b+ (a4 5.)" — 8]
7 (Jla+b* = Jaf* — |b[*)

_ (2.45)
Since the vector magnitudes |a|, [b|, a4 b} are scalars, it follows that
the dot product is a scalar. From the defining (2.44), we further observe
that

a-a=|al’ = a

a-b=b-a (2.46)
(a+b)-e=a-c+b-c
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X

FIGURE 2-7. Arrow representation of an arbitrary vector a.

The magnitude of the vector a+ b is given in terms of the dot product
a-b by

|a—|—b|2:(a—(—b)-(a—l—b):a2+b2+2a~b (2.47)
Furthermore, inasmuch as the vectors a, b, and a4+ b form a triangle as

illustrated in Fig. 2-8, the opposite side |a + b| of the triangle is related
by trigonometry to the adjacent sides |a] and |b| by

la+ b =a® + B> + 2abcosd (2.48)

where # is the angle between the arrows representing a and b. Equating
the above two formulas for ja + b|?, we deduce the following, result for
the dot product:

a-b=abcosh (2.49)

Thus the dot product represents the product of the length of one vector
times the orthogonal projection of the other vector on it, as indicated in

FIGURE 2-9. Geometrical illustration of the dot product.
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by,
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|
ay I
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FIGURE 2-8. Head-to-tail construction of the addition of two vectors a and b. (For
convenience of illustration the z, y-coordinate axes are taken to lie in the plane defined
by a and b.)

Fig. 229. If a-b = 0, even though a # 0 and b # 0, the angle between
the vectors is 90° and the vectors are said to be orthogonal.

or

I A |blcosé

a




52 Chapter 2 ENERGY CONSERVATION

It is useful to define a set of coordinate-axis vectors X, ¥, 2 of unit’
length |&| = |91 = |2] = 1 which are directed along the z,y, 7 axes of the
coordinate system, as in Fig. 2-6. The components of these orthogonal
unit vectors are

%= (1, 0, 0)
% =(0,0,1)

X R=V-v=%- -7 1
Xex=yy=zgoE= (2.51)
X y=%2=9-2=0

In a given frame a general vector a can be represented in terms of the
unit vectors of the frame as

a=a,X+a,§+ a2 (2.52)

The sum of two vectors can be expressed as

a+b=(a;+bo)R+ (ay +by)§ + (az +b.)2 (2:53)

Another type of product of two vectors of considerable importance
is the cross product, written a X b. The cross product has three compo-
nents, defined by
(axb), =ayb, — asb,
(ax b)y = a,b; — agh, (2.54)
(ax b), = azby —ayb,

Thus, in terms of the unit vectors of the coordinate system, the cross

product is
ax b= (aybz - azby)i(+ (azbw - azbz)y + (arby - a’ybf)i (2'55)

Alternatively, the definition can be symbolically written as the determi-

nant .
X vV z
axb=det| a; ay a, (2.56)
by b, b

From the symmetry properties of the determinant or directly from (2.55),
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we note that

axb=-bxa (2.57)

The cross product of a vector with itself vanishes:
axa=0 (2.58)

The cross product transforms like an ordinary vector under rotations of
the coordinate system. For instance, consider the transformation equa-
tion (2.32). The vectors a and b transform in the same way as the
position vector r; that is,

Gy = azcos P -+ a,sin ¢ brr:bxcosqﬁ—l—bysi}l(ﬁ
Gy = —agsin ¢+ a,cos ¢ by = —bysin ¢+ b, cos¢ (2.59)

Azt = Gy bzl = b
The components of a X b in the rotated frame are then found to be

(ax b)g = (ayby — auby)
= (ayb, ~ a,by) cos ¢ + (a,b, — ab,)sin ¢
(ax b)gcosd + (ax b),sin¢ (2.60)
X b)y = ~(ax b)zsin ¢+ (a x b),cos ¢
x b) = (axb),

I

which corresponds to the transformation of (z, y, z) in (2.32). For this
reason the cross product is sometimes called the vector product. How-
ever, the cross product behaves differently from ordinary vectors under
inversion of the coordinate axes (that is, ¢/ = —z, y/ = ~y, 2/ = —2).

We have
r'=-r a'=-a (axb) =(axb) (2.61)

A three-component quantity such as (a x b), which behaves like a vector
under rotation of the coordinate axes but does not change sign under
inversion, is called an azial vector.
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The dot product of the vector a with a X b is zero, as we show by
use of (2.44) and (2.54),
a-(axb)=agz(ayb, — asby) + ay(aby — agh,) + a.(azb, — ayby)
=0
(2.62)
Equivalently

b-{axb)=0 (2.63)

since a and b are arbitrary vectors, and we can rename a <+ b. Thus

the cross-product vector a X b is orthogonal to the vectors a and b. The,

arrow representing a X b must therefore be perpendicular to the plane
defined by the arrows of a and b. By the definition in (2.55), the direction
of a x b is the direction in which a right-hand screw moves when it turns
from a toward b, as indicated in Fig. 2-10. The square of the magnitude
of the cross product
la x b|* = (ayb, — azby)2 + (abs — azb,)? + (agb, ~ aybgc)2 (2.64)
can be rewritten
la x b|? = (ai + az + ai)(bi + bz + bz) — (azbs + ayby + azbz)2
912 9 (2.65)
=a’b —|a-b|

Since a, b and a-b are scalars under rotations, the length of a x b is also
a scalar. By substitution of (2.49), we obtain

|]a x b|* = a®b*(1 — cos? §) (2.66)

and so
la X b} = ab|sin | (2.67)
where 8 is the angle between the arrows representing a and b. The length

of a X b is just the area of the parallelogram, with the arrows a and b as
sides.

The cross products of the unit vectors %, ¥, 2 of (2.50) are found
[from (2.55)] to be

XxXy=2 §X&=-2 Exx=0
yxz=% ZXy=-% yxy=0 (2.68)
ZXX=F Xxz=-§ Z2x2=0

A new kind of scalar can be formed by taking the dot product of a
vector a with an axial vector (b x ¢). This scalar, a - (b X ¢) is called the
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Parallelogram area = |a X b |

FIGURE 2-10. Geometrical illustration of the cross product.

triple product. From (2.44) and (2.56) the triple product can be written
as a determinant of the vector components:
ay Gy a,
a-(bxc)=det| b, b, b, (2.69)

Cz Cy €y
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The symmetry properties of the determinant under interchange of rows
imply that
a-(bxec)=c-(axb)=b-(cxa) (2.70)
This interchangeability of the dot and cross products,
a-(bxec)=(axb)-c (2.71)

is a useful property of vector algebra. Although the triple product is a
scalar under rotations it is called a pseudoscalar because it changes sign
under coordinate inversion.

The repeated cross product of three vectors a X (b x ¢) can be worked
out to

ax(bxc)=b(a-¢)~c{a-b) (2.72)

When the cross products are carried out in a different order, the result is '

(axb)xe=b(a-c)—a(b-c) (2.73)

A useful formula for the dot product of two cross products can be derived
from (2.73). We take the dot product of (2.73) with a vector d,

(axb)xc-d=(a-c)(b-d)~(a-d)(b-c) (2.74)

then interchange the dot and cross products on the left-hand side to
obtain

(axb)-(exd)=(a-c)(b-d)—(a -d)(b ¢ (2.75)

The components of a vector are often labeled a = (aq, a2, as), the
subscripts 1, 2, 3 denoting the z, y, z components, respectively. In this
notation the dot product of two vectors can be written as

a-b= Z aibi (276)

where the summation is over 4 = 1, 2, 3. As a convenient shorthand
notation, we shall often omit the > symbol and simply write

a-b=apb; (2.77)

where a summation over the repeated vector component index is implied.
This is known as the summation convention.
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From the components a; and b; of two vectors a and b, we can form

3% 3 = 9 products a;b;. We denote these nine components by the symbol
TZ‘]'I

Ti]' = aib]' (278)

In vector notation we regard the nine quantities as components of
T = ab (2.79)

with no dot or cross between the vectors a and b. This is sometimes
called the direct or outer product of the vectors a and b. Any such quan-
tity whose nine elements in one coordinate system transform to those
in a rotated coordinate system in the same way as a product of vector
components transform is called a tensor (more precisely, a tensor of sec-
ond rank). Any linear combination of tensors is also a tensor. A general
tensor can always be written as a linear combination of outer products.
The sum of the diagonal elements (¢ = j) of the tensor I = ab,

T11 4 Tag + Taz = a1b1 + azby + asbs (2.80)
is just the dot product a-b. The components of the cross product a x b

are constructed from the off-diagonal elements (i # j) of this tensor.

If we make a dot product of the tensor (ab) with a vector ¢, we get
a vector

(ab) -c=a(b-c)
c-(ab) =b(c-a) (281)

because (b - ¢) and (c - a) are scalars, and a vector multiplied by a scalar
is a vector. Hence, for a general tensor I, the dot products T - ¢ and
¢TIl are vectors. In terms of components,

T-c); = Ty

(Tc); = Tie; 0s)
(¢T); = c;Tji

with a summation over the index j implied. The most important use of
a tensor is to relate two vectors in this way. The unit tensor II, with the
property that

a-l=0I.-a=a (2.83)

for any vector a, is given in terms of unit vectors by

I =R%%+§§+ 22 (2.84)
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The components of a second-rank tensor are often written in a 3 X 3
matrix array as

Tin Tz Tis
T = T21 Tgey Tas (285)
T31 T32 T33

and a vector ¢ is represented by a column vector

C1
c=1 ¢ (2.86)
C3
or a row vector
c= (C11 €24 C3) (287)

The dot product T-c can then be worked out by matrix multiplication:

T11 T12 T13 Cc T11C1 + T12C2 + T13C3
T-ec= | Tyy Tay Tas ¢ | = | Tarcr + Tazea + Taaca
Tay T3z Tas 3 Taie1 + Tsacs + Taaca (2.8

Similarly, to evaluate ¢- T we use the row vector form of c. Tenso_r meth-
ods are important in the treatment of rigid body dynamics, as discussed
in Chapter 6.

2.5 Conservative Forces in Three Dimensions

We want to find the conditions on the force F for which energy conserva-

. . ,
tion methods apply in three dimensions. With vector notation, Newton’s
laws of motion can compactly be expressed as

d . v . 89
Z(mv) =F(r,v,1) (2.89)

The appearance of the vectors r and v in the argument of F indicates
that each component of F can depend on all the components of r and v.
[For example, F,(z, ¥y, 2, Vg, Uy, U, 1).]
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In analogy to our derivation in (2.3) to (2.9) of energy conservation

in one-dimensional motion, we take the dot product with v of both sides
of (2.89) to obtain

d
V-E(mv) =F(r,v,t)v (2.90)
or equivalently,
d(3mv-v) =F(r,v,t) - dr (2.91)
From (2.44), the dot product v - v is

v-v:v2:v§+v§+vz (2.92)

Thus the differential on the left-hand side of (2.91) is the kinetic energy
for three-dimensional motion. Integrating, we obtain the work-energy
theorem in three dimensions:
rg
AK =K, - K, = /F(r, v,t) - dr = Work (2.93)

ry

An integral of the above form is called a line integral. Using the definitions
of the dot product it can be expressed as

ra Y2

/F-dr: /Fz(r(x),v(z),t(ac))dz—i—/Fy(r(y),v(y),t(y))dy

ry Y1

- (2.94)
+ / F(r(2),v(2), t(z))dz

Z1

where in the integral over dz the line along which the integral is carried

out is described by the functions y = y(z) and z = z(z), and similarly
for the integrals over dy and dz.

As in the one-dimensional case, we define a potential energy V (r) by
the line integral
r
V)= — / F(r') - v’ (2.95)
r, .
This line integral is llustrated in Fig. 2-11. By the same reasoning as

in the one-dimensional case, a necessary condition that the potential en-
ergy is a unique function of coordinate is that the force be a function of
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coordinate only. But it is also necessary that the value of the integral in
(2.95) be independent of the integration path. Assuming this, we obtain
the energy conservation condition as before:

B = %mﬁ + V(r) = constant (2.96)

F.dr =F({')cos 8 (r') dr'

F {ntegration path

FIGURE 2-11. Geometrical interpretation of the line integral f: F(r')-dr', where r'

is the integration variable and rs, r are the limits of integration. The projection angle
6§ generally varies along the path.

Before proceeding further, we investigate the condition on the force
for the above line integral to be path-independent. To find this condition
on F, we first consider integration paths which include two adjacent sides
of an infinitesimal rectangle in the y, z plane, as shown in Fig. 2-12. We
locate a corner of the rectangle at the point (ys,2s) and calculate V(r)
at the diagonal corner (ys + dy, z,+ dz) by two different paths:

Path I:  (ys, 2s) = (¥sy 2s +d2) = (ys + dy, 25 +d2)
Path IT:  (ys, 25) = (ys + 4y, 2z5) = (ys + dy, 25+ d2)
The value of V(r) calculated from Path Iis

V(r) - _Fz(msa Ys, Zs)dz - Fy(zs? Ysy Zs + dz)dy (297)
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{ys, 2g+dz) I

*~(yg+dy, zg+dz)

14 ALL

(ys,zg) T {ys+dy, z.)

FIGURE 2—12.‘ Integration path in the y,z plane including two alternative routes
around an infinitesimal rectangle.

The corresponding result from Path II is

V() = —Fy(zs, ys, 25)dy — F. (x5, ys + dy, 2z,)dz (2.98)

Demanding that the same V (r) results from both integration paths yields
by subtraction

[Fy(zm Ys, Zs+dz) - Fy(zs: Yss Zs)]dy

=[Fe(@s,ys+dy, 2,) ~ Fu(y, 4o, 25)]dz = 0 (2.99)

’I.‘he quantities in brackets are immediately recognizable in terms of par-
tial derivatives as

OF,
[W(zs» Yss ZS)J dz
and
OF,
[a—y(xs, Yss zs)J dy
Canceling the factor dy dz in (2.99) gives the condition,

0F, 0F, _
7oy =" (2.100)

. for the force F to be conservative. This condition must hold for any choice

of (z, Ys: 25) on the curve. To derive the above condition on an energy-
conserving force, we have used an integration path in the Y,z plane. If
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instead we integrate along a differential rectangle in the 2,y plane, we
get

oF, OF,
= _ 9y 4 2.101
dy dz ( )

and similarly for a rectangle in the z, z plane.

At this point it is convenient to introduce the vector differentiation
operator V, defined as

a a 0
=X—+y—+z2— 2.102
V_x3m+y8y+zaz ( )

This is called the del operator, also known as the gradient or grad. In
vector notation the requirement in (2.100) can then be written

(VxF)e=0 (2.103)

where VxF is called the curl of F, sometimes written curl F. To verify
this assertion we recall the cross-product definition from (2.54):

OF, 0F,

TR (2.104)

(V% F)y=V,F,—V,F,=

In general, the requirement for a force to be conservative (i.e., derivable
from a path-independent potential) is

VXF =0 (2.105)

where from (2.55) with a = V and b = F we obtain the complete expan-
sion for V x F in cartesian coordinates:

o0 (O 08 (06, 0%),
VXF:(@"E)”(@Z 52 )Y\ oz ~ By

(2.106)
To summarize the preceding discussion, we have shown that if V X F.: 0
then frrsF(r') . dr' is path-independent and there is therefore a unique
potential energy.
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Conversely, if the potential-energy function V(r) exists, then from
(2.95) we can express F(r) in terms of it. The differential of (2.95) reads

dV(r)= —F(r) - dr (2.107)
Comparing the right-hand side with the total differential dV°

v oV v
dv = &—dz—l—%dyﬁ—gdz- (VV).-dr (2.108)

F(r) = -VV(r) (2.109)

In component form we can write

IV (r
Fk(l‘) = -VkV(I‘) = — Bm(k) (2.110)
Forming the curl of this F, we find
VXF=-VXxVV(r)=0 (2.111)

since VX V = 0. Hence, there is a potential energy if and only if
V xF=0.

Among the most important physical examples of conservative forces
are central forces. The magnitude of a central force at each point de-
pends only on the distance from a certain point, the force center, and the
direction of the force is radial to the force center, i.e., towards or away
from it. The gravitational and Coulomb forces are both of this type. If

the force center is at the origin of the coordinate system, the force field
has the form

F(r) = F(r)# (2.112)

where £ = r/r. If F(r) < 0 the force is towards the center and is called
attractive (at that value of r), while if F(r) > 0 the force is repulsive.
More generally, the center can be at any point ro and the expression for
the force looks like (2.112) with r replaced by r — ro (and r by |r — ry]).
The superposition of several such central forces with arbitrary centers is
also conservative. ‘
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To prove explicitly that central forces are conservative, it suffices to
take the center at the origin, (2.112). Using cartesian components
Fo=2F(@r), F,= %F(T), F, = ;F(r) (2.113)
r
we construct dV according to (2.107)

dV = —(Fpdz + Fydy + F.dz)

(2.114)
= —M (zdz +ydy + zdz) = —F(r)dr
r
In the last step we have used the differential of
2= 4yt 422 (2.115)

Since the right-hand side of (2.114) depends ouly on the radial coordinate
7 {not on 6§ or ), its integral is path-independent. This establishes the
conservative nature of a central force; equivalently we could have directly
shown that V. x F = 0.

From (2.114) we obtain the central potential energy from the force
law as

Vir)=- /rF(r’)dr' (2.116)

The above formula could have been found directly from the line integral
(2.95). For instance, from the gravitational force law

GMm

F=-"—

£ (2.117)
-

the gravitational potential energy due to a mass M at r=0is

V()= - / ) (—G]T\/[Tmi") - dr! (2.118)

o]

and with dr’ = #'dr' + 8'r'df’ we have #' - dr' = dr' and therefore
TGM
Vir)= / GMm 4y GMm (2.119)

2 r

Only the magnitude of the velocity enters into the three dimensional
energy conservation law and hence the launch direction of a rocket is
arbitrary as long as the rocket does not hit the earth. If v > Vese, the
spacecraft will not return.
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2.6 Motion in a Plane

For the analysis of the mechanical motion of some systems cartesian co-
ordinates are not the most convenient choice. For example, some kinds
of motion in a plane can frequently be described more simply in terms of
polar coordinates (r,#) than (z,y). Since Newton’s equations of motion
do not have the same form in polar coordinates, we cannot just substitute
7 and @ for & and § in Newton’s equations; Newton’s equations have the
same form only in different cartesian coordinate systems. Therefore we

must do some algebra to express Newton’s equations in terms of polar
coordinates.

In cartesian coordinates we have
mi = F, mi = F, (2.120)
which is written in vector form as
m¥=TF (2.121)
with
r= %z +$y and F=%F,+3F, (2.122)
In polar coordinates the vector r is given by
r=3%rcosf +Jrsinf = tr (2.123)

The unit vectors % and § in the cartesian system do not change with
time. The differential dr is thus

dr = %(cos fdr — rsin §d§) + § (sin §dr -+ r cos 8d6)
= (%X cosf + ¥ sin f)dr + (—%sin b 4 § cos 8)rdd (2.124)
= #dr + Ordf

where in the last form we have defined the unit vectors # and & to be
along the direction of dr when only r or 4, respectively, are increased:

f=%Xcosf+ $sind

0= ~%Xsin @+ § cos b (2.125)
[see Fig. 2-13 for ahgetzmetrical representation.] By direct calculation it
is seen that # -+ =6-0 = 1.
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2
-

X

FIGURE 2-13. Polar variables and unit vectors for motion in a plane.
Dividing dr by dt we obtain
v=i=#r+0rf (2.126)
Differentiating v with respect to time, we find
= i 4 BF 4 Ord 4 (Br + 07)6 (2.127)
The derivatives of § and 8 are found from (2.125) to be

b6 (2.128)

Substituting these results for # and @ into the expressions for v and ¥

above, we arrive at

a=v==8F—r?) 4+ 0(rd 4+ 279) ’

In polar coordinates we write F = £ F +(§F9, so Newton’s law mr = F is

. A2\
m(i' = r6") = Fy (2.130)
m(ré + 270) = Fy
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Notice the difference between the left-hand side of these equations and the
cartesian equations (2.30). In other coordinate systems the structure of
the equations in motion can be even more complicated, and the derivation
of results similar to (2.130) correspondingly more difficult. In the next
chapter we will see that the derivation of the equations of motion is
greatly simplified using Lagrange’s method.

2.7 Simple Pendulum

The plane pendulum is a familiar system of historical importance whose
motion cannot be described in terms of elementary functions. Never-
theless, we can easily find the equations of motion and an approximate
solution for small oscillations.

The simple plane pendulum consists of a point mass m at the end of a
weightless rod or string of constant length £ which swings back and forth
in a vertical plane. We take the origin of the coordinate system at the
pivot point, with « positive down and y positive to the right. The two
forces acting upon the mass m are gravity and the tension in the rod T,
as shown in Fig. 2-14. If T, is positive, the force on m is radially inward.
In terms of polar coordinates the force components are

F. =mgcosf - T,
. (2.131)
Fy=—mgsind

Newton’s law in polar coordinates, (2.130), with r = £, together with the
above forces gives

~mlf? = mgcosf — T, (2.132)
méd = ~mgsin 6 (2.133)

The first equation can be ignored if we are not interested in the value of
T, (t), but only in the motion 6(t). After solving the second equation for
6(t), the first equation then gives T,(6). The second equation, (2.133),
can be written as

f+wising =0 (2.134)

where wy = 4/g/¢.
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mg sin 6

FIGURE 2-14. Simple plane pendulum.

For small oscillations, |§] < 1, we can approximate sin 6 ~ 6, with 6
in radians, to obtain
f+wio=0 (2.135)
This is readily recognizable as simple harmonic motion in # with angular
frequency wo [see (1.61) through (1.64)]. The general solution of (2.135)
is
6 = acos(wet + @) (2.136)

where the arbitrary constants a and « are to be fixed by the initial con-
ditions. The period of small oscillations,

P £ (2.137)
wo g
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is independent of a and a. This approximately amplitude-independent
feature of the period of motion, called isochronism, is incorporated in the
pendulum clock.

To solve for the motion exactly, without a small displacement approx-
imation, we can use the energy method. Using the chain rule,

5 dbdo _6df 4 (6
CwaTw D (7) (2.135)

we integrate (2.134)

é 32 8
/ d <i> - _2/ sin 86 (2.139)
0 2 ¢ 8o

where 6 is the angle at which § = 0 (fp is the maximum angle of the
motion). The evaluation of the integrals gives

; 2
9’ = Tg(cos 0 — cos 0p) (2.140)

If we multiply by %mfz, we can recognize this as the statement of energy
conservation.

Before finding the motion, we make the observation that we can use
(2.140) to eliminate ¢ from the formula (2.132) for the tension

T, =mgcosf + meg? (2.141)

to get
~ T, =3mgcos8 — 2mgcosby (2.142)

Equation (2.140) gives the angular velocity to be

L Ry s
%"i 7 cosf — cos gy (2.143)

This differential equation is separable; it can be written as

*ﬂ——:i,ﬂ—gdt (2.144)
v/cos b — cos by 14

and integrated

[2g /t , /9 de'
— dt' = — — 2.145
£ Jy g, Vcos 8" — cos ( )

The minus sign is required if 8, is positive (noting that < 6y and the 6
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integral is negative). This integral can be cast into a standard form by
substitution of the identity

9
cosf =1 — 2sin’ 5 ; (2.146)

in (2.145)

9, ¢ de' .
2\/;_ /6 \/sin? (8o /2) — sin(6'/2) (2140

If we now introduce a new variable

_ sin(6'/2)
sin(60/2)

sin 8/ (2.148)

the solution in (2.147) becomes

/2 dﬂ/
I4= (2.149)
\/; /[3 \/1 — sin%(6y/2) sin® B’

Setting 6 = 0, hence 3 = 0, gives a quarter period, so the period is given

by
e ’lr/2 dﬂ
=44 - (2.150)
’ \/;/0 \/17— sin?(8y/2) sin’ 8

In terms of the simple harmonic period 15 = 27r\/%,

(2.151)

T2 /“/2 dp
o T \/l—sin2%*lsin2ﬁ

This integral is known as the complete elliptic integral of the first kind. It
cannot be evaluated in closed form, but numerical evaluations are avail-
able in tabular form or from computer software. To find an approxima-
tion to the period for small angular displacements, the integrand can be
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expanded by power series and then integrated term by term
2 [/ 1 9
:—/ dﬂ{l—l——sin2<—0)sin2ﬂ+~}
m Jo 2 2
2 1 0 i /2
2 {5+_Sin2 <_0 (g_ sin 25) +} (2.152)
T 4 2 2

0
[1+%sin2 (%0)]+

Again using the approximation of 6y small and sin®(6/2) ~ 63 /4, we find

3=
It

Il

0
T=T7p <1+%+---> (2.153)

The period is increased over the simple harmonic period. The fractional
lengthening of the period is

T—To _ 0(2)
To —16

(2.154)

For a 30° maximal displacement, the fractional lengthening of the period

T—7 1 [ 30°)?
=— =0.017 21
o 16 (57.30) (2.155)

is less than 2 percent. For a pendulum clock of period 1s and 8, = 5°,
the amplitude #y must be regulated to £3° if the clock is to be accurate
to Imin/day. If the clock is desired to have an accuracy of 1s/day, 6,
must be regulated to 0.06 degrees.

2.8 Coupled Harmonic Oscillators

In physical problems that can be approximated by several small oscilla-
tions there is usually a coupling between the oscillators. As a specific
example, we investigate the motion of two simple pendulums whose bobs
are connected by a spring, as indicated in Fig. 2-15.
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mg

FIGURE 2-15. Two simple pendulums coupled by a spring.

For small angular displacements the equation of motion of a single
isolated pendulum is given by (2.135).

§4uth=0 (2156)

This equation can be alternatively expressed in terms of the z and y
coordinates of the pendulum bob. For § <« 1, we have

z=2Lcosf =~ ¢{ (2.157)
y=4~{sinf = (0

and (2.135) becomes

In this approximation the pendulum executes simple harmonic motion
in the horizontal direction. The pendulum spring system of Fig. 2-15 is
therefore equivalent for small displacements to the three-spring syster'n of
Fig. 2-16, with spring constants k = mw? = mg/{ for the outer springs
and « for the inner spring.
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FIGURE 2-16. Equivalent three-spring system for the coupled-pendulum system of
Fig. 2-15.

The equations of motion can be obtained by considering the forces
‘on each mass separately. First fix 4, at y, = 0 and imagine a posi-
tive y; displacement. The restoring forces on m; are —ky;, due to the
extension of left spring and —ky; due to the compression of the right
spring. Now include a positive y, displacement and consider its effect on
my. The stretching of the middle spring gives a positive force Ky on my.
Combining these forces the equation of motion for my is

mijy = —kyr — Ky1 + Ky, (2.159)

Note that the restoring force due to the middle spring depends only on

the difference y, — . A similar exercise applied to the right-hand mass
yields

mijy = ~kyy — kyz + &y (2.160)

The differential equations of motion for the system are thus

miy = —ky1 — w{y1 — y2) (2.161)
mils = —kyz + &(y1 — y2) '

To solve these differential equations, we look for linear combinations
of y1 and y; that yield differential equations of simple harmonic form.
Later in this Section we discuss the solution to coupled equations in
some generality. In the present case it suffices to take the sum and the
difference of the equations to uncouple them. If we add the equations,
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we find

m(fy + ) = —k(y +y2) (2.162)

and if we subtract
m(ih — i) = —(k +26)(y1 — v2) (2.163)

The solutions of these two uncoupled equations are found directly from
(1.64) to be

1 + Yz = ag cos(wit + o)

2.164
Y1 — 42 = a_ cos(w_t + a_) ( )
where the angular frequencies are
_JE_ e
“EVR TV
(2.165)

w_:\/k+25:\/g+2_n
m L m

The combinations. {y; + y2) and (y; — y2) oscillate independently, sim-
ple harmonically, and are called the normal modes. The motion of the
pendulum bobs is in general a superposition of the two normal modes of
vibration and from (2.164) we have

1 = raq cos(wit + ay) + Ja—cos(w-t+a-)

1

2.166
Y2 = tay cos(wit +ay) — ga_cos(w_t+ o) ( )

The four constants ay, a—, @y, and a_ in (2.166) are to be deter-
mined by the initial conditions. If only the amplitude of one normal mode
is excited, that is, only a4 or a_ is non-zero, the bobs swing in phase
with frequency wy or out of phase with frequency w—, as illustrated in
Fig. 2-17. We note that w, does not depend on & since the middle spring
is never stretched.

In the weak coupling limit « < k, the coupling between the two
pendulums causes a gradual interchange of energy between the two os-
cillators. To demonstrate this we suppose that both bobs are initially at
rest and the motion of the system is started by displacing the first bob
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FIGURE 2-17. Normal modes for the coupled-pendulum system.

by a distance a. When these initial conditions are imposed on (2.166),
we obtain
y1 = —(coswyt + cosw._t)
(2.167)

Yo =

(IR~ CY I

(coswyt — cosw_t)

From trigonometric identities for the sum and difference of cosine func-
tions, (2.167) can be written as

Y1 = acos(w" ;w+ t) cos<w_ ;w+t)

(2.168)
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At time t = 7/(w_ — wy), the first pendulum has come to rest and
all the energy has been transferred through the coupling to the second
oscillator. For the weak coupling limit, w_ —w} < wy , the last factors in
(2.168) are slowly varying functions of time. These slowly varying factors
constitute an envelope for the rapidly oscillating sinusoidal factors of
argument [(w— +wy)/2]t, as illustrated in Fig. 2-18. This phenomenon
is known as beats. The beat frequency is (w- —wy}/2, and the period of
the envelope of the amplitude is 27/(w_ — w4.).
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FIGURE 2-18. Beats and envelope exhibited by the coordinates of two weakly coupled
oscillators.

We solved the coupled differential equations (2.161) by adding and
subtracting to obtain uncoupled equations. We now discuss an alterna-
tive method of solution which can be more straightforwardly genera.hzed
to more complex coupled systems with different masses and spring con-
stants. Denoting

(2.169)

il

3=

k
w(z) p and A?

2.8 Coupled Harmonic Oscillators (s

the equations (2.161) become
1+ (Wi + A%y - A%y =0
ii2 + (W + A%y — Ay =0

This coupled set of differential equations is homogeneous and linear with
constant coefficients. It has complex solutions of the form

Y1 = Clezm
— Czeiwt

(2.170)

(2.171)

where C and Cj are constants that are, in general, complex. The physical
solutions are the real parts of these complex y1, y2 solutions. Substitution
of (2.171) into (2.170) gives a pair of coupled linear equations for C; and
(5 that can be written in matrix form as

—w? 4 wg + A% —A? Cq
N traiant) )70 (2.172)

For a non-trivial solution the determinant of the matrix must vanish,
giving
9 2
(—w? +wi + A% = A (2.173)
Solving the quadratic equation for w?, in this simple case by taking the
square root, we find two solutions, w2 = w+ and w? = w?, where

(2.174)

Then solving for C3/C; from (2.172) with these w? values gives
Cy/Cy=+1 for w?= wi
Cy/Cy = -1 for wP=w? (2.175)
We shall parameterize the complex constant C for solutions wy by
(C1)x = Lagei>s (2.176)

where at and a4 are real. Then the most general motion is given by the
linear superpositions

= %a+ei(w+t+a+) + %a_ei(w_t—{»a_)

Yy = %a_!_ei(w+t+a+) — %a_ei(w_t-ba_) (2177)

The general physical solution obtained by taking the real part of the
superposition is the same as (2.166). If only one mode is excited, by
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a particular choice of initial conditibns, the system will oscillate with a
single frequency—the normal mode frequency w, or w_.

BEquation (2.172) is an example of an eigenvalue problem with matrix

equation
—A? Cy 5 Ch
=w
wg + A2 Cy Cy

The eigenvalues are w? = w? and w? = w?. The vectors (gé) and
+

(2.178)

wg + A2
_A?

(g;) are known as eigenvectors. Two eigenvectors corresponding to

different eigenvalues are orthogonal, or normal. The modes of motion
corresponding to wi and w? are accordingly called normal modes.

PROBLEMS

2.1 Potential Energy

2-1. The potential energy of a mass element dm at a height z above the
earth’s surface is dV = (dm)gz. Compute the potential energy in
a pyramid of height h, square base b X b, and mass density p. The
Great Pyramid of Khufu is 147 m high and has a base of 234x234 m.
Estimate its potential energy using p = 2.5 g/cm?® for the density
of its material. If an average worker lifted 50 kg through a distance
of 1 m each minute of a 10 hr work day, estimate the person-years
of labor expended in the construction of the Great Pyramid. This
ignores friction and the considerable effort required to quarry and
transport the stone.

2({2>l‘he Turkish bow of the 15 and 16" centuries greatly outper-

formed western bows. The draw force F(z) of the Turkish bow
versus the bowstring displacement z (for z negative) is approxi-
mately represented by a quadrant of the ellipse

2 2
() (559 -
Fmax d
Calculate the work done by the bow in accelerating the arrow, tak-
ing Fpax = 360N, d = 0.7m, and arrow mass m = 34g. Assuming
that all of the work ends up as arrow kinetic energy, determine the
maximum range R of the arrow. (The actual range is about 430m.)

Compare with the range for a bow that acts like a simple spring
force with the same Fiax and d.
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2.2 Gravitational Escape

2-3. From the radius and mass ratios

R (moon)/R (earth) ~ 1/3.66
M (moon)/M (earth) ~ 1/81.6

show that the gravitational acceleration on the moon and earth are
related by

g (moon)/g (earth) ~1/6

Find the escape velocity from the surface of the moon.

?Cl/. A projectile is fired from the surface of the earth to the moon.
Neglecting the orbital motion of the moon, what is the minimum
velocity of impact on the surface of the moon? Take into account
the gravitational pull of both the moon and the earth.

2-5. An iron meteor enters the earth’s atmosphere at the escape velocity.
Compute the kinetic energy per molecule and compare with the
rough vaporization energy of 1eV/molecule.

2.3 Small Oscillations

2-6. A particle of mass m moves under the action of a force

F = —Fysinh(az) = *%

(ear _ e—bz)

where @ > 0. Sketch the potential energy, discuss the motion, and
solve for the frequency of small oscillation if there exists a point of
stability.

@A particle moves subject to the potential energy
a -z
V(z)=Vo (— + —)
z  a

where Vy and a are positive. Locate any equilibrium points, deter-
mine which are stable and obtain the frequency of small oscillations
about those points.

@ stimate the spring constant in units of eV/A2 for the hydro-
gen (H;) molecule from the potential energy curve shown below,
where r is the distance between protons. From the spring constant
and the “reduced mass” m = %mpmton, compute the vibrational
frequency v. This frequency corresponds to infrared light.
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2.4 Three Dimensional Motion: Vector Notation

2-9. Given the vectors
A=28+3y+42 B=3%+2y -2z
find
a) A=|A|and B = |B|,
b) A-B and the angle 8 between A and B,
¢) A x B and the angle 6 between A and B.

From b) and c) deduce the consistent choice of the angle 6.

2-10. A force field is given by
F, = kyzsin kzy
F, =kzzsinkzy

F, = —coskzy

a) Evaluate V X F to show that F is conservative.

b) If the reference potential energy at (z =0, y =0, z = 0) is zero,
compute the potential energy at the point (z = 1.0, y = 1.0, z =

1.0). Use any convenient path, such as along the axes.

c) Using a different path, compute the potential energy at the same

point to check path independence.
2-11. Consider the following force:

F=-K(@z-2)(%-%

a) Show that it is conservative.
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b) Find the potential energy V(r) assuming V'(0) = 0.
¢) Calculate VV(r) to verify that it gives F correctly.

2-12. For a central force F(r) = F(r)f show. directly that V x F = 0 for
r#0.

2-13. Determine whether or not the force F = r x a (where a is a constant
vector) leads to a conservative potential energy. Compute JF-dr
around a circle of radius R in the , ¥y plane centered at r = 0.

. Show that a force consisting of a superposition of N central forces
with centers at r = ry, ¥ = 1to IV, is also a conservative force.
Hint: the vy are constant vectors so V, = Vieer,. Use problem
2-12.

. Show that the V operator can be expressed in spherical coordinates
as

where (F, (}, qg) are perpendicular unit vectors in the direction of
increasing (r, 0, ¢,). (Hint: Use df = dr - V' f where dr is given
by dr = fdr + 6rdf + érsin 0d¢ and f is an arbitrary scalar func-
tion. Ezpress df in terms of partial derivatives.) Show that the V
operator in cylindrical coordinates (p, ¢, 2) is

o ¢ ]
Ve=p—+I—— 453
Pt 0o %0z

2.6 Motion in a Plane

2-16. The bob of a pendulum moves in
a horizontal circle as illustrated.
Find the angular frequency of the
circular motion in terms of the
angle ¢ and the length £ of the
string. This is known as a coni-
cal pendulum
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2.7 Simple Pendulum

2-17.

2-18.

A hemispherical thin glass goblet of radius R = 5cm will withstand
a perpendicular force of up to 2N. If a 100-g steel ball is released
from rest at the lip of the goblet and allowed to slide down the
inside, at what point on the goblet will the ball break through?
Neglect the radius of the ball. )

A mass m is attached at one end
of a massless rigid rod of length £,
and the rod is suspended at its
other end by a frictionless pivot,
as illustrated. The rod is released
from rest at an angle ap < 7/2
with the vertical. At what angle
o does the force in the rod change
from compression to tension?

. A ball of mass m is suspended by a string of length £. For what .

ranges of the total energy will the string remain taut when the ball
swings in an arc in a vertical plane? Choose the lowest point on
the arc as the reference point for the potential energy.

. A physics professor holds a bowling ball suspended as a pendulum.

The ball is initially 1.9 m above the floor, the pendulum wire is
7 m in length and the ceiling height is 7.5 m. The bowling ball has
diameter 0.15 m, mass 15 kg; the drag parameter is C'p = 0.4 and
the air density is 1 kg/m®3. The professor gently releases the ball

just in front of her nose and confidently expects that it will return’

short of its original position.

a) Estimate the work done by friction over one period, using (1.17)
for the drag coefficient. Approximate the motion by that of a
simple pendulum and use (2.140) in your calculation of this work.

b) Using the work-energy theorem, estimate the changein height
when the ball swings back to the professor and by the given ge-
ometry find how close the pendulum returns to its release point.

2.8 Coupled Harmonic Oscillators

2-21. A mass 2m is suspended from a fixed sup-

2-22.

port by a spring with spring constant 2k.
A second mass m is suspended from the
first mass by a spring of constant k. Find
the equation of motion for this coupled
system and determine the frequencies of
oscillation of normal modes. Neglect the
masses of the springs. Hint: It is easi-
est to choose the coordinates of the two
masses at their equilibrium positions.

A mass m is suspended from a support by
a spring with spring constant mw?. A sec-
ond mass m is suspended from the first by
a spring with spring constant mw2. A ver-
tical harmonic force Fycoswt is applied
to the upper mass. Find the steady-state
motion for each mass. Examine what hap-
pens when w = ws.
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