Chapter 1

ONE-DIMENSIONAL MOTION

The formulation of classical mechanics represents a giant milestone in
our intellectual and technological history, as the first mathematical ab-
straction of physical theory from empirical observation. This crowning
achievement is rightly accorded to Isaac Newton (1642-1727), who mod-
estly acknowledged that if he had seen further than others, “it is by
standing upon the shoulders of Giants.” However, the great physicist
Pierre Simon Laplace characterized Newton’s work as the supreme exhi-
bition of individual intellectual effort in the history of the human race.

Newton translated the interpretation of various physical observa-
tions into a compact mathematical theory. Three centuries of experience

indicate that mechanical behavior in the everyday domain can be under-
stood from Newton’s theory. His simple hypotheses are now elevated to
the exalted status of laws, and these are our point of embarkation into
the subject.

1.1 Newtonian Theory

The Newtonian theory of mechanics is customarily stated in three laws.
According to the first law, a particle continues in uniform motion (i.e.,
in a straight line at constant velocity) unless a force acts on it. The first
law is a fundamental observation that physics is simpler when viewed
from a certain kind of coordinate system, called an inertial frame. One
cannot define an inertial frame except by saying that it-is a frame in
which Newton’s laws hold. However, once one finds (or imagines) such a
frame, all other frames which move with respect to it at constant velocity,
with no rotation, are also inertial frames. A coordinate system fixed on
the surface of the earth is not an inertial frame because of the accelera-
tion due to the rotation of the earth and the earth’s motion around the
sun. Nevertheless, for many purposes it is an adequate approximation
to regard a coordinate frame fixed on the earth’s surface as an inertial
frame. Indeed, Newton himself discovered nature’s true laws while riding
on the earth!
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The essence of Newton’s theory is the second law, which states that
the time rate of change of momentum of a body is equal to the force acting
on the particle. For motion in one dimension, the second law is

dp
— 2
E 7 (1.1)

where the momentum p is given by the product of (mass) x (velocity)
for the particle

p=muv (1.2)

The second law provides a definition of force. It is useful because expe-
rience has shown that the force on a body is related in a quantitative
way to the presence of other bodies in its vicinity. Further, in many cir-
cumstances it is found that the force on a body can be expressed as a
function of z, v, and ¢, and so (1.1) becomes

dp d*z

F(Z’,’U,t):-ﬁ:m—dt—z

(1.3)
This differential equation is called the equation of motion. Here m is
assumed to be constant. For the remainder of this book we use Newton’s
notation & = dz/dt; ¥ = d*z/dt*. Newton’s second law is then

F(z,%,t) = mZ = ma (1.4)

where @ = & is the acceleration. In the special case F' = 0, integration of
(1.1) gives p = constant in accordance with the first law.

While Newton’s laws apply to any situation in which one can spec-
ify the force, very few interesting physical problems lead to force laws
amenable to simple mathematical solution. The fundamental force laws
of gravitation and electromagnetism do have simple forms for which the
second law of motion can often be solved exactly. The use of approximate
empirical forms to approximate the true force laws of physical situations
involving frictional and drag forces is one of the arts that will be taught
in this book. However, in this modern age of computers, one can handle
arbitrary force laws by the brute-force method of numerical integration.

The third law states that if body A experiences a force due to body B,
then B experiences an equal but opposite force due to A. (One speaks of
this as the force between the two bodies.) As a consequence, the rates of
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change of the momenta of particles A and B are equal but opposite, and
therefore the total p4 + pp is constant. This law is extremely useful, for
instance in the treatment of rigid-body motion, but its range of applica-
bility is not as universal as the first two laws. The third law breaks down
when the interaction between the particles is electromagnetic, because
the electromagnetic field carries momentum.

It is a remarkable fact that macroscopic phenomena can be explained
by such a simple set of mathematical laws. As we shall see, the. math-
ematical solutions to some problems can be complex; nevertheless, the
physical basis is just (1.1). Of course, there is still a great deal of physics
to put into (1.1), namely, the laws of force for specific kinds of interac-
tions.

1.2 Interactions

Using the planetary orbit data analysis by Kepler, Newton was able to
show that all known planetary orbits could be accounted for by the fol-
lowing force law

_GM1M2

F= 5

(1.5)

\

r

This states that force between masses M; and M; is proportional to the
masses and inversely proportional to the square of the distance between
them. The negative sign in (1.5) denotes an attractive force between
the masses. The force acts along the line between the two masses and
thus for non-rotational motion the problem is effectively one-dimensional.
Newton proposed that this gravitational law was universal, the same
force law applying between us and the earth as between celestial bodies
(and more generally between any two masses). The universality of the
gravitational law can be verified, and the proportionality constant G
determined, by delicate experimental measurements of the force between
masses in the laboratory. The value of G is

G =6.672 x 107" m®/(kgs) (1.6)

The dominant gravitational force on an object located on the surface
of the earth is the attraction to the earth. The gravitational force between
two spherically symmetric bodies is as if all the mass of each body were
concentrated at its center, as Newton proved. We will give a proof of this
assertion in Chapter 8. The earth is very nearly spherical so we can use
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the force law of (1.5). Thus for an object of mass m on the surface of
earth, the force is

MyG

F=-m = —myg (1.7)
R%

where g is the gravitational acceleration,

g~9.8m/s (1.8)

Using the measured value of R = 6,371 km along with the measured
values of g and G as given above, we may use (1.7) to deduce the mass
of the earth to be

Mg = 5.97 x 10** kg (1.9)

Since the earth’s radius is large, the gravitational force of an object any-
where in the biosphere is given to good accuracy by (1.7); even at the top
of the atmosphere (= 200 km up) the force has decreased by less than
10% from its value at the surface of the earth. Consequently, in many
applications on earth, we can neglect the variation of the gravitational

force with position.

The static Coulomb force between two charges e; and ej is similar in
form to the gravitational-force law of (1.5),

€1€2

This force is attractive if the charges are of opposite sign and repulsive if -
the charges are of the same sign. The constant k& depends on the system
of electrical units; in ST units, k = (47ep) ™! ~ 9 x 10°N-m? /C?.

Another force with a wide range of application is the spring force or
Hooke’s law, which is expressed as

F=—ka (1.11)

with & > 0. Here k is a spring constant which is dependent on the
properties of the spring and z is the extension of the spring from its
relaxed position. This particular force law is a very good approximation
in many physical situations (e.g., the stretching or bending of materials)
which are initially in equilibrium.

1.2 Interactions )

Frictional forces prevent or damp motions. The static frictional force
between two solid surfaces is

IF| < psN (1.12)

The force F acts to prevent sliding motion. N is the perpendicular
force (normal force) holding the surfaces together, and p, is a material-
dependent coefficient. Equation (1.12) is an approzimate formula for fric-
tional forces which has been deduced from empirical observations. The
frictional force which retards the motion of sliding objects is given by

F = uxN (1.13)

It is observed that this force is nearly independent of the velocity of the
motion for velocities which are neither too small (where there is molecular
adhesion) nor too large (where frictional heating becomes important). For
a given pair of surfaces, the coefficient of kinetic friction py is less than
the coefficient of static friction ;.

Frictional laws to describe the motion of a solid through a fluid or
a gas are often complicated by such effects as turbulence. However, for
sufficiently small velocities, the approximate form

F=—bv (1.14)

where b is a constant, holds. The drag coefficient b in (1.14) is pro-
portional to the fluid viscosity. For a sphere of radius ¢ moving slowly
through a fluid of viscosity n the Stokes law of resistance is calculated to
be

bsphere = 6Tan (1.15)

At higher, But still subsonic velocities, the drag law is
F = —cv? (1.16) '

For instance, the drag force on an airplane is remarkably well represented
by a constant times the square of the velocity. The drag coefficient ¢ for
a body of cross-sectional area S moving through a fluid of density p is
given by

c=1CpSp (1.17)‘

)
where Cp is a dimensionless factor related to the geometry of the body
(about 0.4 for a sphere).
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Externally imposed forces can take on a variety of forms. Of those
depending explicitly on time, sinusoidally oscillating forces like

F = Fycoswt (1.18)

are frequently encountered in physical situations.

In a general case the forces can be position-, velocity-, and time-
dependent,

F = F(z,v,t) (1.19)

Among the most interesting and easily solved examples are those in which
the forces depend on only one of the above three variables, as illustrated
by the examples in the following three sections.

1.3 The Drag Racer: Frictional Force

A number of interesting engineering-type problems can be solved from

straightforward application of Newton’s laws. As an illustration, suppose

we consider a drag racer that can achieve maximum possible acceleration
when starting from rest. The external forces on the racer which must
be taken into account are (1) gravity, (2) the normal forces supporting
the racer at the wheels, and (3) the frictional forces which oppose the
rotation of the powered rear wheels. A sketch indicating the various
external forces is given in Fig. 1-1.

FIGURE 1-1. Forces on a drag racer.
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Since the racer is in vertical equilibrium, the sum of the external
vertical forces must vanish,

Both N; and N, must be positive. For the horizontal motion we apply
Newton’s second law,

The frictional force F'is bounded by
F < uN, (1.22)

The maximum friction force occurs just as the racer tires begin to slip rel-
ative to the drag strip, because the coefficient of kinetic friction is smaller
than the coefficient of static friction. For maximal initial acceleration we
must have the maximum friction force F' = uN,. Referring back to (1.20),
a maximal N, = Mg is obtained when N; = 0, that is, when the back
wheels completely support the racer. The greatest possible acceleration
is then

,U(N2)max
max — = 1.23
a i pg (1.23)

We see that the optimum acceleration is independent of the racer’s mass.
Under normal conditions the coefficient of friction p between rubber and
concrete is about unity. Thus a racer can achieve an acceleration of about
9.8 m/sz. In actual design a small normal force Ny on the front wheels
is allowed for steering purposes.

The standard drag strip is ~ 400 m (1/4 mi) in length. If we assume
that the racer can maintain the maximum acceleration for the duration of
a race and that the coefficient of friction is constant, we can calculate the
final velocity and the elapsed time. The differential form of the second
law is

F=Ma=M— = M (1.24)

When the acceleration a is constant, a single integration

v 1
/ dv:a/ dt
Vo 0
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gives

v—1vg = at (1.26)

Using dz = wvdt, a second integration

/ dz = /Ot(vo + at)dt (1.27)

yields
z — 29 = vt + %atz (1.28)

We can eliminate ¢ from (1.26) and (1.28) to obtain

Substituting ¢ = 9.8 m/s2, z = 0.40km, 29 = 0 and vy = 0, we find
v = 89m/s (or 320.4km/h)! The time elapsed, t = v/a, is about 9s.
For comparison, the world drag-racing records (with a piston engine)
as of 1992 are v = 134.8m/s (485.3km/h) for velocity and 4.80s for
elapsed time. (These records were set in different races.) With tires that
are several times wider than automobile tires and have treated surfaces,
coefficients of friction considerably greater than g = 1 are realized in
drag racing. The rubber laid down by previous racers in effect gives
a rubber-rubber contact which also increases the coefficient of friction.
Aerodynamic effects are important as well. The drag force from wind
resistance reduces the speed of a racer, while a negative lift force on
the back wheels can be produced by wind resistance against an up-tilted
rear wing found on many racers, which increases the normal force, giving
greater traction and allowing larger acceleration.

1.4 Sport Parachuting: Aerodynamic Drag

The sport of skydiving visually illustrates the effect. of the viscous fric-
tional force of (1.16). Immediately upon leaving the aircraft, the.jumper
accelerates downward due to the gravity force. As his velocity increases,
the air resistance exerts a greater retarding force, and eventually approx-
imately balances the pull of gravity. From this time onward the descent
of the diver is at a uniform rate, called the terminal velocity. The termi-
nal velocity in a spread-eagle position is roughly 120 mi/h. By assuming
a vertical head-down position, the diver can decrease his cross sectional

v? = v 4 2a(z — o) (1.29)
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area (perpendicular to the direction of motion) thereby lowering the air
resistance [smaller value of ¢ in (1.16)], and increase his terminal velocity
of descent. Eventually, of course, the diver opens his parachute. This
dramatically increases the air resistance and correspondingly reduces his
terminal velocity, to allow a soft impact with the ground.

To analyze the physics of skydiving, we shall assume that the motion
is-vertically downward and choose a coordinate system with z = 0 at the
earth’s surface and positive upward. In this coordinate frame, downward
forces are negative. We approximate the external force on the diver as

F = —mg + cv? (1.30)

The frictional force is' positive, as required for an upward force. The

. terminal velocity is reached when the opposing gravity and frictional

forces balance, giving F' = 0. Under this condition, the terminal velocity
is

ve = —”% (1.31)

To solve the differential equation of motion,

F= m% = —mg + cv? (1.32)

we rearrange the factors and integrate

v d 3
. / v 2.:__512_/ dt (1.33)
o Ut —ut o UV 0 -

In (1.32) the frictional coeflicient ¢ has been replaced by v; from (1.31).

We obtain
L <”t ks ”) =Ly (1.34)

2’Ut ’Utz

which can be inverted to express v in terms of ¢,
1 — exp(—2gt/v)

—v
1+ exp(—2gt/vy)

At large times the decreasing exponentials go to zero rapidly and v ap-
proaches the terminal velocity,

(1.35)

v =

v — — (1.36)

Although the limiting velocity is exactly reached only at infinite time,
it is approximately reached for times ¢ > vy /2g. A typical value for v;
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on a warm summer day is 54 m/s (194.4 km/h) for a 70 kg diver in a
spread-eagle position. After a time

20, 2(54)
p= 2020 g 1.37
g 98 ° (1.37)

the sky diver would be traveling about 52m/s with his parachute un-
opened! The velocity of the diver as a function of time is plotted in
Figs. 1-2 and 1-3. To calculate the distance the diver has fallen after a
specific elapsed time, we integrate dz = v dt using (1.35),

[omnf (i) o

Sky diver velocity vs. time

Velocity, m/s
b
S
T

|
S
=

T

—60

0 5 10 15 20 - 25
Time, s

FIGURE 1-2. Velocity of a sky diver as a function of time for a terminal velocity of
54 m/s.

The result of the integration is

i terre )] (1:39)

At time t = 2v;/g, the diver has fallen a distance (h — z), given by

h—gz= %2 [2 ~1In (Irzej)] = (2‘22 (2-07)=385m  (140)

Sky divers normally free-fall about 1,400 m (in 30 s) so much of the descent
is at terminal velocity.
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FIGURE 1-3. Altitude of a sky diver with unopened parachute as a function of time

(for a terminal velocity of 54 m/s).

Finally, let us use the drag coefficient formula of (1.17) to estimate
the free fall terminal velocity of a sky diver. By (1.31) and (1.17) we have

mg
Ve = | = 1.41
TV Iehsy (1-41)

Assuming that in a spread-eagle position Cp ~ 0.5 and S ~ 1 m* and
that the air density is 1kg/m® we find for a 70 kg diver,

70(9.8)

vy =
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very near the actual value. The excellent agreement is fortuitous but the
ability to make such estimates of the drag force is certainly useful.

1.5 Archery: Spring Force

The force exerted on an arrow by an archer’s bow can be approximated
by the spring force of (1.11). A 134 Newton bow with a 0.72 meter draw
d has a spring constant & given by

_IF_

—— = 186 kg/s’ (1.43)

k =
d 0.72

After release of the bowstring, the motion of the arrow of mass m is
~described by the second law,

dv

m—d? = —kzx s z <0 (144)

until it leaves the bowstring at z = 0. Here we neglect the mass of the
bowstring. To integrate this differential equation for the velocity, we use
the chain rule of differentiation

do_dvds _do
it dedt dnt | (1.45)

Substituting into (1.44), rearranging factors, and integrating we obtain

v 0
m/ vdv = ——k/ T dz (1.46)
0 —d

%mv2 = %kd2 (1.47)

~Thus the velocity of the arrow as it leaves the bowstring is given by

v= d\/g (1.48)

The longer the draw and the stronger the bow, the higher the arrow
velocity. For a typical target arrow, with weight m = 23 g, the velo¢ity
is
186
=074/ ———= =
v 7 53 % 103 65m/s (1.49)
This is almost double the maximum speed of a fastball thrown by a

professional baseball player!
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1.6 Methods of Solution

For the general motion of a particle in one dimension, the equation of
motion is

mi = F (z,#,1) (1.50)

Since this is a second-order differential equation, the solution for z as a
function of ¢ involves two arbitrary constants. These constants can be
fixed from physical conditions, such as the position and velocity at the
initial time. In the examples of §1.3 to 1.5, we have introduced several
techniques for solving (1.50). In the case where I’ depends on only one
of the variables z, &, or t, the formal solution of (1.50) is straightforward.
We now run through the methods of solution to the differential equations
of motion for these specific classes of force laws.

For a force that depends only on z, we may use the chain rule of
(1.45), and integrate (1.50) to obtain

m/ v'dv’ :/ F(z') dz' + Cy (1.51)

where Cj is a constant of integration. Here we have used primes to denote
the dummy variables of integration. The resulting expression for v(z) is

v= @\//mF(m') da' + Cy (1.52)

This method of solution was employed in the archery discussion of § 1.5.
The solution for z(t) is found by substituting v = & in (1.52), rearranging
factors so as to separate the variables, and integrating, to get

/w\\/ J F(:cd) \/%/ wee, ().

dz" + Cy

The integration constants C; and Cz can be fixed from the initial velocity
and position. ‘

With a velocity-dependent force we can integrate (1.50) as follows:

vod L
— = d 1.54
o[ gy = [ (159
We used this technique in the sky-diving analysis of § 1.4. The result of
the integration gives v(t), which can then be integrated over ¢ to find z(¢).
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The solution of (1.50) for a time-dependent force F(t) can be obtained
from direct integration,

1] 1
m / v = / F(t') dt + C (1.55)

A second integration leads to the solution for z(t),

x t t!
m / do' = / / F(")de" +Cy | d' + C (1.56)

If the force law depends on more than one variable, the techniques for
finding analytical solutions, when they exist, are more complicated.

For the forces involved in many physical problems, (1.50) cannot be-

solved in closed analytical form. However, we can then resort to numer-
ical methods which can be evaluated using computers. To illustrate the
numerical approach, we assume that the position z¢ and velocity vy are
known at the initial time 5. The acceleration ag then is given by (1.50)
as

F(iL’(), Vo, tO)

ap = A (1.57)

After a short time interval At,

t, =ty + At
T1 = To + vo At (1.58)
vy = Vo + agAt

where we have neglected the change in ¢ and v over At. This approxima-
tion becomes more accurate as the time increment At is made smaller.
From these new values of the variables, we can calculate the new accel-
eration using (1.50)

0 = FEnvh) (1.59)

m

By repetition of this procedure n times, we can calculate z and v at time
t, =ty +nAt
Ty = Tpei + Up-1 At
e " (1.60)
Up = Un—1 +ap_1 Al
We thereby obtain a complete numerical solution to the equation of mo-
tion. The solution becomes more accurate as the time increment At is

s
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made smaller. This illustrates that a unique solution to the differential
equation of motion is always possible for any reasonable force law. For
the numerical solution to a specific problem the use of more sophisticated
numerical methods is usually desirable in order to increase the accuracy
of the result for a given At.

1.7 Simple Harmonic Oscillator

Many common physical applications of the spring force involve oscilla-
tory motion, such as vibrations of a mass attached to a spring. A system
undergoing periodic steady-state motion under the action of a spring is
called a harmonic oscillator. The motion is called simple harmonic when
the restoring force is proportional to the displacement from an equilib-
rium position (for instance, proportional to the extension or compression
of a spring). Any system in which there is a linear restoring force (such
as AC circuits and certain servomechanisms) exhibits simple harmonic
oscillations.

The equation of motion for a simple harmonic oscillator,
mi = —kz (1.61)

with &£ > 0, can be solved by (1.52) and (1.53). However, we can cleverly
construct the solution as follows. The functions coswyt and sin wyt satisfy
(1.61) if the angular frequency wy is given by

k
=4/ .62
Wo m (16)

The general solution to (1.61) is a linear superposition of coswot and
sin wot solutions

z(t) = Acoswot + Bsinwgt (1.63)

where A and B are arbitrary constants. An equivalent form of the solution
is

z(t) = acos(wot + ) (1.64)
with constants related by
" A=acosa B = —asin o (1.65)

The constant a is called the amplitude of the motion, and « is called the
initial phase. The initial conditions can be used to specify the arbitrary
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constants a and «. From (1.64) the velocity of the oscillator is
v(t) = —awyp sin(wet + @) . (1.66)

The period 7 of the motion is the time required for the system to undergo
a complete oscillation and return to the initial values of  and v. The
period for the oscillator is

2r
T=—

- (1.67)

The frequency of the oscillator (number of oscillations per unit time) is
1 wo

V= — —
T 27

(1.68)

We can illustrate our harmonic-oscillator solution with the bow-and-
arrow example of §1.5. At t = 0 the bow is at full draw, = = —d, and
the arrow velocity is zero. From (1.66) we find

a=0 (1.69)
and from (1.64) we obtain

a=—d (1.70)
The solution with proper boundary’conditions is

z(t) = —d coswpt (1.71)
v(t) = dwp sin wyt (1.72)

with wg = 4/k/m. As time increases from ¢t = 0, = increases to zero at
)

t=3 (E) (1.73)

At this instant the arrow leaves the bowstring with velocity

k

v=dwy = di/ — (1.74)

m

which agrees with (1.48). For the bow described in §1.5 the arrow-
propulsion time from (1.73) is

™ /m w [23x 103 1
= —y/—= A/ ———— ———— ~ — .
2\ 2V T 186 60° (1.75)

In our archery example the simple-harmonic-force law does not apply
beyond this time (one-fourth of the period 7), as illustrated in Figs. 1-4
and 1-5. ‘
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FIGURE 1-4. Displacement of a simple harmonic oscillator vs. time. The position of
the feather end of the archer’s arrow as a function of time is indicated by the dashed
line after the arrow leaves the bow.

Arrow velocity

Velocity, m/s

FIGURE 1-5. Velocity of a simple harmonic oscillator vs. time. The velocity of the
arrow after it leaves the bow is indicated by the dashed line. -

As another instructive example we consider the spring-mass system
in Fig. 1-6. The spring, assumed massless, has a rest length £. When the
mass m is attached to the free end, the equation of motion in the absence

of gravity is




18 Chapter {1 ONE-DIMENSIONAL MOTION

mi = —k(z — £)

i+ wiz =wit,
The solution is evidently of the form
z(t) = C'+ Acoswpt + Bsinwol (1.78)

Substitution into (1.77) yields C' = £ and we conclude that the motion
consists of harmonic motion with angular frequency wg about the equi-
librium point z = £.

FIGURE 1-6. A mass m suspended by a spring of rest length £ undergoés vertical
oscillations.

With gravity present, we must add mg to the forces acting on m and
the equation of motion becomes

mi = —k(z — £) +mg - (L79)

it wiz=wil+yg (1.80)

Comparing to the gravity-free case shows the equation of motion differs
only by the constant on the right side. The solution to (1.80) is then
(1.78) but with C' = £+ 52, The motion is again harmonic with angular
frequency wy except that the equilibrium point is £+ T2, When the mass
is at £+ 2, the upward force due to the spring is k(%Z) = mg, which just
equals the weight force. The mass will remain at this position if released

at rest there.
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We conclude this section by solving the simple harmonic equation of
motion (1.61) in a more systematic way. The equation of motion

k
:E—i—ng:[), wp = A/ — (1.81)

m

is a linear differential equation with constant coefficients; such an equa-

tion always has a solution of the form
z(t)=-e (1.82)

With this substitution, (1.81) becomes
(A2 4+ wd)eM =0 - (1.83)

which requires that A> = —w2. Thus (1.82) is a solution if A = o or

)\ = —iwy and so the linear superposition
z(t) = cretot 4 coe it (1.84)

is a solution; here ¢ and cy are constants (generally complex). Since by
appropriately choosing these constants we can fit any initial conditions
zo and o, (1.84) is the general solution. Using the identity e*? =
cos 8 £ isin § we can rewrite this general solution as

z(t) = c1(coswot + isinwpt) + ¢z (cos wot — isinwot) (1.85)
= (1 + ¢3) coswot + icr — ¢2) sin wot '

Since any physical quantity such as z(t) must be real (no imaginary part)
we must choose ¢; = ¢, where cf is the complex conjugate of c¢;. With
9Rec; = A and 2Tmc; = —B, we obtain the result in (1.63).

1.8 Damped Harmonic Motion

In almost all physical problems frictional forces play a role. For example,
a harmonic oscillator that is subject to a damping force has an amplitude
that decreases with time. For this reason, and also because a damped
harmonic oscillator applies to such a broad range of physical phenomena,
we treat its solution at some length. The form (1.14) chosen for the
frictional force is linear in the velocity; the equation of motion is then
linear in both z and its time derivatives and is solvable analytically.
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The equation of motion of the damped harmonic oscillator is
mi = —kz — bz (1.86)
We define the dampling constant v = %(b/ m) and the natural frequency
wp = /k/m to express (1.86) in the form
&4 2vi4+wiz =0 (1.87)

Like the undamped harmonic oscillator equation of motion, (1.81), this
is a linear differential equation with constant coefficients so again

z(t) = e (1.88)
is a solution. Substituting this into (1.87) we find
A2 290+ wd)eM =0 (1.89)

which is satisfied only if the term in parentheses vanishes. Solving the
quadratic equation, the possible values of A are

A=yt VY —wil=—7£0 (1.90)
where we have defined

Q=4/72—wi (1.91)

The qualitative nature of the solution depends on the relative mag-
nitude of the frictional coefficient v and the natural frequency wy. We
distinguish the three cases:

L. v > wp Q real
II. Y =wp, {2 zero (1.92)
111 v < wp, Q imaginary

For Q # 0 the general solution is a superposition of e* terms with
both possible values of A. In case I the solution is

a;(t) - Cle_('y_ﬂ)t + 626_(’Y+Q)t

P e—'yt(cleﬂt + C2€—Qt)

(199

If Q = 0 the two terms in (1.93) have the same t-dependence. Then,
since the expression depends only on the one constant ¢; +cg, (1.93) is not
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the general solution of the second order differential equation. Treating
the Q = 0 case as a limit 2 — 0 we can expand the exponentials

e =14 Qt + 0(Q?) (1.94)

and group the terms in (1.93) as
2(t) = e [(er + ) + (1 - )] +0(0?) (1.95)
Then defining C = ¢; + ¢3 and D = (c1 — ¢3)f2, the solution for @ =0 is

IL. 2(t) = e [C+Dt] (1.96)

In case III, we express

Q= /7 - wf = iyfuf —72 = g

in terms of the real quantity

Then the form of the solution (1.93) is
I11. : z(t) = e (clem't +- cze—m’t> (1.99)

For z(t) to be real the constants ¢; and ¢y must be complex conjugates,
¢, = ci. Thus the solution can be expressed in the form

2(t) = 27" Re (e1eV') (1.100)

Wiriting ¢; in polar form as ¢; = %aew‘ where a and « are real, we obtain

z(t) = ae” " cos(Qt + @) (1.101)

The two constants which appear in the above solutions can be related

~ to the initial conditions (0) = zo and 2(0) = vp at time ¢ = 0. After
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solving for the constants from the initial conditions, the solutions are of
the forms

(vo +7$0)] -yt 1 [500 (o +’7$0)] ()t

Q 2 Q

9 0

(1.102)
z(t) = e [zo + (vo + Vo) t]r (1.103)
111. z(t) = ae™ " cos ('t + ) (1.104)

with a = (wiz§ + 2yvozo + 08)1/2 /€ and tan a = —(vo +Y20) /o'

In all three cases the amplitude of the displacement decays exponen-
tially with time, although in II the exponential factor is multiplied by a
linear function of t. At large times the rates of falloff are characterized
by the exponentials:

L. e~ (=)t v > wp (overdamped)

I1. e~ x (linear function of ) v = wp (critically damped)

III. e~ * (sinusoidal function of t) v < wo (underdamped)
| (1.105)

Tlustrations of the time dependences for the three cases are given
in Fig. 1-7 for the initial conditions = = o, vo = 0. An exception to
the above rates of decrease occurs when the initial conditions are such
that the coefficient of the e=(V"®* term of solution I vanishes. In that

circumstance, the mass returns to rest like e~ (7,

There are endless applications of damped harmonic oscillators. The
pneumatic spring return on a door represents an everyday situation where
solution II is the ideal. Upon releasing the door with no initial veloc-
ity, we want it to close as rapidly as possible without slamming. Equa-
tions (1.105) indicate that solution I should be selected; the spring-tube
system should be designed with v = wy. Solution III might close the door
faster, due to the vanishing of the cosine factor in (1.104), but this would
let the door slam! On the other hand, solution III describes physical
systems that undergo damped periodic oscillations.

The behavior of simple electric circuits is determined by a differential

equation which has the same mathematical form as the damped harmonic
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Damped harmonic oscillator
(natural frequency wp = 10 rad/s)

FIGURE 1-7. Time dependence of the displacement of a damped harmonic oscillator
for the initial conditions £ = zo, v = 0. The natural frequency of the oscillator is
wo = 10 rad/s. Results for various strengths of the damping constant 7 are illustrated.

oscillator. As an example we consider the circuit of Fig. 1-8 with an
inductor L, resistor R, and capacitor C in series. When the switch is
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closed, the sum of the voltage drops across the elements of the circuit
must add up to zero. This leads to the differential equation
di . q

L—+Ri+==0 1.106

o TR+ 5 ( )
where i(t) is the current flowing in the circuit and ¢(¢) is the charge on
one of the capacitor plates. Since 7 = dg/dt = ¢, the circuit equation can
be written as

Li+ Ri+ % =0 (1.107)

This equation has the form of the damped-harmonic-oscillator equation
(1.86) with the following correspondences:

b R
Y=o o7
m

2 2L
|k . /1
wo = m LC

R\* 1
_ 2,2 bl -
Q=yr-w- <2L> LC

Q=

Since it is often far easier to connect circuit elements than to build and
test a mechanical system, this analogy has been of considerable practical
importance.

o

Switch

R
AN

FIGURE 1-8. Simple L, R, C electric series circuit.
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If thé circuit in Fig. 1-8 is in a static state, when the switch is closed
at time t = 0 the initial conditions are ' ’

, (1.109)
i(0) = g(t=0)=0

where V; is the voltage across the Capacitof. By reference to (1.102)-
(1.104) the solutions for the charge as a function of time are

R 1
o \/ ic (v > wo , overdamped)

q(t) =qo [(1 + —;%) e~ (1=t 4 (1 - %) e—(7+9)t]

R 1
=g (y = wo , critically damped)
2L LC (1.111)

| q(t) =qo(1+t)e™

R 1
= <A 7= (v < wo, underdamped)
2L LC ©(1.112)

g(t) = () lwogoe " cos (Ut — arctan &)

(1.110)

For a circuit with a voltage source, as in Fig. 1-9, the sum of the volt-
age drops around the circle must equal 0. Thus the differential equation
for the circuit in Fig. 1-9 is

di

L9
L= +Ri+Z=V() (1.113)

where V(t) is the voltage of the generator. This differential equation is
of the form of the equation of motion for a damped harmonic oscillator
subjected to an external force, a topic which we take up in the following

section.
D
Switch

V()
Source

L

R
'A"A"

FIGURE 1-9. Series L, R, C circuit with a voltage generator
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1.9 Damped Oscillator With Driving Force: Resonance

Numerous physical systems can be described in terms of a damped har-
monic oscillator driven by an external force that oscillates sinusoidally
with time as

F(t) = Fycoswt = mf coswt (1.114)

where we have introduced f = Fp/m for later convenience. The equation
of motion in (1.87) gets modified to

F 4 2vi + wlz = feoswt (1.115)

A particular solution to this inhomogeneous linear differential equation is
most readily obtained by using complex numbers and solving for a related
equation with a complex driving force. For this purpose we introduce

z=x+1y
it o (1.116)
™" = coswt + 18inwt

and observe that the real part of
P4 2v5+wolz = fer! (1.117)

is identical with (1.115). This latter form is more convenient to solve.
Once we find the solution for z the physical displacement z is obtained
from & = Rez. Note that if the left-hand side of (1.117) were not linear in
~ this method would not work. Since the first and second derivatives of
et are jwe'™?t and —w?e'™?, there is a solution with the time dependence
¢, Thus, as a possible solution to (1.117), we try

z= %em (1.118)

where 1/R is a time-independent response factor. The differential equa-
tion is satisfied by this choice if

[(iw)? + 27 (iw) + w] (1.119)

R =wi — w4 2iyw (1.120)
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The complex factor R can be written in polar form

R = re* (1.121)

2 = |R]? = (02 - w?)” + 4yl (1.122)

ImR 2yw

tanf = = 1.12
an ( ReR) a: (1.123)
The angle 8 lies between 0 and 7. Using (1.116), (1.118), and (1.121), we
arrive at the desired solution to (1.115)

z = Rez = Re (ia(m—e)) (1.124)

r

w(t) = L cos(wt — ) (1.125)

r

The response z(t) to the force m f coswt is thus proportional to 1/r. The
response oscillates with a phase (wt — §) that lags the oscillations of the
force by a phase angle 6. -

Both r and @ depend on the relative size of the driving frequency
w and natural frequency wy. For small damping v < wo and values of
w near to wp, we can make the following approximations in (1.121) and
(1.122):

r? = (wo — w) (wo +w)? + 477w = 4w [(wo — w)* + 7] (1.126)

tan f = 2y ~ (1.127)
(wo —w)(wo +w)  wo—w

From these approximate expressions, we see that r? has a minimum when
the driving force is at the natural frequency of the oscillator, w = wo. The
large response z(t) produced by a driving frequency in the vicinity w = wg
is called a resonance. The magnitude r,, of r at the resonance frequency
w = wp is governed by the size of the frictional coeflicient ~.

P = 2w07 (1.128)

The width of the resonance is defined as the difference of the two values
of w at which r? is twice its minimum value. From (1.126) and (1.128)
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these values are w = wy £ v and thus the width is 2. The resonance
becomes narrower and the maxunum displacement z larger as friction is
made smaller. Plots of [r(wo)/r(w w)]* and 8(w) are shown in Figs. 1-10
and 1-11. The phase lag # is 90° at resonance. At small frequencies w,
the phase lag tends to zero, and far above resonance it approaches 180°,
as is evident from (1.123) or (1.120). Resonance phenomena analogous
to that discussed here play an extremely important role in all branches
of physics and engineering.

The solution we have been discussing is known as a particular solution
since there are no integration constants. This particular solution is often
called the steady state solution. It is not the most general solution since it
does not match a general initial state of the oscillator. The general solu-
tion to the forced-oscillator differential equation is obtained by adding to
the particular solution in (1.125) the general solution of the homogeneous
equation (i.e., the oscillation equation with no driving force). The result
for the underdamped case is

z(t) = ae” " cos (Ut + @)
+ f — COS (wt — arctan —2—2&2> (1-129)
I 0

(7 = w?)” + 4970 o

The sum satisfies (1.117) and contains two arbitrary constants, a and

«. The initial conditions determine these constants. The term with the
decaying exponential is called a transient—it vanishes at large times. The
force—dependent term describes the steady-state oscillatory motion of the
harmonic system.

Any periodic force can be Fourier-analyzed into an infinite series of
cos(nwt + ¢,) terms

=m Yy _ fncos(nwt + ¢,) (1.130)

where F,, and ¢, are constants and the period is 27 /w. The solution
(1.129) for a driving force Fy coswt can be used for a force F), cos(nwt +
#n). Then the solution for a superposition of driving frequencies in
(1.130) can be obtained as a summation over solutions with driving fre-

quencies nw.
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(magnification factor)?

Wo

-
8 10 12
w, rad/s

FIGURE 1-10. Square of the magnification factor, ['r(w = wo)/r(w)] , as a function
of driving frequency w for forced oscillator of natural frequency wo = 10 and damping
constant v = 1.

Phase lag

wWo

R

8 10 12 14 16 18
w, rad/s

FIGURE 1-11. Phase lag 6 as a function of driving frequency w for the forced oscillator.
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PROBLEMS

1 .2 Interactions

N

e . . S .
) (1—‘1. ‘An athlete can throw a javelin 60 m from a standing position. If
~he can run 100 m at constant velocity in 10 s, how far could he

hope to throw the javelin while running? Neglect air resistance
and the height of the thrower in the interest of simplicity. (Hint:
derive an expression for the distance R in terms of the initial angle
0 to the horizontal and mazimize R.) Compare your answer with a
world-class throw of 105 m for the javelin.

=
EQ/A world class shotputter can put a 7.26 kg shot a distance of 22 m.

Assume that the shot is constantly accelerated over a distance of
2 m at an angle of 45 degrees and is released at a height of 2 m
above the ground. Estimate the weight that this athlete can lift
with one hand.

. For the shotput of Problem 1-2 determine the initial angle 6 of the
" trajectory to maximize the distance R of the put. Approximate the

value of vy by that obtained in Problem 1-2. A photographic study
found that expert athletes have learned by trial and error to release
the shotput at this optimum angle.

. A projectile is shot from the origin with initial velocity wo and

inclination angle @ as shown.

R

Show the following:

a) The range R (maximum horizontal distance), v, ¢ and the drop d
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are related by

Rsin 20 4 d(1 4 cos 20) = R%/R,

Ro=v/g
b) The condition for maximum range R,, is
tan 20, = R,,/d

[Note that if d = 0 then 6,, = 45°.]

c¢) If the land falls off with a constant slope angle ¢ (i.e., d =

R, tan ¢) then the maximum range angle 6,, and ¢ are related
by ‘

2, + ¢ = 90°
[Note that if ¢ = 0 then 6, = 45°.]

d) The maximum range is given by
R34+ 2dRy = R2,

[Note that if d = 0 then R,, = Ry ]

e) The optimum angle, maximum range, slope to impact angle ¢,
and the elevation drop d satisfy the triangle relation
d
RoZ—" 5

R
Y26, "

d

. A perfectly flexible cable has length [ Initially, the cable is at rest,

with a length z¢ of it hanging vertically over the edge of a table.
Neglecting friction, compute the length hanging over the edge after
a time ¢. Assume that the sections of the cable remain straight
during the motion.

. A particle of mass m, initially at rest, moves on a horizontal line

subject to a force F(t) = ae~®. Find its position and velocity as a
function of time.
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! \Drag Force ;

&;7/ A boat is slowed by a drag force F(v). Its velocity decreases ac-
cording to the formula

v=c(t—t)*

where ¢ is a constant and #; is the time at which it stops. Find the
force F(v) as a function of v.

1-8. A mass m sliding horizontally is subject to a viscous drag force. For
an initial velocity vy (at z = ¢ = 0) and a retarding force F' = —bz
find the velocity as a function of distance, v(z), and show that the
mass moves a finite distance before coming to rest. For the same
initial conditions and a retarding force F = —c3? find v(z) and

, z(t), and show that the mass never comes to rest.

Q—i. Integrate the equation of motion in (1.32) to directly find the ve-
/locity as a function of distance fallen for a sky diver in free fall.
At what free-fall distance does the velocity reach two-thirds of the
terminal velocity? Assume that vy = 54m/s.
1-10. A diver of mass m begins a descent from a 10 meter diving board
with zero initial velocity.
a) Calculate the velocity v on impact with the water and the ap-
proximate elapsed time from dive until impact.
b) Set up the equation of motion for vertical descent of the diver
through the water, assuming that the buoyancy force balances
the gravity force underwater and the drag force is given by (1.16).
Solve for the velocity v as a function of the depth z under water
and impose the boundary condition v = vg at z = 0.
c) If the constant c in (1.16) is given by ¢/m = 0.4 (meter) ™!, esti-
mate the depth at which v = 1% vg.

d) Solve for the time under water in terms of the depth. How long
does it take for the diver to reach the bottom of a 5m deep pool?

1-11. A ball of mass m is thrown vertically upward with initial velocity v;.

If the air resistance is proportional to v? and the terminal velocity

is vy, show that the ball returns to its initial position with velocity
vy given by

1 _1.,1

vfe AT

1-12. A bicyclist is able to pedal at a maximum speed vo on the level with
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no wind. If there is a wind force w parallel to the biker’s path the
biker will slow down or speed up. The air resistance is proportional
to the square of the air speed. The biker’s power output is equal
to the applied force times the ground velocity. Assume the power
output is constant and that there are no other power losses. Find
an equation that relates v to vy and w.  Compute the velocity
numerically for vy = 15 m/s in the cases of a head wind w =5 m/s
and a tail wind w =5 m/s. ’

. A drag racer experiences a retarding force due to wind resistance
that is proportional to the square of the racer’s velocity. Assuming
that the racer is designed for optimum acceleration, set up the
equation of motion and derive a relation between v and t. Also
derive a relation between v and z. Eliminate the coefficient of
friction and solve the resulting equation numerically for the terminal
velocity that can reproduce the 1988 world record of v = 129.1 m/s,
t =4.99s for £ = 0.4 km. Then determine the coefficient of friction.

ring Force

massless spring of rest length /
and spring constant k£ has a mass
m attached to one end. The sys-
tem is set on a table with the
mass vertically above the spring
as shown.

a) What is the new equilibrium height of the mass above the table?

b) The spring is compressed a distance ¢ below the new equilibrium
point and released. Find the motion of the mass assuming the
free end of the spring remains in contact with the table.

¢) Find the critical compression for which the spring will break con-
tact with the table.

—15‘; An archer using the equipment described in §1.5 aims horizontally
7 at a target 50 m away.

a) How far below the aiming point will the arrow strike? (Neglect
air resistance.) |

b) At what angle should the arrow be released so as to hit the target?

c) What would be the maximum possible flight distance on level
ground? (Neglect air resistance and the height of the archer.)
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d) Suppose that the arrow is released at a height of 1.6 m above the
ground (typical shoulder-height of a person) at the angle found
in part b) above. Calculate the honzontal distance at which the
arrow would hit the ground.

1.7 Slmple Harmonic Oscillator

) Solve the damped unforced oscillator by the following method. De-

fine a new variable y by
z=e""y
Qubstitute into the equation of motion (1.87) to find the equation

satisfied by y(t). Choose 3 such that the coefficient of 5 vanishes
and solve in the underdamped, critical, and overdamped cases.

| Show that the underdamped oscillator solution (1.104) can be ex- '\

pressed as z(t) = zoe” " [COSQ t+ (”°+”°> sin t] and demon-
strate by direct calculation that z(0) = zo and (0) = vo.

1.8 Forced Oscillator With Damping
1-18. Show by direct substitution that z = r~1 f cos(wt — @) satisfies the

forced damped oscillator equation of motion
I+ 2yz -I—wga; = fcoswt

and that r and 6 are the same as in (1.122) and (1.123).

_ An electric motor of mass 100 kg is supported by vertical springs
which compress by 1 mm when the motor is installed. If the motor’s
armature is not properly balanced, for what revolutions/minute
would a resonance occur?

_ Find the initial conditions such that an underdamped harmonic os-
cillator will immediately begin steady-state motion under the time-
dependent force F = mf coswt.

. Find the steady-state solution for a damped harmonic oscillator
driven by the force

F(t) = mféin wt

. An AM radio station transmits a signal consisting of a carrier wave
at frequency v, = 108 Hz whose amplitude is modulated at fre-
quency vy, = 10*Hz, as illustrated in the accompanying figure.
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This means that many oscillations of the carrier occur while the
modulation only changes slightly. A rudimentary radio receiver
circuit is shown schematically in the accompanying figure. The in-
cident radio waves induce an oscillating voltage Vjcoswct in the
antenna, where w, = 27, and Vp ~ 1mV.

Il _mlt,HHlnnU,llm M“““H ;H,Hlllx
'IUW' il ”””””” w”m”u I

a) Given the capacitance C' = 300 pico-farads and resistance R =
5-ohms find the proper inductance L to create a resonance with
the incident wave. Hint: at first assume the resistance has little
effect on the resonant frequency and then verify that this is a good
approzrimation.

Compute the damping constant and verify that the transients die
out much faster than the modulation varies. This insures that
the receiver will faithfully amplify the incident signal.

Compute the maximum voltage across the capacitor in terms of
the above value of V;. This is the voltage amplification of the
circuit.

d) An adjacent station in carrier frequency is 20 kHz higher. If our
receiver is tuned to the original 10% Hz how much will the adjacent
stations’s carrier be amplified?

1-23. A critically damped oscillator with wy = 1 rad/sec is acted upon

by a driving force Fiyriver
a) Find a particular solution for Fyriver = m fet.

b) Find a particular solution for Fayiver = ™ fe~t. Hint: Try z =
At"e”t forn=0,1,2.

c¢) Using the preceding results obtain the general solution for
Fyriver = mf cosht with initial conditions z(0) = #(0) = 0.

1-24. An undamped harmonic oscillator with natural frequency wp is sub-

—bt

jected to a driving force F(t) = ae~**. The oscillator starts from
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rest at the origin (z = 0) at time ¢t = 0. Find the solution of the

equation of motion which satisfies the specified initial condition.

. Find the average power dissipated per driving period by the fric-

tional force of a sinusoidally driven harmonic oscillator in steady
state. (Recall that power = force X velocity.) Show that maximum
dissipation occurs at w = wg and evaluate this maximum.

. A sawtooth wave (see accompanying figure) can be decomposed into

an infinite sum of cosines

(o)

ft) = Z (—2.17,_—1}——1)—2 cos(wnt),

n=0

where w, = (2n + 1)w and w is the “angular frequency” of the
sawtooth. Find the steady-state motion of an oscillator driven by
this force per unit mass

i‘+275v—|—w§m = f(t).

Hint: find the solution for a given w, and use the principle of su-

perposition.

IS

Chapter 2

ENERGY CONSERVATION

There are three important conservation laws of mechanics: energy, mo-
mentum, and angular momentum. The three laws can be derived from
Newtonian theory. However, their range of validity is much broader, ex-
tending even to the domain of relativistic elementary particles, although

'slightly changed in form. In their ramifications in all branches of science,

these conservation laws have exceptionally far-reaching consequences. In
this chapter we discuss energy conservation and then in later chapters we
take up in turn momentum and angular momentum conservation.

2.1 Potential Energy

To derive the energy-conservation law in the case of one-dimensional mo-
tion, we start with the second law of motion for a body of mass m

d
pn (mv) = F(z,v,t) (2.1)

and multiply by v. Since v dv/dt = }d(v?)/dt we obtain the equation
d
= (@
Stbstituting v = dz/dt on the right-hand side and integrating with re-
spect to ¢ gives

mv?) = F(z,v,t)v (2.2)

%mﬂ(iz) — im?(t) = / ZF(:c(t),v(t),t)%dt = /ng(:v,v(w),t(ac))dw

ty 1

2.
The left-hand side is the difference at two times of the familiar expression
for the kinetic energy

K = %mv2 (2.4)

Equation (2.3) is the Work-Energy theorem

Ky — K; = AK = Work = / F(z,v(z),t(z)) da (2.5)

T




