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Chapter 1

Cosmology and the Cosmic

Microwave Background

A man said to the universe:
“Sir I exist!”
“However,” replied the universe,
“The fact has not created in me
A sense of obligation.”
Stephen Crane

1.1 Introduction

In 1899, when Crane painted this bleak picture of a Universe indifferent to human
concerns [43], humanity had no idea just how vast and empty space is. Although the
Earth had long since been dethroned from its location at the center of the Universe [39],
we were still unaware of the true enormity of creation and of our thoroughly unremarkable
location in it. Over the following decades we would discover that our Sun is located in an
undistinguished spot in the outskirts of the Milky Way Galaxy and that our galaxy is a
typical spiral with nothing to set it apart from the billions of others sprinkled more or less
uniformly through space. In comparison with our current view, the Universe of Crane’s era
was downright cozy!

We therefore have even more reason today than Crane did to observe that the Universe
is under no obligation to its denizens; in particular, it is under no obligation to make itself

comprehensible to us. However, for as long as there have been scientists, there have been
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people willing to make the optimistic assumptions that the Universe is comprehensible
and that by diligent study and observation we will be able to understand and predict its
behavior. Cosmologists are perhaps the most guilty of this unfounded optimism; they hope
to understand not just a piece of the Universe, but the whole thing. Over the past several
decades, this optimism has been at least partially vindicated: we appear to have discovered
at least the rudiments of a genuine, quantitative, predictive theory of physical cosmology.

Testing this theory has not been easy. It has been observed that “to a first approx-
imation, all observables in cosmology are impossible to measure” [108]. This statement is
not as much of an exaggeration as we might wish: even the most fundamental cosmological
observables such as the Hubble parameter Hy are known only to a rough approximation
[95]. Indeed, as recently as 1963, Peter Scheuer observed that “there are only 21/, facts in
cosmology” [119]. Despite these difficulties, our knowledge of cosmology has made enormous
strides since Scheuer gave this pessimistic assessment. We have accumulated a substantial
body of evidence in support of the standard “hot big bang model,” and we have good rea-
son to believe that this model accurately describes many aspects of the evolution of the
Universe from a very early epoch (say about 107° s after the Big Bang) to the present.

In brief, the big bang model proposes that the early Universe was extremely hot
and dense and that it expanded and cooled to its present state over a period of about ten
to twenty billion years. The Universe is presumed to be approximately homogeneous and
isotropic (when averaged over suitably large scales). Given these assumptions, we can use
general relativity to determine the spacetime geometry of the Universe, which turns out to
be one of a simple family of models, the Friedmann-Robertson-Walker (FRW) metrics. We
can also use well-established physical theory to predict! many aspects of the evolution of
the Universe. We will examine this model and the evidence supporting it in more detail
below.

Like every other successful scientific theory, this model has enabled us to ask more
sophisticated questions, many of which we are not yet able to answer. Specifically, much

contemporary research in theoretical cosmology centers on two issues:

1. Extrapolating the big bang model to extremely early times, using (sometimes quite

speculative) ideas from particle physics.

2. Understanding and modeling the evolution of initially small inhomogeneities, which

1Or perhaps one should say “retrodict.”



CHAPTER 1. COSMOLOGY AND THE CMB 3

are thought to have grown via gravitational instability into the galaxies and large-scale

structure we see today.

The two topics are closely related in that one might hope to use ideas from early-Universe
cosmology to determine the initial conditions for the growth of perturbations. In particular,
the various inflationary theories of the early Universe make definite and testable predictions
about the initial spectrum of perturbations.

A breathtaking amount of theoretical work has been performed in these areas, and a
substantial number of methods have been found for confronting these theories with obser-
vation. In this dissertation we will be concerned with the study of the cosmic microwave
background (CMB) radiation, which has proved to be one of the most powerful tools for
testing these theories, although we shall have frequent occasion to touch on the many other
sorts of observational evidence relevant to cosmology. As we shall see below, the CMB
is a relic left over from a very early epoch. The typical microwave background photon is
thought to have last scattered off an electron at a time when the Universe was approxi-
mately one thousand times smaller than it is today.? The CMB is therefore an invaluable
source of information about the evolution of the Universe. In particular, fluctuations in
the observed temperature of the CMB at different points on the sky contain the imprints
of small fluctuations in the distribution of matter at this early epoch. The CMB therefore
provides a unique window into the Universe’s younger days. It can be used to test ideas
about the early Universe; we shall see that inflation in particular makes quite definite pre-
dictions about the statistical properties of the observed CMB fluctuations. Furthermore,
by comparing the small fluctuations imprinted in the CMB with the much larger density
variations we see in the Universe today, we can hope to test the gravitational instability
hypothesis, and perhaps to make discoveries about the nature and amount of matter in the
Universe.

The remainder of this chapter is organized as follows. In Section 1.2 we give a brief

overview of the hot big bang model. Section 1.3 contains a brief summary of the theory

2The number 1000 depends upon the some assumptions about the ionization history of the Universe. In
particular, if the Universe underwent early reionization, then the epoch of last scattering may be somewhat
more recent. In any case, however, the microwave background photons are still much older than any objects
we can observe directly. We can be quite confident that the CMB originates from further away than clusters
of galaxies at fairly high redshift, because we have observed the Sunyaev-Zel’dovich effect, i.e., a spectral
distortion to the CMB caused by inverse Compton scattering, in such clusters [17, 97, 192]. Furthermore,
the fact that the CMB has a blackbody spectrum suggests that it was produced by an optically thick source.
Such a source must be further away than the most distant radio galaxies at redshifts of a few; if it were
closer, it would obscure the radio galaxies.
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of CMB anisotropy. In the final section, we provide a guide to the remainder of this

dissertation.

1.2 The Hot Big Bang Model

We will not attempt to give a comprehensive review of the big bang model here. Such
a review is a monumental task, and volumes have been written in attempts to accomplish
it. We refer the reader who is interested in reviews of the big bang model in general to the
books by Peebles [134, 136, 138], Kolb & Turner [108], and Padmanabhan [132] for such
a detailed treatment, and to Longair [119] and Peebles et al. [139] for briefer overviews.
The reader in search of a review of current topics in cosmological perturbation theory and
large-scale structure may wish to look at the reviews by Efstathiou [57, 58], White [190],
and Ostriker [131]. In this section we will briefly summarize some important aspects of the
theory and some of the observational support for it, concentrating on those aspects that
are relevant to the rest of this dissertation.

When Scheuer claimed in 1963 that cosmology was a discipline containing only 21/,

facts, he was referring to the following;:
1. The night sky is dark.

2. The galaxies are receding from one another with speeds that are proportional to their

distances.

21/,. Some classes of astronomical objects (e.g., radio galaxies) appear to have been different

at earlier epochs from the way they are today.

In the intervening three decades, the observational situation has improved consider-
ably: newer and more powerful optical telescopes have been built, and, more importantly,
we have learned to observe the sky over a much broader set of wavelengths. Even still, in
his rather conservative review [119], Longair extends Scheuer’s list to a mere nine facts.

Even Scheuer’s meager list permits some interesting conclusions. The observation
that the night sky is dark leads to what is generally known as Olbers’s paradoz [130],
although it had been around for at least a century before Olbers got to it [78]. If we
suppose that the Universe is spatially infinite, has existed for an infinite amount of time,

and contains a homogeneous, static distribution of stars (or galaxies), then every line of



CHAPTER 1. COSMOLOGY AND THE CMB 5

sight should end on the surface of a star, so that the surface brightness of the night sky
should be the same as that of a typical star. The very fact that the sky is dark at night
forces us to conclude that at least one of these assumptions is false.

The big bang model has two independent ways of resolving Olbers’s paradox. First,
the Universe has a finite age. Light has had only a certain amount of time to travel since
the beginning, so even if the Universe is infinite, the volume that is visible to any particular
observer is finite.3

The second resolution of Olbers’s paradox arises from the second fact on Scheuer’s
list, namely Hubble’s [92] observation that the light from galaxies is redshifted in proportion
to their distance. Distant galaxies have extremely large redshifts, and the light from them
is therefore shifted to unobservably low energies. Of course, the discovery of the Hubble
redshift law did a great deal more than simply resolve Olbers’s paradox. It led to a radical
new conception of the Universe, in which the galaxies are all flying apart from one another.

Hubble’s discovery of the expanding Universe led to two competing theories. The
steady state theory proposed that the Universe, on average, does not change with time.
In order to reconcile this postulate with the observed expansion, one must propose that
new matter is constantly being created to keep the density constant. The steady state
cosmology is inconsistent with Scheuer’s fact 21/, which shows that in at least some ways
the Universe is not invariant under translations in time.? The model is also unable to
explain the cosmic microwave background radiation and has difficulty explaining the high
cosmic helium abundance. As we shall see below, its rival, the big bang model, explains
both of these phenomena in an extremely natural way.

In the big bang model, we abandon the “perfect cosmological principle” that the
Universe is invariant under time translations. We take at face value the observation that the
Universe is expanding and we presume that there is no mysterious process creating matter

ex nihilo. Tt then follows that the Universe is getting larger and less dense with the passage

3Interestingly enough, one of the first people to propose this resolution of Olbers’s paradox was Edgar
Allen Poe, who suggested that “the distance of the invisible background is so immense that no ray from it
has yet been able to reach us at all” [142].

*In 1963, Scheuer considered this to be half a fact. It is by now certainly a full-fledged fact. There
are several independent lines of evidence suggesting that various populations of objects have evolved over
cosmological time scales. For example, the morphology of radio galaxies varies systematically with redshift
[37], and high-redshift galaxies tend to be bluer than their nearby cousins [42]. But perhaps the most
visually striking evidence that galaxies evolve with time comes from recent Hubble Space Telescope images
of very distant galaxies [55]. In these remarkable images the morphological difference between galaxies at
high redshift and nearby galaxies are unmistakable.
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of time. In particular, at very early times the density must have been extraordinarily high,
and in fact one can extrapolate all the way back to a time when the density was infinitely

” although a naive extrapolation all the way

high. This moment is dubbed “the Big Bang.’
back to this moment is presumably not warranted, and in fact we know nothing at all about
that moment itself (if there even was such a moment).

If we throw in a few more assumptions, we can begin to construct a genuine physical
theory of cosmology. First, let us assume that on average the distribution of matter is
homogeneous and isotropic. We know, of course, that this is false if we look on fine enough
scales: the Earth is many times more dense than the interstellar medium in our own Galaxy,
to say nothing of the intergalactic medium. However, the assumption does seem to be correct
if we average over a scale of, say, several hundred megaparsecs. Until recently, hard evidence
for large-scale homogeneity was somewhat scanty; in particular, surveys of the distribution
of galaxies always seemed to reveal clustering on scales as large as the scale of the survey.
That has not stopped visionaries,” including Einstein [61], from making this assumption,
however. Nowadays, the evidence supporting the assumption seems solid [138].

If we combine the assumptions of homogeneity and isotropy with Einstein’s general
relativity, we can describe the geometry of the Universe in great detail. Friedmann [63] ob-
served that a homogeneous and isotropic solution to the Einstein equations must necessarily

have a metric of the form

ds? = dt* — R¥(t) (dr? + $%(r)(d6? + sin? 0 dg?)) , (1.1)
where
sin r
S(r)= T (1.2)
sinh r,

if the spatial curvature is positive, zero, or negative respectively. The spatial part of this

metric describes a three-dimensional surface of constant curvature, either a three-sphere,

6

Euclidean space, or hyperbolic space.® R(t) is the time-dependent overall scale of the

®We call them visionaries because they turned out to be right. Otherwise, we would have a different
name for them.

If we choose, we can replace the assumption of isotropy with the weaker assumption of local isotropy.
(Specifically, we demand not that the elements of the group of rotations about a point be isometries of the
whole spacetime manifold, but only that they act isometrically on a neighborhood of each point.) In this
case, space must still be locally isometric to one of these three manifolds, but the global topology may be
nontrivial. Such nontrivial topologies exist whether the Universe is open, flat, or closed. In general, we will
be concerned only with models that have the standard simply-connected topology (that of the three-sphere
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solution. In models with spatial curvature, it is the curvature radius; it is an arbitrarily-
normalized scale factor in spatially flat models.

If we know the stress-energy tensor of the matter in the Universe, then the Ein-
stein equation gives a differential equation that can be solved for R(¢). To be specific,
one frequently assumes that the matter in the Universe is a perfect fluid characterized by
some time-dependent energy density p and pressure P. With these assumptions, the time

evolution of the scale factor is described by the Friedmann equation,

-\ 2
R k 81Gp
(E) TRt (13)

where k takes on the values +1, 0, or —1 depending on whether the spatial curvature is
positive, zero, or negative. This equation alone is insufficient to specify the dynamics: we
need to know how p depends on time. Local energy conservation requires that the density
and pressure satisfy the relation d(pR3) = —P d(R?3). This relation gives the familiar results
p o< R™3 for pressureless dust, and p o R=* for radiation (with P = p/3). For the case of
vacuum energy (also known as a cosmological constant), p should be independent of R, and
so vacuum energy must be described by a negative pressure P = —p.

We can draw a number of useful conclusions by inspecting the Friedmann equation
(1.3). As long as p decays faster than R™2, the curvature term k/R? in equation (1.3) is
negligible in comparison to the matter term at sufficiently early times. Furthermore, the
sign of the curvature is simply the sign of 2 — 1, where the density parameter € is the ratio

of the density p to a certain critical density,

P -__7F (1.4)

Q =
perit  3H?/87G’

and H = R/R is the Hubble parameter.

The case where £ = 0 (and hence = 1) is of particular interest, both because it
is bound to be a good approximation at early times, and because we have some reasons
to suspect that we may live in such a flat Universe today. The Friedmann equation has
particularly simple solutions in this case. In particular, R o t2/3 if the Universe is filled with
pressureless dust, and R o #1/2 if the Universe is dominated by relativistic matter so that

P = p/3. Finally, if the Universe is dominated by vacuum energy (or equivalently if it has

if the Universe is closed, otherwise that of R®. Models with nontrivial topology are described briefly in
Appendix C.
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a large cosmological constant A), then the scale factor grows exponentially: R x exp(Ht),
with H determined by setting Q = 1 in equation (1.4).7

We now turn from the dynamics of space itself to the behavior of the matter within it.
As the Universe expands, its contents cool adiabatically so that the temperature is inversely
proportional to the scale factor R. Our belief that the Universe did in fact cool from an
initial hot state is based primarily on two sorts of observational evidence. The first class
of evidence, about which we will have little to say here, consists of measurements of the
relative abundances of isotopes of the light elements hydrogen, helium, and lithium. One
can predict the isotopic abundances produced during the hot early Universe (at time t ~ 1
minute). The results are in satisfactory agreement with observations, although the process
of converting observed abundances to “primordial” ones is far from trivial.® Furthermore,
the high abundance of *He (about 23% by mass) is quite hard to explain in any way other
than by fusion in the early Universe. For further details on the current status of big bang
nucleosynthesis, see [159, 181] and references therein.

The second piece of evidence supporting the hypothesis of a hot early Universe is the
existence of the microwave background radiation itself. In the hot early Universe, matter
and radiation should have been in thermal equilibrium. The early Universe should therefore
have contained photons with a blackbody spectral distribution. Eventually, as the temper-
ature and density decreased, the reactions that coupled the photons to the matter began to
occur too infrequently to maintain thermal equilibrium; however, even after these reactions
had stopped completely, the photons retained their blackbody distribution, with temper-
ature decreasing as R~!. (Each individual photon is redshifted in wavelength in direct
proportion to R, while the photon number density simply decreases in inverse proportion to
the volume element R>. These two effects conspire to maintain the blackbody spectrum.)
The big bang model therefore predicts that the Universe should be filled with blackbody
radiation today.

This blackbody radiation was inadvertently discovered in 1964 by Penzias and Wilson

[141]. It was immediately recognized as a relic from the early Universe by Dicke et al. [52],

"We are restricting our attention here to solutions in which R > 0, since we know that the Universe is
expanding. The Einstein equation is invariant under time reversal, so we could obtain contracting solutions
by replacing ¢ by —t in these solutions.

8The theoretical predictions depend on one unknown parameter, the baryon-to-photon ratio (or equiva-
lently, since we know the current photon density quite well, the baryon density today). Since we have several
different isotopes to use (D, *He, *He, and "Li, all measured relative to H), we can simultaneously fit to this
parameter and test the consistency of the whole theory.
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who had just embarked on a project to search for it. The spatial distribution and spectrum
of this blackbody radiation have been subjects of intense study over the succeeding decades.
According to the FIRAS instrument aboard the COBE satellite, the spectrum matches that
of an ideal Planckian black body to the level of about one part in 10° [123].? The blackbody
temperature is T = 2.726 £ 0.010 K (95% confidence). The near perfection of the Planckian
spectrum argues strongly for a cosmological origin.

The nearly perfect isotropy of the microwave background radiation also suggests that
it is a relic of the early Universe. Any local source would be expected to show some
anisotropy, since the distribution of matter nearby (both within our Galaxy and in its
neighborhood) is quite far from uniform. The microwave background, however, is isotropic
to the level of about one part in 10% over a wide range of angular scales [188], apart from
a dipole anisotropy at the level of one part in 103, which is interpreted as the effect of
our motion with respect to the CMB center-of-momentum frame [40, 106, 160]. Of course,
the isotropy of the CMB is not quite perfect, as was first discovered by Smoot et al. in
1992 [163]; the characterization of this slight anisotropy forms the primary concern of this
document.

On the basis of this evidence (and more), nearly all cosmologists have accepted the
hot big bang model and have turned their attention to a number of open questions within
the model. In particular, a great deal of attention has focused on the evolution of inho-
mogeneities in the Universe. The big bang model proposes that the Universe is nearly
homogeneous on large scales, and the nearly perfect isotropy of the CMB suggests that the
Universe was very close to homogeneous over a wide range of scales at the time of last scat-
tering. However, we know that the Universe today is quite far from homogeneity on scales
less than about 100 Mpc: matter'® is lumped into galaxies, which are in turn organized
into groups and clusters, and even on the largest scales into superclusters and “great walls.”
The mechanism by which this large-scale structure formed has been a topic of great interest
in recent decades.

There is widespread belief that the solution to this puzzle is that structure grew
via gravitational instability. If the early Universe contained slight departures from perfect

homogeneity, then these density fluctuations could have grown under the influence of gravity

?Remarkably, the microwave background is at least as good a black body as anything we know how to
produce in a laboratory.
19T, uminous matter, anyway.
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to produce the structure we see today. This hypothesis makes a great deal of qualitative
sense, and it is therefore of considerable interest to test it quantitatively. The CMB provides
a powerful probe of this hypothesis: if the gravitational instability hypothesis is correct,
then the initial “seed” fluctuations should leave their imprint as spatial variations in the
CMB temperature we observe today.

Although the process of making detailed quantitative predictions of CMB anisotropy
is quite demanding, the physical picture is easily grasped. In the standard big bang model,
the photons and baryons are quite tightly coupled until a redshift of around 1000. At this
time the rate of interaction between photons and electrons drops dramatically, primarily
because of the formation of neutral hydrogen atoms. The mean free path of a photon is
extremely large thereafter, and indeed most photons propagate freely from that epoch until
today. When we look at the microwave background, we are therefore seeing a snapshot of the
Universe at the time of last scattering. As we will see below, several distinct physical effects,
both on the surface of last scattering and in the intervening space, leave their imprints on
this snapshot. (If the Universe underwent early reionization, then a large fraction of photons
do scatter again after redshift 1000. As we will see, this has the effect of erasing some of
the primordial fluctuations.)

Early work in the field [140, 157, 158] was primarily concerned with a Universe filled
with ordinary baryonic matter. In these models the seed fluctuations required to explain
structure formation predicted CMB anisotropy at the level of about one part in 103. The
realization that the actual amplitude of anisotropy was below these levels was one of the
motivations for consideration of cosmological models dominated by nonbaryonic dark mat-
ter.

In order to test the gravitational instability hypothesis, one needs to make a number of
guesses about initial conditions. In particular, one must specify the density and composition
of the Universe, as well as the statistical properties of the initial density fluctuations, before
it is possible to make quantitative predictions to compare with observations. If there is no
fundamental theory available to make definite predictions on these subjects, one sometimes
relies on simple educated guesses. For example, one might guess on grounds of “naturalness”

or esthetics that the Universe should be spatially flat,'' and in the absence of a better

"The idea that € = 1 is in some sense “natural” is usually based on the fact that 1 is an unstable fixed
point for Q. If Q differs slightly from one at some early time, then |2 —1| grows extremely rapidly. Therefore,
since we know that € is fairly close to one today, we can conclude that it must have been exztremely close to
one at early times. If one is going to go to the trouble of “fine-tuning” Q to be 1 + e with ¢ € 1 at early
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idea one might guess that the initial density fluctuations were Gaussian distributed with a
smooth power-law power spectrum. The remaining free parameters (e.g., the normalization
and spectral index of the power spectrum) would then be determined by fitting to the data.

During the 1980’s these guesses began to be supplanted with theoretical models that
attempted to predict the initial conditions for structure formation from early-Universe
physics. In particular, models in which the early Universe went through an inflationary
period of rapidly accelerating expansion became quite popular. (See [127] for a review of
inflationary cosmology.) These models solve the so-called horizon problem; that is, they
explain how widely separated points in the Universe “know” to have the same temperature
and density. Inflation also explains why €2 is as close to one as it is: during an inflationary
epoch, the quantity | — 1| decreases extremely rapidly.'?

In addition to solving the horizon and flatness problems, inflation provides a natural
physical mechanism for generating initial density perturbations. Quantum fluctuations dur-
ing the inflationary epoch are “stretched” by the expansion to become density perturbations
today. The fluctuations generated in these models are Gaussian with a power spectrum that
is close to the scale-invariant form P(k) x k. (Note that P no longer denotes pressure.)
Inflationary models therefore go a long way towards completely specifying the initial condi-
tions for the structure formation problem. In particular, we can use these models to make
definite predictions for the statistical properties of the CMB anisotropy as well as for the

present matter distribution.

1.3 Microwave Background Anisotropy as a Cosmological

Probe

In this section we will give a brief introduction to the theory of CMB anisotropy.
We will not attempt a comprehensive review of this vast subject; the interested reader is
referred to review articles by Bond [23] and White et al. [188] and to the excellent Ph.D.
thesis of Wayne Hu [85]. We will instead simply describe qualitatively the relevant physical
effects.

times, one might as well go all the way and suppose that it was exactly one. The present author has never
been overwhelmed by the persuasiveness of this argument.

12A more physically pleasing way to say this is that the curvature radius grows to be much larger than
the present horizon size, so no spatial curvature is detectable today. It is, however, possible to contrive
inflationary models in which spatial curvature is not negligible [29, 121, 144, 197].
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Figure 1.1: Angular power spectrum for a cold dark matter model

The angular power spectrum Cj is shown for a particular inflation-inspired
model. The angular scales indicated at the top of the figure are given by the
simple relation § = 60°/l. The overall normalization of the power spectrum is
arbitrary.

The foundations of the theory of CMB anisotropy date back almost to the discovery
of the background radiation itself. Pioneers in the field include Sachs & Wolfe [149], Silk
[157, 158], Sunyaev & Zel’dovich [172], and Peebles & Yu [140]. Over the intervening decades
we have learned to make extremely precise predictions of the statistical properties of the
CMB anisotropy in particular models. Several groups, beginning with Bond & Efstathiou
[24, 25], have written programs that numerically integrate the Boltzmann equation for the
coupled matter-radiation fluid to obtain the CMB angular power spectrum. These programs
are now accurate to levels of a few percent [91]. There are also surprisingly accurate analytic
approximations that provide valuable insight into the physical mechanisms producing the
anisotropy [85, 88].

Figure 1.1 shows the angular power spectrum C; for a typical inflation-inspired

model. The particular model shown has spectral index » = 1, Hubble parameter Hy =
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50km/s/Mpc, and baryon fraction Q25 = 0.06. The remaining 94% of the matter is non-
baryonic cold dark matter. We will discuss angular power spectra in more detail in Chapter
2; for the moment all we need to know is that C; is the variance of the coefficient a;,, of a
spherical harmonic expansion of the temperature fluctuation AT on the sky. As indicated
in the figure, large values of [ correspond to fluctuations on small angular scales and wvice
versa. Our primary concern in this dissertation will be with the COBE DMR data. Since
the DMR has a resolution of 7° (FWHM), it is insensitive to fluctuations on small angular
scales, and so our primary concern will be with values of I less than about 30.

Figure 1.1 contains a surprising amount of structure, especially considering that the
primordial inflation-generated density fluctuations have a featureless power-law power spec-
trum. As we will see in the remainder of this section, the reason for this is that several
distinct physical effects conspire to produce the total anisotropy power spectrum.

For the large scales probed by COBE, the most important mechanism for produc-
ing anisotropy is the Sachs-Wolfe effect [149]. This is simply the gravitational redshift or
blueshift suffered by the CMB photons between the surface of last scattering and here. In
the simplest case, where the gravitational potential does not evolve in time, the fractional
energy shift of each photon is simply the difference in gravitational potential between emis-
sion and reception. If the gravitational potential does change with time, then there is an
additional energy shift obtained by integrating the derivative of the potential along the pho-
ton’s world line. This additional shift often goes by the name of the integrated Sachs-Wolfe
effect, and in the case where the changing potential is due to the formation of nonlinear
structures it may be called the Rees-Sciama effect. Whatever name one gives to the effect,
credit for its discovery belongs to Sachs and Wolfe.

If we assume that © = 1, that the Universe is dominated by nonrelativistic matter,
and that all departures from homogeneity are small enough for linear perturbation theory to
be a good approximation, then the gravitational potential does not evolve in time and there
is no integrated Sachs-Wolfe effect. As we will see in Chapter 2, the Sachs-Wolfe effect in
this case gives a power spectrum C; o 1/I(I+1) if the primordial density power spectrum is
of the Harrison-Zel’dovich form P(k) o< k. This is the explanation of the flat portion of the
power spectrum at large angular scales in Figure 1.1. However, the assumption of matter
domination is not quite correct at the time of last scattering: the energy density of photons
and relativistic neutrinos is not entirely negligible. There is therefore a small integrated

Sachs-Wolfe contribution, which is the primary cause of the slow rise in the power spectrum
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at low [.
The prominent peaks in the power spectrum on angular scales ~ 025 are generally

" although the term is something of a misnomer [88]. They

referred to as “Doppler peaks,’
are caused by acoustic waves propagating through the photon-baryon fluid during the time
leading up to last scattering. Only waves with wavelengths smaller than the horizon distance
at the time of last scattering have time to develop; this imposes the characteristic angular
scale of about half a degree. The sequence of peaks is akin to a harmonic series: the
first peak corresponds to waves that are just reaching their first antinode at the time of
last scattering, while subsequent peaks are produced by higher-frequency modes that have
oscillated more than once.

In explaining both the Sachs-Wolfe plateau and the “Doppler” peaks, we have implic-
itly had in mind a fairly simplistic model: we have imagined that the photon-baryon fluid
remains tightly coupled right up until the moment of last scattering, at which moment the
photons are instantaneously and simultaneously released. This model is good enough for ex-
plaining relatively large-scale features, but if we want to understand the precipitous decline
in the angular power spectrum around [ ~ 1000, we need to do slightly better. Around the
time of last scattering, the photon mean free path increases dramatically.!® Perturbations
in the photon density are therefore erased by diffusion: photons wander out of overdense
regions and into underdense regions. This process, which is known as “collisional damp-

" erases fluctuations on scales less than a few megaparsecs [158] and

ing” or “Silk damping,’
explains the decrease in power at small scales in Figure 1.1.

The same qualitative features — the Sachs-Wolfe plateau, the “Doppler” peaks, and
Silk damping — occur in a wide range of models. Indeed, by measuring the locations and
amplitudes of these various features, we can hope to determine cosmological parameters
such as the baryon fraction and the Hubble constant. See [85] for details about the man-
ner in which these features depend on cosmological parameters. In all models in which
recombination occurs on schedule at z ~ 1000, the effects of Silk damping are completely
unobservable on the large angular scales probed by COBE; in fact, even the acoustic peaks
are largely irrelevant on COBE scales in these models. Our primary concern will therefore

be with the Sachs-Wolfe effect (both integrated and otherwise), although we will comment

briefly in Chapter 5 on reionized models, in which other effects are quite important.

¥Indeed, after last scattering, the mean free path is greater than the horizon distance; after all, that’s
what “last scattering” means.
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The effects we have described in this section by no means form an exhaustive list of
sources of CMB anisotropy, although they are the most important contributors on large
angular scales. We have not considered models in which the Universe contains topological
defects such as strings or texture; these defects impose their own characteristic forms of
CMB anisotropy. In addition, long-wavelength gravitational waves can produce anisotropy
via the Sachs-Wolfe effect; we will have more to say on this subject in Chapter 5. Finally,
everything we have described is based on linear perturbation theory; on small angular scales,
and especially in reionized models, higher-order effects can be important [87].

We have not yet mentioned the vexing issue of foreground contamination. It can be
quite difficult to be certain that the anisotropy we see in the sky is due to the CMB and
not some contaminant within our own Galaxy. In particular, thermal emission from dust
and synchrotron and free-free emission can all be significant sources of confusion for CMB
observations. Fortunately, these sources have significantly different spectral signatures from
CMB anisotropy, and so it is in principle possible to separate them out. The COBE DMR
experiment is thought to be largely free from Galactic contamination for Galactic latitudes
greater than 20°. This hypothesis is supported by the spectral characteristics of the signal,
as well as the fact that the overall amplitude of fluctuations does not appear to vary with
latitude over this portion of the sky [12, 13, 163]. The fact that the DMR data appear to be
consistent with experiments at widely separated frequencies [66, 183] also strongly suggests
that the DMR is seeing real CMB anisotropy rather than foreground contamination. The
status of foreground contamination in experiments on smaller angular scales is far less clear

[28, 145].

1.4 A Guide to This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 contains a
technical introduction to the subject of CMB data analysis. We begin by describing the
assumptions we will make about the statistical properties of the CMB anisotropy. We
derive the Sachs-Wolfe formula for the CMB anisotropy power spectrum due to gravitational
potential fluctuations and comment on the window functions that filter the anisotropy
seen by various experiments. The remainder of the chapter is concerned with the COBE
DMR experiment. We briefly describe the instrument and the data set, and establish some

convenient notation; we conclude with a discussion of the controversial question of what to
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do with the seemingly anomalous COBE quadrupole.

Chapter 3 describes some simple “toy models” for CMB anisotropy analysis. Al-
though the models described are designed to be similar in some ways to the DMR data,
our purpose in this chapter is not to derive precise quantitative results that can be applied
to any particular experiment. Rather, we aim simply to assess what sort of questions can
fruitfully be asked of a data set like that of the DMR. In particular, we observe that in the
absence of complete sky coverage it is impossible to estimate individual spherical harmonic
coefficients. Fortunately, the cosmologist’s primary concern is estimating the angular power
spectrum, a task which need not be seriously compromised by incomplete sky coverage.

In Chapter 4 we describe in detail a method for extracting likelihood information
from experiments such as the DMR. The Karhunen-Loéve transform described therein is
essentially a method for “compressing” the data by expanding it in a set of basis functions
and throwing away those modes that are dominated by noise. We perform the transform
on the two-year DMR data and give some preliminary results, and we also describe some
tests of the method.

Chapter 5 contains the results of confronting the Karhunen-Loéve transformed DMR
data with a number of cosmological models, with particular emphasis on cold dark matter
models both with and without a cosmological constant. We provide maximum-likelihood
power-spectrum normalizations as well as relative likelihoods for these models. We also
place Bayesian constraints on the value of the cosmological constant A in simple models.

In the final chapter we derive the Wiener filter and apply it to the DMR data. Our
goal in this chapter is to “clean up” the noise in the data and identify statistically robust
features in the maps. In addition, we use the filtered maps to make predictions for the
Tenerife experiment, which probes slightly smaller angular scales than COBE.

The reader who does not wish to read the entire document may be interested to
know that Chapters 2 and 3 may each be read independently. Chapters 4, 5, and 6 rely on
some material in Chapter 2, especially Section 2.6, and Chapter 5 depends fairly heavily on

material in Chapter 4.
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Chapter 2

An Introduction to Microwave

Background Data Analysis

Our experience with microwaves has followed a familiar contemporary pattern:
inadequate response to great expectations.

Irma S. Rombauer and Marion R. Becker
The Joy of Cooking

2.1 Introduction

Although Rombauer & Becker’s interests are culinary rather than cosmological [147],
their view may have been shared by many cosmologists several years ago. The enormous
potential of microwave background experiments to probe the evolution of the Universe had
been well known for years, but all attempts to discover deviations from a perfectly uniform
blackbody background had failed.

With the discovery of anisotropy by the COBE satellite [163] and the subsequent
flurry of reported detections on smaller angular scales (see [188] for a review), the situation
changed dramatically. The CMB now provides the best way of normalizing the spectrum
of fluctuations in models of structure formation [31, 185], and as the data on degree scales
improve in accuracy, the shape of the CMB power spectrum will provide powerful constraints
on models. Over the last few years, therefore, much attention has been focused on developing
techniques for extracting cosmological information from CMB anisotropy experiments. Such

techniques are the primary subject of this dissertation.
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In this chapter we will establish the statistical framework for the problems in CMB
data analysis that will be tackled in subsequent chapters. In Section 2.2 we will discuss
the predicted statistical properties of CMB anisotropy, including a description of Gaussian
random fields on the sphere. In Section 2.3 we comment briefly on the methods by which the
angular power spectrum corresponding to a particular theory may be computed, and derive
the important Sachs-Wolfe angular power spectrum formula (2.29). Section 2.4 describes the
window functions through which the anisotropy AT is filtered by particular experiments.
In Section 2.5 we describe the properties of the COBE DMR data, whose analysis will
comprise most of the rest of this dissertation. Section 2.6 establishes some useful notation,
and Section 2.7 addresses an important technical issue having to do with the possibility

that the COBE quadrupole may be contaminated.

2.2 The Statistics of Microwave Background Anisotropy

Our primary concern in this dissertation will be with theories in which the CMB
anisotropy is a realization of a Gaussian random field. This is likely to be a fairly good
assumption. Theories based on inflation predict quite unambiguously that the CMB aniso-
tropy should be described by Gaussian statistics [112, 188]. Some theories, such as those
based on cosmological defects, predict non-Gaussian CMB anisotropy [27, 98, 179, 180];
however, even these theories predict only very small departures from Gaussian statistics on
large angular scales [14, 26, 41, 56]. (This is essentially due to the central limit theorem: the
large-angle anisotropy in these models is a superposition of many independent fluctuations,
and so the distribution tends towards a normal distribution.) Since we will be concerned
primarily with the COBE DMR data, which probe only scales greater than about 7°, we do
not expect to see any effects of non-Gaussian structure even if one of these defect models
proves to be correct. In any case, the DMR data have been processed in various ways to
test for any sign of departure from Gaussian statistics with null results [82, 107, 163].

When we say that the CMB anisotropy AT is a realization of a Gaussian random
field, we mean that for any sequence of points (r1,T3,...,,) on the sky, the n-dimensional

vector

(AT(#1), AT (i), ..., AT(#n)) (2.1)

is a random variable drawn from a multivariate Gaussian distribution [5]. If we specify the

mean (AT(r)) of this distribution at all points F, and the covariance matrix (AT(r1)AT(T2))
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at all pairs of points, then we know everything there is to know about the statistical prop-
erties of the anisotropy.!

The assumption of Gaussian statistics is quite restrictive. Without this assumption,
we would have to treat the entire probability distribution as an unknown function, to be
predicted from a theory or estimated from the data. With the assumption of Gaussianity,
only the means and covariances are unknown, leaving us a much smaller parameter space
to explore. Another way to say this is to note that a Gaussian distribution is determined
entirely by its first two moments, while in general one needs to specify the third moment
(AT(r1)AT(r2)AT(r3)) and indeed the entire sequence of higher moments to identify a
distribution.

In most cases, we can assume that the CMB anisotropy is homogeneous and isotropic
as well. This is true in cosmological models in which there is no preferred direction on the
sky. All “mainstream” cosmologies satisfy this property, although some multiply connected
(topologically “small”) models and models with large-scale rotation or shear (Bianchi mod-
els) do not. (See Appendix C for some remarks about such nonstandard models.) These
assumptions mean that the probability distribution of AT is invariant under the group of
isometries of the sphere. Specifically, the mean (AT(r)) is a constant over the sphere. Fur-
thermore, since AT is a fluctuation about the average temperature, this constant must be
zero. In addition, the covariance between AT at two points must depend only on the angle

between those points:

(AT (r1)AT(r2)) = C(0), (2.2)

where

0 = cos™! (- ) (2.3)

is the angle between 11 and ry. With these assumptions, the statistical properties of the
anisotropy are described entirely by the correlation function C(6). It is often convenient to

expand C in Legendre polynomials:
1 >0
= E; (214 1) C; Py(cos B). (2.4)

In ordinary Euclidean space, the simplest way to characterize a homogeneous, iso-

tropic Gaussian random field is generally in terms of its Fourier transform. Distinct Fourier

'Here, and throughout this dissertation, the angle brackets {---) denote an average over a hypothetical
ensemble of Universes. In general, random fields on the sphere are not ergodic, and so this ensemble average
is not the same as an average of one realization over the sphere.
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modes are uncorrelated, and so all of the statistical information is contained in the variances
of the individual modes. Because of isotropy, these variances depend only on the amplitude
of the wave vector, and so the power spectrum P(|k|) = (| f(k)|?) is a complete description
of the random field f. One can make corresponding statements about random fields on the
sphere, which will prove quite useful to us.
We begin by expanding the random field AT in spherical harmonics:
o0 l
AT(E) =D > amYim(D). (2.5)

=2m=—1
We have omitted the monopole (I = 0) term from the sum because AT must average to
zero over the whole sphere, and we have omitted the dipole (I = 1) because it is impossible
to distinguish from the much larger kinematic dipole caused by our motion relative to the

CMB rest frame?. The coefficients a;, are
G = / AT(3)Yi(3) 492, (2.6)

where d? = d cos 8 dy is the usual volume element on the sphere, and (6, ¢) are the spherical
coordinates of r. The integral ranges over the entire sphere.

The astute reader might have expected a complex conjugate sign in the above equa-
tion. We must explain its absence. Throughout this dissertation, the symbol Y}, will denote
a real-valued spherical harmonic. The real-valued spherical harmonics are simply the con-

ventional spherical harmonics with complex exponentials replaced by ordinary trigonometric

functions:
iﬁ(rzom)(t‘), ®) for m =0
Yim (0, ¢) = Ylgrclom)(H,O)\/icos me forl<m<Il . (2.7)

Y(Conv)(H,O)\/isin me for -1 <m< -1

Im

Here Ylgfzonu) is a conventional spherical harmonic as defined by, e.g., Jackson [93] or
Abramowitz & Stegun [3]. The real-valued spherical harmonics Y}, satisfy the usual or-

thonormality condition

/Y—lm(evw)lfl’m’(gago) dSl = b b - (28)
The addition theorem for the real-valued spherical harmonics is
l
4

= m Z Y—lm(07§‘9)yvlm(017¢/)7 (29)
m=-1

Pi(cos)

2In principle, of course, the CMB anisotropy presumably has an intrinsic dipole component; we simply
define AT to be the dipole-subtracted anisotropy.
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where v is the angle between the points (8, ¢) and (#',¢’). This differs from the addition
theorem for the conventional spherical harmonics (equation (3.62) of [93]) only through the
absence of a complex conjugation.

Since the coefficients aj,, are linear in AT, they are Gaussian-distributed. Further-
more, since (AT) = 0, it follows from equation (2.6) that (ai,) = 0. Thus for a complete
description of the probability distribution of the a;,,’s, all we need is their covariances.

Using equation (2.6), we find that

<almal'm'> = /dﬂ dQ/lem(Haw) le'm’(glawl) <AT(07S‘9)AT(0/7$@/)> (210)
_ / 49 Q' C(7)Yim(8, &)Y (8, ). (2.11)

Using equation (2.4) and the addition theorem (2.9), this becomes

<almal’m’> = Z Cl”/dﬂy’lm(gag‘o)yvl”m”(eag‘o)/dQ/YvI’m’(Ola@/)le”m”(olag‘o/)' (212)

l”,rn,”

So, using the orthonormality relation (2.8),
<almal’m’> = Cléll’émm’- (213)

Note that since ay,, = 0 for I < 1, Cy = Cy = 0. To summarize, the a;,’s are independent
Gaussian random variables with zero mean and variances C;. We can completely specify
the probability distribution of AT by simply giving the sequence C;. The Cy’s are generally
known as the angular power spectrum.

At this point it may be wise to comment on the subject of “cosmic variance.” Cos-
mologists work with data sets that are restricted to a sample size of one. We can observe
only one Universe, and we observe it from only one vantage point. This unfortunate fact
restricts our ability to extract information about the CMB. In particular, there is an un-
avoidable bound on the accuracy with which we can estimate the angular power spectrum
C.

Suppose that we had a perfect CMB experiment, which measured AT over the entire
sky with negligible noise. Then we could determine the spherical harmonic coefficients aj,,
with perfect accuracy from equation (2.6). The maximum-likelihood estimator of C; would

simply be l
- 1
Cr= - 2.14
l 20+ 1 E Am ( )

m=—I
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Since the aj;,’s are independent, identically-distributed Gaussian random variables (for fixed
1), C; has a chi-squared distribution with 27 + 1 degrees of freedom. The variance of Cyis

therefore A
Var(C;) 2

¢ 20+ 1

For low values of [ this is quite substantial, implying that we will never be able to use the

(2.15)

CMB to distinguish among theories that differ only slightly in just their large-scale power
spectra.

The term “cosmic variance” refers to the unavoidable minimum uncertainty in equa-
tion (2.15). In practice, no experiment ever attains complete sky coverage, and so this
limiting fractional uncertainty of \/2/(2] + 1) in an estimate of C; is never attained. Cos-
mologists generally reserve the term “sample variance” for the larger uncertainty that arises
due to incomplete sky coverage. For an experiment with complete sky coverage, the sam-
ple variance is simply the cosmic variance; if the sky coverage is incomplete, the sample
variance grows roughly in inverse proportion to the fraction of sky covered, as one would
expect [154, 187].3 In any case, likelihood-based techniques of the sort that we will describe

in Chapter 4 automatically include the effects of sample variance.

2.3 Computing the Power Spectrum

We have seen in Chapter 1 that many different physical effects contribute to CMB
anisotropy. Computing the angular power spectrum Cj corresponding to a particular theo-
retical model is therefore a daunting task. One must follow the evolution of perturbations in
the coupled photon-baryon fluid through recombination. In “standard” models with Gaus-
sian initial conditions (such as inflation-inspired models), all of the perturbations are small
and one can linearize the equations. Then individual Fourier modes* evolve independently,
and it is possible to solve the Boltzmann equation numerically to determine the CMB power
spectrum. For models with non-Gaussian seeds such as cosmic strings or texture, this pro-
cedure does not work. In these cases one must resort to detailed cosmological simulations
to make predictions for the CMB. For this reason, the state of the art in CMB prediction is

much more precise for inflation-based models than for those based on topological defects.

3In practice, of course, experiments are noisy, and so the total uncertainty is larger than either the sample
variance or the cosmic variance.
*Or, if space is not flat, harmonic modes.
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We will not embark on a detailed discussion of the computation of power spectra here.
The reader with an interest in understanding and solving the Boltzmann equation for the
CMB anisotropy is referred to a thorough review by Bond [23]. Other useful sources include
[24, 25, 57, 85, 88, 90, 91, 188] and references therein. The reader interested in topological
defects is referred to [26] and references therein. We will, however, give a derivation of the
contribution of the Sachs-Wolfe effect to the power spectrum of flat adiabatic models. This
is the largest contributor to the anisotropy on large angular scales, and so it will be our
primary interest when we analyze the COBE DMR data (although, as we shall see, other
effects are not entirely negligible even on these scales).

We suppose that @ = 1 and that the initial density perturbation é is a homogeneous
isotropic Gaussian random field with a power spectrum that is a power law in wavenumber
k. In other words, the Fourier transform?® 6y is Gaussian distributed with mean zero and
covariance matrix

(6161)) = P(k)op(k — k'), (2.16)

where

P(k) = Ak" (2.17)

and 6p is the three-dimensional Dirac delta distribution. The gravitational potential is

related to the density through Poisson’s equation,
2 3 2
Vip =4nGpLb = EH 0, (2.18)

where p, = 3H?/87G is the background density (which is also the critical density), and we

are working in the Newtonian gauge.® Working in Fourier space, we have

E Y (2.19)

3/2

where @ is the scale factor. Note that in a flat matter-dominated model, H « a7/ and

6  a, so ¢ is constant in time. Let us normalize the scale factor to be @ = 1 at the present,

so that ~
3 20k

®We denote Fourier transforms with a tilde. Cosmologists generally denote a function and its Fourier
transform by the same symbol, relying on context (generally meaning the absence or presence of the letter
k) to dispel ambiguity. We find this practice odious.

®For an exceptionally lucid discussion of gauges in cosmology, see [57].
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The power spectrum associated with the gravitational potential is then

9_LP(k
py(k) = 23T

9
= ZH(}A/Ic“-“. (2.21)

If we consider only the Sachs-Wolfe effect due to gravitational potential fluctuations
on the surface of last scattering, the fractional temperature anisotropy is (AT/T)(t) =
¢(Rr)/3 where R = 2¢/Hy is the distance to the last scattering surface. Using equation

(2.6) and taking a Fourier transform, we have
1 ol & ~
= —— [ dQ | BEY,, (F)e FEE G 2.22
Um = 3(21)3 / / im(E)e %k (2.22)
Squaring and taking an ensemble average, we find that
_ 1 3 iRK-(f2—F1)
Cl = 9(2 )6 d k’dﬂl dQQ Y'lm(ﬂl)yrlm(gg) P¢(k‘)€ . (223)
T
Recall that an exponential can be expanded in spherical harmonics:

e*T = 4 3" i (k) Vi (k) i (), (2.24)

Im

where j; is a spherical Bessel function [93]. The two angular integrals in equation (2.23) are

simply the spherical harmonic orthonormality relation (2.8), so

1 3 ) 1 9 .9
Cr==\ /d. kPy(k)j2(kR) = ﬁ/d.kk Py(k)j2(kR). (2.25)
Since Py k"4, we have
1 oo ned .
Ci= pﬂg/() dk k"2 i (kR). (2.26)

Performing this integral, we find that

1 nral (3=1)/2)T((20+n - 1)/2)

C) = W(ZHO) T'((4—n)/2)T((2l+5—n)/2)

(2.27)

It is customary to normalize power spectra with respect to Cy, since this is the lowest

nonzero element. Specifically, one generally defines a quantity

[5C
Qps = 4—;, (2.28)
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which is used to quote the normalization of the angular power spectrum.” With this nor-
malization convention, the Sachs-Wolfe angular power spectrum is

o = 4702 T2+ n=1)/2)T((9—n)/2)
T s T (2145 -n)/2)T((3+n)/2)

(2.29)

2.4 Window Functions

The bulk of this dissertation will be concerned with estimating the power spectrum C;
associated with the CMB anisotropy AT. However, no experiment measures AT directly. In
every case, the instrument response is the convolution of AT with some “window function”
depending on the details of the experiment. In this section we will describe how to compute
these window functions.

Every experiment has some finite beam-width, and so the anisotropy measured by
the experiment is always the convolution of AT with some point-spread function. For
many experiments, the beam pattern is approximated well by a Gaussian.® In this case the
instrument response is

R(§) = / 40 AT()W (£, ), (2.30)

where the window function W is
W(t, ) = e IE-1P/20°, (2.31)

One frequently characterizes the beam-width in terms of the full width at half-maximum
(FWHM). To get the Gaussian beam-width o one multiplies the FWHM by (81n2)~1/2 =
0.4247.

The instrument response R can be expanded in spherical harmonics just like AT

R(E) = aimYim(F). (2.32)

Im

"The quantity Qps has a number of different names in the literature. In particular, the COBE group
calls it Qrms—pPs, and the present author used to call it (@) [31, 185]. Both the angle brackets in {Q) and
the PS (standing for “power spectrum” ) in Qrms—ps and Qp; are meant to remind the reader that Qp; is
an ensemble-average quantity, and need not coincide with the local quadrupole @ defined in equation (2.68)
below. We have abandoned our earlier choice of {Q) because Qs is not the ensemble average value of @, but
rather (Q2)1/2. Incidentally, since Q is x: distributed, it is straightforward to check that Qps differs from
the ensemble average of @@ by a factor of (8/3)4/2/57 = 0.952.

8 And for some experiments only one parameter, such as the full width at half-maximum, is known. In
such cases, one frequently models the beam as a Gaussian for lack of any better information.
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When the window function depends only on the distance |¢ — /| as above, the coefficients
aj, are related in a simple way to the coefficients a;,, in the expansion of AT. Let us

expand W in Legendre polynomials:

1 oo
— 2[ + 1 WIPI( ) (2.33)

47I' =0

l-$>

Then equation (2.30), combined with the addition theorem (2.9), gives

R(F)=>_ W, / A AT (2 )Yy (V) Vi (B) = Y Wit Vi (F). (2.34)

I,m Im

It follows that
Uim = Wity (2.35)

The beam-filtered coefficients are obtained by multiplying the original coefficients by the
Legendre-transformed beam-pattern.® In practice, W) decreases rapidly for I 2 1/0, signi-
fying that the experiment has little sensitivity to those modes that vary on angular scales
smaller than the size of the beam.

The central lobe of the COBE DMR beam pattern is approximated well by a Gaussian
with FWHM 7° (¢ = 390), but the outer parts of the beam drop off much more slowly than
a Gaussian. Fortunately, the beam pattern has been measured and tabulated, as has its
expansion in Legendre polynomials [195].

For the DMR sky maps, this is all we need to consider, but for other experiments,
particularly those on smaller angular scales, we must also take into account the beam-
switching pattern. Many experiments “chop” between two points on the sky and record the
difference between these points. The window function for these experiments has a positive
and a negative lobe. Some experiments chop between three points, recording the difference
between the central point and the average of the other two, in effect measuring the second
derivative of AT. Even for these beam-switching experiments, it is still often the case that
Gy, 1s simply a constant multiple of a;,,, at least if the axis of the spherical coordinate system
is chosen in a suitable way. We will give two examples here; more detailed treatments are
available elsewhere [23, 188, 189].

We first consider the MAX experiment [38, 51, 76, 124]. This is a balloon-borne

telescope with a beam size o = 092. The telescope is sinusoidally chopped in azimuth, so

?The insightful reader has doubtless already realized that this is the spherical equivalent of the convolution
theorem for Fourier transforms.
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that the time-dependent instrument response is
Ry(t) = (AT xB)(#,9+ asinT), (2.36)

where the chop amplitude asinf = 025, and (6, ) marks the central beam location.
T = wt, where w is the frequency of the chop. B denotes the beam pattern, which can
be approximated by a Gaussian of width o, and the star denotes a convolution. We have
chosen a spherical coordinate system in which the zenith is at § = 0.
The time-series data are demodulated at the chop frequency w, so that the recorded
signal R is the Fourier transform of R;(?) at frequency w:
27

R(6,¢) = N/ dr (AT % B)(0,¢ + asinT)sinT, (2.37)
0

where N is a normalization factor.!® Expanding AT in spherical harmonics, we find
27T

R(6,¢) = NZBlamel’m(H,ap) dr ™SI gin 7 (2.38)

Im 0

where By is a coefficient of the Legendre polynomial expansion of the beam. In the Gaussian

approximation,

By = e~ 5o 0+, (2.39)

The primes on «a;,, and Y}, signify that we have returned for the moment from real-valued

to conventional spherical harmonics.!! This integral is a Bessel function:
R(6,p)=27N E Byay,, Y, (8, 0)J1(ma). (2.40)
Im

Thus, the spherical harmonic coefficients a@j,, are simply the original coefficients aj,,, multi-

plied by a window function
Wy, = 27TNJ1(ma)e_%”2l(l+1). (2.41)

The window function Wj,, corresponding to the real-valued spherical harmonics is a linear
combination of Wl’m and Wl’_m. The reader is invited to work out the coefficients for himself

or herself.

19The MAX experiment calibrates its receiver by chopping between two loads at uniform temperatures.
They therefore choose N so that the response R(, ) is unity when the input signal is a step function
AT(8,¢") = 9(¢' — ). Further details may be found in [166].

"This is simply to avoid having to treat the three cases m > 0, m = 0, m < 0 individually.
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Note that Jy(z) « 2 for small z. This means that the experiment’s sensitivity to
modes with low |m| is linearly suppressed. This is entirely natural: the experiment is
designed to measure the gradient of AT in the ¢ direction, and modes with low |m| vary
slowly in this direction.

The other window function we will consider here is a straightforward triple-beam
experiment. The Tenerife experiment [45, 79, 182, 183], which we will consider in Chapter
6, is an example of such an experiment. In a triple-beam experiment, the instrument
response is the difference between the temperature at a particular point and the average of

the temperatures at two equally-spaced points on opposite sides:
R(0,¢) = (AT % B)(6,9) — L (AT x B)(6,9+a) + (AT B)(b,9—a)),  (242)

where B denotes the beam pattern, as above, and « is the beam separation. For the Tenerife
experiment, B is approximately a Gaussian of width ¢ = 2%, and asinf = 8%1. We have
chosen a spherical coordinate system in which the beams are separated in azimuth . Once

again, we can expand AT x B in spherical harmonics and find that
R(0,¢) =Y Biag, Y, (0,) (1= (e 4 emm)) (2.43)
I,m
so that the window function is

W/ . = Bi(1— cosma). (2.44)

This expression is also valid for the real-valued spherical harmonics. Note that Wy, «x m?

for low |m|. Modes with low |m| are therefore even more strongly suppressed than in the
case of the MAX experiment. This is not surprising, of course, as a triple-beam experiment
like Tenerife is designed to measure the second derivative 9?AT /d¢?, which is very small
for modes with low |m]|.

We have computed window functions that allow one to compute the response R in
terms of AT. For many purposes it is convenient to talk about window functions for the
mean-square power (R?) instead of R. Specifically, one defines a window function W such
that

(R?) = i S (21 + e (2.45)

W, is related to Wy, in a simple way. The instrument response is

R(6,¢) = ZWlmalelm(ﬁ,ap). (2.46)

Im
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Squaring and taking an ensemble average, we have

(B2(0,¢)) = 3" CiWin Y2, (6, ). (2.47)
Im
Therefore,
!
4T
= W2 Y2 (6, 0). 2.48
Wl 2[_|_1m;l Im lm( 75‘9) ( )

Note that in the case of an isotropic experiment like the DMR, in which W}, is independent

of m, the addition theorem allows us to simplify this to

W, = WE. (2.49)

2.5 The COBE DMR Data

The COBE DMR experiment has been described in detail elsewhere [11, 13, 18, 94,
105, 116, 161, 163]. In this section we will content ourselves with a brief summary of the
relevant facts about the experiment and the data. The DMR experiment, which was one
of three instruments aboard the COBE satellite, consisted of six differential radiometers
with a beam size of 7° (FWHM) designed to measure intensity differences between pairs of
points on the sky separated by 60°. There were two independent channels at each of three
frequencies, 31, 53, and 90 GHz. The DMR recorded a highly redundant network of 60°
temperature differences, which were inverted to produce sky maps containing an antenna
temperature measurement for each of 6144 equal-area pixels. Each pixel contains noise,
which appears to be Gaussian and has well-estimated variances and covariances. Separate
maps are made for each of the six channels. Sky maps have been released for the first year
and first two years of data; the full four-year data set is currently being analyzed and is
expected to be released in early 1996.

The time-series data have been reduced to sky maps in both Galactic and ecliptic
coordinate frames. The procedure used to make the maps was identical, but the locations
of the pixels are different in the two cases. We have performed our analysis on the ecliptic
maps, as these were the first to be publicly released. However, we have performed some
tests on the Galactic maps as well, in order to assess the systematic error intrinsic to the
map-making process. These tests are summarized in Section 4.5.

The six two-year sky maps are shown in Figure 2.1. The maps are Aitoff-projected in

Galactic coordinates (although the maps were made from the ecliptic-projected data sets).



CHAPTER 2. MICROWAVE BACKGROUND DATA ANALYSIS

30

Figure 2.1: The COBE DMR data

The six two-year ecliptic DMR sky maps, shown in Aitoff projection in Galactic
coordinates. The Galactic center (I,b) = (0°,0°) is at the center, and Galactic
longitude increases from right to left. The top row shows the 31 GHz A and B
maps, and the next two rows show the 53 and 90 GHz maps. In all maps, the
greyscale ranges from -5 mK to 7 mK.
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The Galactic center (I,b) = (0°,0°) is at the center, and Galactic longitude b increases from
right to left across the map. We will make frequent use of Aitoff-projected all-sky maps
in this dissertation. Details of the Aitoff projection are presented in Appendix A. The
maps are dominated by two features: Galactic emission, which runs across the equator and
appears most prominently in the low-frequency maps, and a dipole, which is presumed to
be caused by the motion of the solar system with respect to the CMB rest frame.

Both of these features must be removed before we can see the underlying cosmic signal.
Attempts have been made to remove the Galactic contribution using the fact that Galactic
emission has a different spectral signature from CMB anisotropy [12, 13, 163]; however,
this can only be done at the cost of significantly increasing the noise. Furthermore, it is
not possible to separate the cosmic and Galactic signals perfectly, and the residual Galactic
contamination is difficult to model. Since the Galactic contribution is concentrated near the
Galactic plane, the most reliable way to remove this contaminant is simply to remove all
pixels at low Galactic latitude. We will generally remove all pixels with |b| < 20°, reducing
the number of pixels in the map from 6144 to 4038.!2

After excising the contaminated pixels, we need to remove the dipole from the data.
Actually, the anisotropy caused in the CMB due to our motion at constant speed with
respect to the CMB rest frame is almost, but not exactly a dipole. The kinematic anisotropy

seen by an observer moving at velocity v» is given by the full relativistic Doppler formula

oT V1—v%/c?
14+ — = 1—0/67 (2‘50)
T 1-(v/c)cosh

where 6 is the angle between the direction of motion and the direction of observation. If

v € ¢, then this reduces to the usual nonrelativistic equation
AT/T = (v/c) cos®, (2.51)

which is a pure dipole pattern. However, in our case, the second-order correction to this
formula is not negligible. v/c ~ 1073, so the second order corrections have characteristic
magnitude 1076, We shall see that the cosmic signal is at about the 107% level, so the
second-order contribution gives a small but non-negligible correction to the cosmic signal.
Expanding equation (2.50) to second order in v/c gives

AT

T = (v/c)cos+ (v/c)*(cos® 6 — 1). (2.52)

2Tn maps that are pixelized in Galactic rather than ecliptic coordinates, the Galactic cut leaves 4016
pixels rather than 4038.




CHAPTER 2. MICROWAVE BACKGROUND DATA ANALYSIS 32

The first term is simply the usual dipole. The second term contains monopole and quad-
rupole contributions. Since the DMR is a differencing experiment, the monopole in the
maps is of no significance in any case. However, it is important to remove the kinematic
quadrupole. Since v/c is small, we can proceed perturbatively. We estimate the dipole by
least-squares fitting using the simple nonrelativistic formula (2.51). Then once we know v,
we can remove the kinematic quadrupole using equation (2.52).

Once we have removed the dipole, we often find it useful to average the maps together
to reduce the noise. We perform the usual variance-minimizing weighted average in each
pixel of the map. Let AT}, be the measured temperature anisotropy in pixel 7 of map «a,
and let o2, be the variance of the noise in that pixel. Then we average maps together with

weights inversely proportional to the noise variances:

avge ATia 2
a(avee) _ 2aATia/in (2.53)

’ a1/,

The noise in the various maps is independent, so the noise averages in quadrature:

-1/2
o2ve%) = (E 1 /afa) . (2.54)

For the likelihood analyses with which we will be primarily concerned, this average map
contains just as much information as a joint likelihood analysis of all of the maps. See
Appendix B for a proof of this.'?

Figure 2.2 shows the result of averaging together the two 53 GHz and the two 90 GHz
maps in this way. Most of the analysis performed in later chapters will be on this average
map. We do not include the 31 GHz maps in our final analysis, because they are more
susceptible to Galactic contamination. In any case, these maps have significantly higher
noise levels than the higher-frequency maps, and so we lose little information by excluding
them. In fact, we have performed portions of the likelihood analysis described in chapters
4 and 5 on maps including and excluding the 31 GHz maps, with negligible differences in
the final results. The one-sigma noise levels in the map shown in Figure 2.2 range from
56 uK to 108 uK. Because of variable sky-coverage due to the orbit of the COBE satellite,
the noise levels vary across the sky in the manner shown in Figure 2.3.

Figure 2.4 is designed to illustrate the relative magnitudes of the signal and noise

in the DMR data. The top panel shows a map of elevation on the Earth, projected in

13Gtrictly speaking, this statement is only true if the noise is uncorrelated from pixel to pixel. For the
case of the DMR data, this condition is very nearly met [117].
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Figure 2.2: The galaxy-cut, dipole-subtracted, weighted-averaged DMR data

This map was made by averaging together the four maps at 53 GHz and 90
GHz after removing all pixels within 20° of the Galactic plane and fitting out a
dipole. The projection is the same as in figure 2.1.

the same manner as the DMR maps.'* If we take this data set and convolve it with a
7° FWHM beam, the result is the map in the center panel. Not surprisingly, small-scale
features like the Andes are obscured by this smoothing. Finally, in the lower panel we
have added noise to the data with the same characteristics as the DMR noise. (To be
specific, we added independent Gaussian noise to each pixel, with amplitude proportional
to the amplitude in the weighted-average two-year DMR map shown in Figure 2.2 and the
constant of proportionality chosen to match the overall signal-to-noise ratio in that map.)
The noise is quite effective in obscuring all but the most prominent large features. The figure
also shows the result of applying a Wiener filter to the noisy world map, in an attempt to

reconstruct the true underlying signal. We will describe this filter in detail in Chapter 6.

' Actually, the projection used is the mirror image of that used for the DMR maps, since sky maps look
backwards when compared with Earth maps. We are outside the Earth, but inside the celestial sphere.
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Figure 2.3: Noise levels in the COBE DMR data

The noise level in the two-year DMR sky map shown in Figure 2.2. The North
and South celestial poles were scanned more frequently than other points, and
therefore have lower noise levels. Due to the DMR 60° differencing strategy,
points 60° from these points also have low noise; this is the reason for the two
rings visible in the Figure.

2.6 Notation

Throughout this dissertation, we will make frequent use of techniques and results
from linear algebra. In this section we will establish consistent notation for the various
vectors and matrices we will have occasion to use.

Suppose we have a data set consisting of A/ pixels. (Typically, the data set will be
the averaged two-year map in Figure 2.2 and A will be 4038.) Let d; be the measure-
ment corresponding to the ith pixel, and let d be the A-dimensional vector (di,...,dy).
(Throughout this dissertation, we will denote vectors in real three-dimensional space by
boldface type, and vectors in other spaces such as “pixel space” by arrows.) The datum d;

contains contributions from both signal and noise:
d; = (AT*W)(f‘,) + n;. (2.55)

Here AT is the true temperature anisotropy, W(F,t’) represents the window function of
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Figure 2.4: The world as it would be seen by COBE

The top panel shows a map of the elevation of the Earth’s surface, projected in
the same manner as Figure 2.1. The center panel shows the result of smoothing
this map with the COBE beam pattern, and the third shows the result of adding
noise with the same amplitude as the noise in the map of Figure 2.2. The fourth
panel (on the next page) shows the result of applying a Wiener filter to the noisy
data, as described in Chapter 6. Before applying the filter, all pixels within 20°
of the equator were removed.

35
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Figure 2.4 (continued)

the experiment, and the star denotes convolution. r; is the location on the sky of the 7th
pixel. n; is a random variable representing the noise. In general, we will assume that n; is

Gaussian and has zero mean. We will denote the noise covariance matrix by N:
Nij = (nin;) . (2.56)

For the COBE DMR data, noise correlations are very weak, and so N is very nearly diagonal
[117]. (Throughout this dissertation, matrices will be denoted with capital boldface letters.)

If we expand AT in spherical harmonics as in equation (2.5), then we have

di = > WiaimYim (£i) + n4, (2.57)

Im
where Wj is the Legendre polynomial expansion of the window function, as described in
Section 2.4.

Let us introduce some simplifying notation. We will denote a pair of indices (Im) by

a single Greek index such as p. The correspondence between the two is
p=Ill+1)+m+1 (2.58)

so that p ranges from 1 to oo as [ and m vary over their entire allowed ranges. If we

introduce an A X oo matrix Y whose elements are
Yip = Yyu(ri), (2.59)
then equation (2.5) becomes simply

AT =Y -a. (2.60)
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The most natural way to represent the window function is by a diagonal matrix W, =

Wib,, where [ is the index corresponding to p. Then equation (2.57) becomes
d=Y -W.q+ . (2.61)

(Here @ and 7 are the vectors whose components are a,, and n; respectively.)
The covariance matrix of @ is diagonal, and its nonzero elements are those of the
angular power spectrum Cy:

Cu = (apay) = Crou, (2.62)

where [ is the index corresponding to p as before. We know the covariance matrices of @ and
i, and we assume that the signal and noise are uncorrelated: (a,n;) = 0. We can therefore

write down the covariance matrix of the data vector d:
M=(d-dY=Y - W-C-W-YT +N. (2.63)

The matrix W - C - W is the beam-smoothed angular power spectrum, which we will refer
to from time to time as C.

Until this point, we have ignored the fact that a monopole and dipole have been
removed from the data. If we had complete sky coverage and no noise, this would not be
a problem: removing the monopole and dipole from the data would simply correspond to
setting agp = @1, = 0. In real life things are not so simple. Our least-squares estimate of
the monopole and dipole will not in general coincide with the true values.

Suppose we begin with a data vector d_z), and we remove best-fitting monopole and
dipole terms by least-squares fitting. Let Z denote the A" x 4 matrix whose columns are the
first four columns of Y. (These are of course the four columns representing the monopole
and dipole.) Then the procedure for least-squares fitting involves choosing the four numbers
Z = (21, 22, 23, z4) that minimize

A=|dy— 1277 (2.64)

Setting dA/dz = 0, we find that Z = (Z7 - Z)~' - ZT . dy. Removing the monopole and

dipole subtracts Z - Z from the data, so our new data set is
d=P-dy=(1-2-(2Z7-2)"-27) - dy. (2.65)

P is the projection operator that removes the monopole and dipole.
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The covariance matrix in equation (2.63) actually applies to d_)o7 not to d. It must

therefore be modified as follows:

M=P.Y-W-C-YI.PT+P.N.PT (2.66)
=Y-C- YT +N, (2.67)

where Y =P - Y and N=P . -N.PT,

It is often a good approximation to set N = N. The reason is that the projection
operator P couples most strongly to modes with large angular scales, and most of the noise
power is on small scales. On the other hand, f’m can differ quite significantly from Y,
especially for low values of y. (Indeed, for p < 4, 17,'“ vanishes.) The difference between Y
and Y is a measure of the degree to which the spherical harmonics fail to be orthogonal

over the cut sky.

2.7 A Polemic Regarding the COBE Quadrupole

We have already seen that CMB experiments in general, and the DMR in particular,
have no sensitivity to the monopole component of the anisotropy and that the dipole is
impossible to distinguish from the kinematic dipole caused by our motion with respect to
the CMB center-of-momentum frame. We therefore include only modes with [ > 2 in our
data analysis, taking proper account (e.g., by marginalizing) of our ignorance of the other
modes. Some analyses of the DMR data have chosen to discard the quadrupole information
in the data as well, on the grounds that it may be contaminated by systematic effects. In
this section we will argue against this practice.

The COBE quadrupole appears to be a little bit too low to fit comfortably into
popular theories. In particular, it may be too low to be consistent with a Harrison-Zel’dovich
power spectrum. This is, of course, no reason to throw it out. On the contrary, there are
few statistical fauz pas greater than throwing out data points because they do not agree
with our favorite theory. We must find independent justification before we can reasonably
decide to ignore the quadrupole. Furthermore, since the decision to ignore the quadrupole
appears to have been made after it was already known to be anomalously low, we should be
especially wary of the dangers of biased data editing and should apply an especially high

burden of proof before deciding to ignore it.
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In fact, as we will argue in more detail below, the very fact that the COBE quadrupole
is low argues against the hypothesis that it is contaminated. Since the quadrupole amplitude
is a root-mean-square quantity, any contaminant in the data will tend to bias the quadrupole
upwards. In fact, we will prove below that any theory that is ruled out by the COBE data
due to the anomalously low quadrupole is ruled out even more strongly if the quadrupole
is contaminated.!?

We will divide this section, like Gaul, into three parts [35]. First, we will assess
quantitatively whether the COBE quadrupole is anomalously low compared to a prediction
based on a Harrison-Zel’dovich spectrum. Second, we will discuss whether there is any
independent evidence, either within the data or from elsewhere, to suggest contamination
of the quadrupole. Finally, we will argue that even if the quadrupole is contaminated, it
still contains some useful information, and will suggest a procedure for accounting for this

information.

2.7.1 Is the quadrupole low?

Bennett et al. [13] estimate the quadrupole in the two-year DMR data to be Q =
6 + 3 uK, where Q is supposed to be an estimator of the quadrupole @ defined by

(2.68)

On the other hand, the ensemble-average quadrupole of a Harrison-Zel’dovich power spec-
trum normalized to COBE is about 21 uK. There thus appears to be a prima facie dis-
crepancy. However, Q? is chi-squared distributed with only five degrees of freedom, and
therefore has a very large cosmic variance. We must therefore check to see how unlikely
such a low quadrupole is.

The probability that the actual ¢ would come out as low as 6 uK is simply the
probability that a random variable with a y# distribution will take a value < (6/21)% times
its expectation value. This works out to be 0.49%, although if we increase the bound by one

standard error to 9 uK, the consistency probability rises to 3.1%. We can make a slightly

15Gtrictly speaking, this statement is true only if the contaminant is statistically independent of the cosmic
signal. The only way in which this assumption could be false is if an attempt had been made to remove
contaminants in the data in a way that made use of the information in the data itself. We shall see below
that the very low quadrupole estimate in [13] may indeed be the result of the process by which Galactic
emission was removed from the data. The author is tempted to remark that anybody who processes his data
in this way and makes no attempt to account for these effects deserves all he gets.
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more realistic estimate of the consistency probability by assuming that Q is a measurement
of @ convolved with Gaussian noise of standard deviation ¢ = 3 uK. The probability of
getting a value as low as 6 uK out of this convolved probability distribution is 1.6%. The
claim that the COBE quadrupole is too low to be consistent with a Harrison-Zel’dovich
spectrum therefore seems initially to have some validity.

One should not take this sort of analysis too seriously, however, because @ is not
a simple estimate of the quantity @ in equation (2.68). The data set used to make the
estimate is a linear combination of the three maps of different frequencies, with coefficients
chosen to minimize Galactic emission. The coefficients were chosen based in part on the
signal in the sky maps themselves, and so presumably this process removed some of the
noise contribution to the quadrupole as well as the Galactic contamination. This effect is
difficult to quantify.

In addition, the estimate comes from a data set that does not cover the complete
sky (although it does have only a 10° Galactic cut rather than the usual 20°), and as we
shall describe in some detail in chapter 3, there is no way to estimate individual coefficients
@y, from such a data set without contamination from other coefficients. Therefore, even if
we ignore noise, the probability distribution of the Bennett et al. estimate Q is therefore
not the simple x2 distribution corresponding to the true quadrupole @; its distribution is
something more complicated, which would depend on all of the C;’s rather than just Cj.

These effects make the true probability distribution of the above quadrupole estimator
quite difficult to model. We shall not attempt to do so here. Instead, we will estimate the
quadrupole directly from the publicly-available two-year sky maps. Our estimator will still
have contamination from other multipoles, but if we are willing to assume a particular power
spectrum, we can still compute its probability distribution. Furthermore, since we have not
tried to do anything fancy to remove Galactic contamination, we do not have to worry
about having thrown away some unknown portion of the cosmic signal. To be sure, we
do have to worry about residual Galactic contamination. But that is a contaminant that
is statistically independent of the signal, and as we shall see below, such a contaminant
always tends to bias the quadrupole upwards. By ignoring this possibility, we run the risk
of erroneously concluding that the quadrupole is consistent with our hypothesis, but not of
erroneously concluding that it is inconsistent.

We will take the simplest possible estimator of the quadrupole. We will use the two-
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year weighted-average map shown in Figure 2.2 and compute estimates of the coefficients

aym for |m| < 2 by converting the integral in equation (2.6) into a discrete sum over pixels,

4T N
d2m = V Edi}/—Zm(fi)? (2'69)
=1

or in the notation of Section 2.6,

o 47 -
VY= A;YT-d. (2.70)

= 47
a =

These two expressions are equal because d has already had the monopole and dipole pro-
jected out of it. Since P is a projection operator, P d= cf, andsoY-d=Y-P-d=Y-d
We can then define a “quadrupole” estimator Q by

Q= (2.71)

We could have chosen any of a number of other estimators. We could choose to weight the
(9 ’s differently based on their noise levels or their expectation values, or we could adopt
a fancier procedure such as that of Tegmark [173], who has devised a set of quadrupole
estimators that contain the minimum amount of contamination from other multipoles. We
chose the estimator we did because it is simple and because it corresponds closely to what
people mean when they talk about “the quadrupole” in the data.'®

The estimator Q does not depend only on the true quadrupole Q: since we do not have
complete sky coverage, that is impossible. In fact, it is contaminated by other multipoles
and biased upwards by noise. However, it is more sensitive to the quadrupole than to any
of the other multipoles. In any case, it has a probability distribution that we can calculate
as long as we are willing to assume a particular form for the angular power spectrum Cj.
We can therefore pose a statistically well-defined question that provides an assessment of
whether the quadrupole in the DMR data is anomalously low, viz.:

What is the probability of observing a value of Q as low as that observed in

the real data, assuming a pure Harrison-Zel’dovich Sachs-Wolfe power spectrum
with a normalization Qps = 21 pK?

1We considered testing all of the various common estimators, but chose not to for fear of being accused
of “fishing” for the estimator that best supports a particular conclusion. If we had used multiple estimators,
we would have to decide at the end which one, or which combination, to use in drawing any final conclusions.
There is no unbiased way to do that, and it is therefore safer to choose just one estimator, before computing
anything, and stick with it.
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m || aom <&%m>1/2 Probability
(HK) | (pK)

-2 2.22 22.6 0.078

-1 17.6 45.5 0.30

0 || -9.02 26.4 0.27

1 29.0 45.3 0.48

2 15.6 22.7 0.51

Table 2.1: Quadrupole estimates

Column 2 contains the five quadrupole estimators defined by equation (2.69).
Each is Gaussian with mean zero and standard deviation given in column 3.
These standard deviations include both signal and noise contributions. The
probability of getting a value as low as the observed value or lower is given in
the final column.

To answer this question, we need to measure  in the real data, and we need to
compute its probability distribution based on the Harrison-Zel’dovich model. The first part
is easy: all we need to do is compute the sum in equation (2.69). The values of the five

estimators dg,, are given in Table 2.1. Adding together their squares, we get

Q = 38.5 UK. (2.72)

At this point it may be prudent to remind the reader that we have made no attempt to
remove noise bias from this estimator. The fact that it is much larger than the Bennett
et al. estimator is therefore no cause for alarm. Since our goal is to compare this quantity
with its theoretical probability distribution, it makes no difference whether we remove noise
bias or not.

The quantities a@g,, are Gaussian random variables of zero mean, so to specify their
probability distribution (and therefore that of Q), all we need is their covariance matrix.

This matrix is simply

4

(a-

[~}

>:<%>2YT-(Y-C-YT—|-N)-Y. (2.73)

The square roots of the diagonal elements of this matrix are the standard deviations of

the @9,,’s, and are given in Table 2.1. The off-diagonal elements are generally small: the

dimensionless ratio (@ @om:)//(@3,, (@3, /) is always less than 2% in absolute value when

m # m'.
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Figure 2.5: The probability distribution of Q

The probability distribution of the quadrupole estimator Q as estimated from
10000 random realizations assuming a Harrison-Zel’dovich Sachs-Wolfe spec-
trum with a normalization Qps = 21 K. The value of Q from the real data is
shown as a vertical line.

The probability distribution of Q is not easy to compute analytically, but we can
estimate it using Monte Carlo techniques. We know the joint probability distribution of
the five @g,,’s. We draw random elements from this distribution and compute Q from these
random numbers. Figure 2.5 shows the probability distribution of Q) estimated from 10000
such trials. The value obtained from the real data is marked with a vertical line. It is clear
that although Q is lower than its estimated expected value, it is not unreasonably low. In
fact, 8.2% of our realizations gave lower values of Q) than the real data, so we are unable to
conclude that the quadrupole is anomalously low compared to a Harrison-Zel’dovich power

spectrum at better than 92% confidence.
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2.7.2 1Is the quadrupole contaminated?

On the basis of this analysis, we can conclude that there is no strong evidence that
the two-year DMR quadrupole is inconsistent with a simple Harrison-Zel’dovich model,
although it is somewhat lower than the mean value it would be expected to take in such a
model. In this section we will argue that the fact that the quadrupole is somewhat lower
than its expectation value provides a fairly strong argument against the hypothesis that it is
contaminated. We will demonstrate this in the following way. Let ¢ be an estimator of the
quadrupole that takes the value go for the actual data. (¢ could be our estimator Q from
the previous section, or it could be something else.) When we say that ¢ is anomalously
low, we mean that the probability P(¢ < ¢o) is a small number. We will show below under
fairly general assumptions that adding a contaminant to the data always lowers P(q < ¢o).
In other words, the hypothesis of contamination always worsens the fit to the data.

Assume that the pixel vector d is the sum of a cosmic signal, noise, and a contaminant

vector,

d=AT + 7+ %, (2.74)
where 7 is the contaminant. The contaminant need not be Gaussian; the only assumption
we will make is that it is independent of the cosmic signal. As we noted above, this may
not be true of the Bennett et al. analysis, in which Galactic modeling was performed on the
data. It should be true of the data set we are using, however, in which no Galactic modeling
has been done. Let us also assume that our quadrupole estimator ¢ is a root-mean-square

quantity, so that ¢? is quadratic in aT,
P =d"-A-d (2.75)

for some symmetric A" x A/ matrix A.'" Since the quadrupole is a positive quantity, it
is reasonable to take A to be nonnegative definite. This means that we can find & < A

eigenvectors €; with associated eigenvalues A; and write
K
A=Y Né &l (2.76)
=1
Let us consider first the case £ = 1. Then

¢’ = A(é 'CZ)z = (g + C)za (2.77)

1TPeople generally subtract some constant from a statistic like this in order to remove noise bias. This
shifts ¢° and ¢2 by a constant amount and therefore has no effect on the consistency probability P(q < q0).
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where ¢, = /\}/26’1 - (AT + ) is the value that ¢ would take in the absence of a contaminant
Zand ( = /\}/zé'l - Z. @« has a Gaussian probability density f,,, and ¢ has a probability
density f¢ about which we know nothing. We do know that ( and ¢, are independently
distributed, though, so the joint probability density of ¢. and ( is the product f,, f¢. The
consistency probability is therefore

o /\/qg—qi

Plg<qo)= | dg.fo.(q:) dg fe(€)- (2.78)

The ¢ integral in the above expression is always less than or equal to 1 (since f¢ is a

probability distribution), and is equal to 1 omly if f; has support only in the interval
IC] < y/qd — ¢2. We therefore have the inequality

P(g < q) < /Oqo dgs fo.(q) = P(gx < qo0), (2.79)

and equality holds only if f. has support only at ( = 0, or in other words only if there is
no contaminant at all. The right-hand side of this expression is simply the probability of
getting as low a value of ¢ as we observe under the hypothesis that there is no contaminant.
We have therefore shown that adding a contaminant necessarily reduces the consistency
probability P(q < qo).

The case where k, the rank of A, is greater than 1 can be handled in a similar

way. Define k-dimensional vectors ¢, and 5With components ¢.; = /\3/2& . (A_T + @) and

¢ = A%, 7. Then

¢ =1q.+{* (2.80)

Furthermore, ¢, has a multivariate Gaussian distribution. We can replace the integrals in
equation (2.78) with k-dimensional integrals over ¢ and 5 , and the argument goes through
exactly as before.

We saw in the previous section that the quadrupole estimate Q is a little bit low
compared to our expectation (based on a flat Harrison-Zel’dovich spectrum). One might
be tempted to argue that the reason for this is that there is something contaminating the
data. In this section we have shown that this cannot be the case. A contaminated data
set would be even less likely to produce the observed quadrupole than an uncontaminated
data set. The hypothesis of a Harrison-Zel’dovich power spectrum without a contaminant
has a consistency probability of 8%, and so is reasonably consistent with the data, but any

significant contaminant would reduce this consistency probability to unacceptable levels.
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For clarity, let us reiterate at this point that the phrase “the observed quadrupole”
refers to a quadrupole estimate based on the Galaxy-cut data set, and is therefore something
quite distinct from the true quadrupole. The relevant statistical question to ask is simply
whether this estimate is low compared to its own theoretical probability distribution, and
this question is logically independent of the question of how well the estimate reproduces
the (unmeasurable) true quadrupole.

Of course, we can change the power spectrum to predict a lower quadrupole and
thereby get a better consistency probability. Some open-Universe models do precisely that,
and are therefore better fits to the DMR data than flat models [72]. A power spectrum
with a low quadrupole would have more room to incorporate a contaminant, but since these
models fit the data well, there is still no reason to suspect contamination. The bottom
line is that we should suspect contamination only if some particular multipole moment is
anomalously high compared to our theoretical expectation, not if one is anomalously low.
Even in this case, of course, we had better have a strong independent reason to suspect
contamination: it is never acceptable to edit out portions of one’s data simply because they

don’t fit a particular theory.

2.7.3 What should we do about it?

Let us suppose we did have independent evidence to suggest a quadrupolar contam-
inant in the DMR data. What should we do about it? The simplest thing to do is to
treat the quadrupole in the same way as the monopole and dipole and “throw it away.”
In practice, one generally throws away unwanted modes by marginalizing over them: for
example, to marginalize over the monopole, we assume that all possible values of the un-
known coeflicient agg are equally likely, and we replace the likelihood L with the integral
J L dagg over all possible values of this coefficient. (We will discuss marginalization in more
detail in Section 4.1.) This is a reasonable procedure to adopt for the monopole and dipole,
for which we really do have no useful information; however, it is not correct to apply it to
the quadrupole, which still contains some information even if it is contaminated. To take
an extreme example, we can state with confidence that the DMR data rule out any theory
which predicts that Cy = 10'9 uK?2, since the observed quadrupole is some eight orders of
magnitude smaller than this, and it is exceedingly improbable that such a low quadrupole

would arise in this theory. Furthermore, this conclusion is valid even if we allow for the
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possibility that the quadrupole is contaminated: in fact, the result of the previous section
is that the conclusion is strengthened if we assume contamination. If we threw out the
quadrupole by marginalizing, we would lose the ability to rule out these theories.

This particular example is of course absurdly exaggerated, but the issue it raises is
quite genuine. Consider the case of cosmological-constant cold dark matter models. As we
shall see in section 5.4, these models are somewhat disfavored by the DMR data, in large
part because the models predict large-scale power that is missing in the data. When we
marginalize over the quadrupole as well as the monopole and dipole, the constraints on
these models are greatly weakened. These constraints are weaker than they need to be,
because we have thrown away too much information by marginalizing over the quadrupole.

We will now suggest an alternate procedure. Suppose that we suspect that our
data are contaminated and are willing to assume that this contaminant only (or at least
predominantly) corrupts the quadrupole. Then the angular power spectrum of the beam-

smoothed data will no longer be simply C; = W/ Cy, but rather
Cl = Cr+ Zép. (2.81)

That is, Cy will be increased by some amount Z and all other multipoles will stay the
same.'® Z is the variance of the contaminant, and so is nonnegative.

We are interested in testing hypotheses about C;. Let us adopt a Bayesian attitude, as
we will throughout much of this dissertation. The natural thing to do is then to marginalize
over the nuisance parameter Z. Specifically, if L(C;) is the likelihood associated with the

power spectrum Cj, we should compute the marginal likelihood
Lnwes(C) = [~ dZ LEDF(2), (282)

where f(Z) is some prior distribution for Z. In the absence of any better ideas, we might
choose f(Z) to be uniform in Z (for Z > 0), or we might choose a prior that is uniform in
the expected amplitude Z'/2 of the contaminant by setting f(Z) x Z-1/219

We will illustrate the effects of marginalizing over Z with a simple example. Suppose

we had performed an experiment with complete sky coverage. Then we could estimate the

'8The probability distribution of a2, may no longer be Gaussian, but in the absence of a better model,
let us assume that it is.

1¥Neither of these priors is normalizable. We are meant to imagine that they are valid over the range of Z
of interest to us, not necessarily over all Z. We will see below that very large values of Z are always highly
unlikely anyway, so it doesn’t matter how we treat them. We must rule out another potentially attractive
prior, namely one that is uniform in In Z, because it diverges for small Z where the likelihoods are large.
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individual coefficients aj,,,. Assuming homoscedasticity (i.e., equal noise levels in all pixels),
our estimates @, would have independent noise, which we take to be Gaussian. In such an
experiment the random variables a;,, are uncorrelated, and so the likelihood L(é 1) factors

into a contribution from the quadrupole Cy and a contribution from all other modes:
L(C1) = Lg Lother- (2.83)

We can therefore understand the effects of marginalizing over the quadrupole by considering

only Lg. If we assume no contamination, then Lg is simply
Lo = §;%/%e-2mQ%/5: (2.84)

where @ is the quadrupole estimated from the data according to equation (2.71), Sy =
Cy+ 02, and 02 is the noise variance in the quadrupole. We will be interested in treating the

likelihood as a function of the theoretical quadrupole Cy, so let us introduce a dimensionless

variable
58
=2 (2.85)
47 Q2
which is linear in Cs.
If we hypothesize a contaminant, the likelihood changes to
Lo = (Sy + Z)5/2e~ 2@/ (S242) (2.86)
Marginalizing over Z with a uniform prior, we get
Lunarg = / dZ (Sy + 2)~/2e= 2@ /(52+7) (2.87)
0
. 5/2r
= (271'(22)_3/2/ dyy'/2eY (2.88)
0
. 7 3 5
= (2nQ?)73/2 ﬁ—l‘(——) : 2.89
(r g (Y1 (3.2 (2:89)
This function approaches a constant as r — 0 and decays as r~3/2 for large r.
If we adopt a prior that is uniform in Z'/2, then
Linarg :/ dZ (Sy + Z) 32~ 2mQ*/(S247) 7-1/2 (2.90)
0
25 5 5
= 1F1 (27 > ——> ) (291)
1272Q4r2 2" 2r

where 1 F7 is a hypergeometric function. This function also approaches a constant as r — 0,

but it decays as 72 when r is large.
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Figure 2.6: Marginal Likelihoods for the Quadrupole

The solid line shows the likelihood Lg corresponding to the hypothesis of no
contamination. The dashed lines show the two marginal likelihoods described
in the text. The short-dashed line corresponds to a prior uniform in Z and
the long-dashed line corresponds to a prior uniform in Z'/2. All are arbitrarily
normalized. The practice of throwing the quadrupole information away entirely
would correspond to a horizontal line on this graph.

Both of these marginal likelihoods are plotted in Figure 2.6, along with the contam-
inant-free likelihood Lg from equation (2.84). We can draw some important conclusions
from this figure. First, the assumption of contamination eliminates our ability to eliminate
models that have a very low predicted quadrupole. When no contaminant is assumed,
the likelihood drops exponentially for low r (i.e., low Cy), but as soon as we hypothesize a
contaminant, the marginal likelihood is flat for low r. This is not at all surprising, of course:
if a contaminant is present, all theories with low C; look identical, since the quadrupole
anisotropy is dominated by the contaminant. The behavior of the likelihood at large r is
more interesting. The fact that the likelihood still drops off rapidly reinforces and quantifies
our earlier conclusion. If a model is ruled out because of a low quadrupole, hypothesizing

a contaminant will not save it.
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In contrast, the widespread practice of throwing away the quadrupole information
entirely, e.g., by marginalizing over the coefficients ay,,, corresponds to replacing Lg by a
constant. The fact that the likelihoods in Figure 2.6 are far from constant implies that this
procedure throws away far more information than is necessary or appropriate.?’

So what should we do with the COBE quadrupole? The best thing to do is nothing
at all. Since there is no independent evidence for contamination, and since the rather
low observed amplitude argues against the contamination hypothesis, we should proceed
under the assumption that it is not contaminated. Even if, for some reason, we decide to
hypothesize that there is a contaminant that only or primarily affects the quadrupole, we
still should not throw away the quadrupole information entirely: even if the quadrupole is
contaminated, the fact that it is observed to be low still provides evidence against theories
that predict a large Cy. One way to account for a contaminant without erroneously throwing
away this information is to marginalize over Z as described above.

There are, of course, other procedures one could adopt. For example, if we are
particularly worried about Galactic contamination, then we might want to consider throwing
away only those modes that couple most strongly to the Galaxy. Since the Galaxy is fairly
azimuthally symmetric at high latitudes and is roughly symmetric about the equator, we
would worry most about modes with m = 0 and !/ even. We might therefore be inclined
to throw away ag9 and a4g, rather than the five quadrupole coefficients ay,,. However,
Table 2.1 indicates that the low estimated quadrupole is not primarily due to agg, and so
throwing away agg will not solve the “problem” of the low COBE quadrupole. Incidentally,
likelihood-based techniques of the sort we will describe in Chapter 4 automatically give fairly
low weight to modes like Y3¢ and Yyq, since these modes couple strongly to the monopole.
We therefore expect that throwing away these modes would make little difference to the

final results of such an analysis.

20T¢ be fair, we should point out that the shapes of the likelihood curves in Figure 2.6 result from some
combination of the quadrupole information in the data and the assumed prior. One might therefore worry
that the shapes of these curves reflect primarily the extra information hidden in the prior, rather than
anything in the data itself. However, the primary conclusion we wish to draw from Figure 2.6, that the
likelihood is quite low for large values of r, appears to be true for any reasonably broad prior. This is not
surprising: we are simply expressing the fact that high values of C> are improbable whenever the observed
quadrupole is low.
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Chapter 3

Simple Models for Anisotropy
Analysis

Far dearer is the honest simple friend,

Than one whose quicker wit is train’d to ill.
Euripides (410 B.C.)

3.1 Introduction

Before embarking on our quest to extract every drop of information from the actual
COBE DMR data, it may be instructive to consider some toy models. In this Chapter, we
will discuss three different ways one might try to estimate the spherical harmonic coefficients
@y, Or constrain the theoretical power spectrum C; from a hypothetical CMB anisotropy
data set. This hypothetical data set is inspired by the COBE DMR data: it covers the
whole sky with the exception of a strip of half-width 20° about the equator. However, we
make no attempt in this chapter to simulate the DMR data in detail. We will spend enough
time doing that in subsequent chapters. Our purpose in this chapter is to get a feeling for
the problems caused by incomplete sky coverage. We will be interested in two quite distinct

classes of questions:

1. How well can we estimate “local” quantities such as the coefficients ay,,?

2. How well can we constrain the power spectrum C;?

In particular, it is clear that we cannot hope to measure any coefficient a;,, in the

absence of complete sky coverage. This problem is not even well-posed. Nonetheless, people
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for some reason are interested in estimating the CMB quadrupole @. We will see how well
this task can be accomplished. If our goal is to constrain cosmological models, we are less
interested in local quantities ¢ than in the power spectrum normalization Qps. We will
therefore see how well our various methods do at estimating power spectrum parameters.
We will proceed under the assumption that the CMB anisotropy power spectrum is of the
Sachs-Wolfe form given in equation (2.29), so that the two parameters n and Qs determine
the power spectrum.

The first method is based on techniques developed by Peebles [135] and Hauser &
Peebles [81]. We will therefore call it the Hauser-Peebles method. This method, which has
been used in the past to analyze galaxy catalogues [152], is the most straightforward scheme
for taking account of incomplete sky coverage. If one knew the function AT over the whole

sky, then aj,, could be determined by integration:
G = / AT(#)Yim (£) 42, (3.1)
S

where d{ is the element of solid angle corresponding to r and the integral is taken over the
entire sphere. With incomplete sky coverage, we can compute estimated coefficients by, by

integrating over the observed region R:
b = Nim / AT (3)Yin(F) 9. (3.2)
R

Here AT is the function obtained by subtracting the observed monopole and dipole compo-
nents from AT. Ny, is a factor chosen to normalize b, appropriately. The simplest choice
would be to set Nj,, equal to the reciprocal of the fraction of sky covered; however, other
methods are sometimes used.

The second method is least-squares fitting. Here one determines the estimated co-
efficients by, within some range l,;,;n, < [ < [,42 S0 that the spherical harmonic expansion
and the original function match as closely as possible over the observed region. The by,;,’s

are chosen to minimize the quantity

2
lmaz

I
AE/R ATE = Y S bnYi(E) | a2, (3.3)

I=lin m=—1
Since our goal in this chapter is to develop simple “toy models,” we will assume that
g P p p y s

any noise in our experiment is uniform over the observed region R. We therefore adopt a

uniform weight function in this expression.)
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The final method is to compute the angular correlation function. Although this does
not involve the spherical harmonics directly, the correlation function is a simple function of

the coefficients aj,,:

C6) = %ZA,P,(COSQ), (3.4)
]

where P is a Legendre polynomial and A;j is the total power in multipole [:

l

A=Y Jaml?, (3.5)

m=—I

which implies that (4;) = (2] + 1)C;. The correlation function can be estimated with
incomplete sky coverage, and equation (9) can be inverted to get the power C;. One still
needs to determine, however, whether the power derived in this way is a good estimate of
the actual power.

We will find that all of these methods suffer great difficulties when used to determine
properties of the CMB anisotropy as viewed from our particular vantage point; for example,
none is able to reproduce accurately the local quadrupole. This is not surprising: after
all, the quadrupole moment is not uniquely determined by an incomplete data set. The
situation is somewhat different when the data are used to constrain cosmological models.
For example, one might try to determine the normalization and slope of the power spectrum
that underlies the observed fluctuations. This sort of analysis is less dramatically affected
by masking; some methods are quite reliable even in the case of incomplete sky coverage.
However, one must choose one’s method of analysis with care, as some methods do suffer

noticeable degradation as a result of masking.

3.2 Hauser-Peebles Method

Masking out part of the sky destroys the orthogonality of the spherical harmonics, and
introduces correlations between the measured coefficients by, [135]. Let R be the observed
region of the sky, and assume that R is azimuthally symmetric. (Note that in the analysis
of real data, this assumption is unlikely to be strictly true. However, it is good enough for
our present purpose.) The nonorthogonality of the spherical harmonics over the observed

portion of the sky is characterized by the integrals

Witrm = /R Yirn (8)Yim (7) dS2. (3.6)
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If R were the whole sphere, then Wy, would be é;y. If R is symmetric about the equator,
as in the case we are studying, then Wy, is zero if [ — I’ is odd. Subject to this constraint,
Wi is largest when | ~ I', and drops off rapidly when |l — 1’| is large. (If the region R
is not azimuthally symmetric, then modes with different values of m are coupled to one
another, and Wyy,,, must be replaced by Wyrm:.)

Before we compute the estimated coefficients, we need to subtract the observed mon-
opole and dipole from AT. Suppose that the actual coefficients of the CMB anisotropy
are ajy,. The monopole coefficient agg is unmeasurable, and the coefficients a1, are dom-
inated by the kinematic dipole. Before we can extract any cosmological information from
the higher multipoles, we must first subtract off these terms.

An observer who can only see a region R of the sky will measure the average value

of AT to be

__ 1
AT = / AT(r)dQ = a10Wioo, 3.7
o Vi oo 2 > aWio (3.7)
and the observed value of the coefficient aqg is aé%bsewm = /41 AT. If the observer then

performs a least-squares fit to a dipole, the observed coefficients will be

(observed)
Um Wllm Z allelm (38)

Subtracting the monopole and dipole from the observations is equivalent to replacing the
function AT by another function AT, whose spherical harmonic coefficients are

U — @\ <1

Gim = (3.9)
Alm if I > 1.
Once the monopole and dipole have been subtracted, the estimated spherical har-

monic coefficients are
b = Nim / AT (3)Yim (F) d2 (3.10)
= Arlm/ Zal’myvl’m lem( )dﬂ (3-11)

= *\lmzal’ l’lm (312)

It is easy to check by direct calculation that bgg = b1,, = 0, as expected.
How should one choose the normalization factors Ny,,? There are different procedures

that one might consider. The simplest is simply to set Ny, = 1/ fr, where fg is the fraction
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of the sphere covered by R. However, a different normalization scheme has generally been

used in the past in analyzing cosmological data [135]. The prescription is to set

_1
2

Nip = W, (3.13)

Im*

The reason for choosing this factor is that the mean-square values of the estimated coeffi-
cients are the same as the actual mean-square values in the limit that C; varies much more

slowly than Wy, roughly speaking, one can say that

1 dC 1 AWy,
—— K
Cy dl Wi dll =y

<|blm|2> ~ C if (3.14)

As we will see, this approximation is fairly good for large ! in the case of a Harrison-
Zel’dovich power spectrum. In any case, since this is the normalization scheme that has
been most commonly used in the past, and since there is no obvious better choice, we have
chosen to use it in this work.

Using equation (3.12), it is easy to check that (b;,,) = 0 and to compute the correla-

tions between different by, s:

<blmbl’m’> = *Nlmjvl’m’ E Wlthl'lgm' <dllmalgm’> (315)
Ii,ls
1

=0 ————
Wi Wirm

Wll/llellllm éll/. (3.16)

Note that the b;,,’s are not independently distributed: there are correlations between them.

To get a feel for what happens when one uses these coefficients in analyzing a COBE-
like CMB experiment, we performed some Monte Carlo simulations. We assumed that
the actual temperature fluctuation AT(r) was drawn from a Gaussian random field with
an n = 1 power spectrum. We chose coefficients a,, for 2 < [ < 30 from Gaussian
distributions with widths given by (5). For each of 10,000 realizations, we computed the
estimated coefficients by, for 2 <1 < 20 from equation (3.12), assuming that the observed
region R consisted of all points further than 20° from the equator. Figure 3.1 shows the
mean-square values of the coefficients by, in these simulations. Note that the large-scale
power is underestimated.

We then performed a maximum-likelihood analysis of each realization to answer the
following question. Assuming that the recovered coefficients by, are accurate estimators
of the corresponding true spherical harmonic coefficients ay,,,, which values of the slope n

and the normalization Qs fit the data best, in the sense of having maximum likelihood of
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Figure 3.1: Simulated Hauser-Peebles estimates

The upper panel shows the results of Monte-Carlo simulations of the Hauser-
Peebles method. (|aj,|?) are the mean-square values of the input spherical
harmonic coefficients, and {|b;,,,|?) are the coefficients estimated by the Hauser-
Peebles method with a region of half-width 20° about the equator removed. The
lower panel shows the ratio of estimated to input coefficients. The statistical
error in the estimated coefficients is approximately 1%.

generating the observed coefficients? The degree to which the answer to this question differs
from the true values of n and Qs is a measure of the failure of the recovered coefficients to
estimate reliably the true coefficients.

In performing such an analysis it is important to take proper account of cosmic
variance. As described in Section 2.2, even with complete sky coverage, determining the
a1, ’s for some finite range of [ does not allow one to recover n and Cj exactly. The reason
is that each a;,, is a random variable, and the local values of these variables do not allow
one to determine the ensemble-average quantities C;. This problem is most acute for low [
values: since the number of independent coefficients ay,,, grows with increasing [, the average
over all m of a,, does accurately reflect the ensemble average C; for large [. In order to

separate the effect of masking from this effect, we performed simulations both with and
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lmin  lmaz Cut at 20° n %s
2 20 Yes 1.10 £ 0.18 0.88+0.30
2 20 No 0.994+0.15 1.0240.27
4 20 Yes 1.02+0.20 1.02+0.39
4 20 No 1.01+£0.18 1.00+0.34

Table 3.1: Monte-Carlo simulations of the Hauser-Peebles method

without an excluded region of the sky.

The results are summarized in Table 3.1. The columns labeled 7 and Q2 show the
mean values of the recovered index and normalization of the power spectrum, in units in
which the input normalization is 1. When the quadrupole and octupole are excluded from

the fit, masking does not significantly compromise the results. The large variances in n and

2

ps are almost entirely due to cosmic variance, as can be seen by comparing the results

with the cut to those without the cut. Histograms showing the distribution of the estimated
index n are shown in Figure 3.2.

If the quadrupole and octupole are included in the fit, the results get much worse.
This is to be expected, since we have already noted that the Hauser-Peebles method fails

to estimate the low-/ multipoles accurately.!

3.3 Least-Squares Method

There is, of course, no reason to suspect that the b;,,’s computed by the Hauser-
Peebles method will be reliable estimates of the true coefficients. Least-squares fitting
seems like a more reliable method, but as we shall see it has serious difficulties.

To estimate multipole coefficients by least-squares fitting, one needs to choose a finite
range of values of . Then coefficients by, are chosen within this range so that the quantity
A in equation (3.3) is minimized. The by,,,’s define a function that is “as close as possible”
over the observed region to the actual function AT.

There is a linear relation between the actual multipole coefficients a;,, and the esti-
mates by, let [lnin, lmaz) be the range of [-values to be estimated. For each m between

—lmaz and l,q,, define Wm to be the matrix whose elements are the numbers Wy, 1, ,,,, with

It is not terribly surprising that the method fails to estimate these multipoles accurately: we never had
any reason to expect otherwise.
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Figure 3.2: Maximum-likelihood Hauser-Peebles analysis

The results are shown of a maximum-likelihood analysis of the coefficients
b1 as determined by the Hauser-Peebles method. The histograms show the
distribution of values of n obtained from the analysis, while the smooth curves
show what one would expect from cosmic variance alone.

Iy and I3 ranging from |m| to l,,qz. Then by, is given by

Imaz [e%s)

b= D 3 (Wl Witmym. (3.17)

li=lnin lo=|m|
(Of course, if the observed monopole and dipole are subtracted from the data, then one
should use @;y, from equation (12) instead of ayy,.)

Note that if the entire sky were observed, W,, would be the identity matrix, and b,
and aj,, would be identical. However, when part of the sky is masked, the b;,,’s become
extremely bad estimates of the a;,,’s. In fact, each by, takes on values that are up to 10
times larger than the corresponding aj,,.

Figure 3.3 illustrates the problem with this method. The top panel depicts a par-
ticular realization of a Gaussian random field drawn from an n = 1 power spectrum. The

realization includes contributions from modes with 2 < I < 20, but the map in the figure
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has been smoothed by removing all contributions from modes with [ > 10. The best-fitting
coefficients by, were computed for 2 </ < 10, and the function AT’ = 3" b;,, Y}, is shown
in the bottom panel. As before, the observed region was taken to include all points more
than 20° from the equator.

The two maps agree well over the observed region. This is to be expected: the
coefficients by, are designed to do just that. However, the reconstructed map has much
larger structures than it should in the masked region. This means that the total amount
of power in the map is too large, and <|blm|2> is much larger than C;. Figure 3.4 shows
(|bim|?) as a function of I, assuming an n = 1 input power spectrum. Notice that the
<|blm|2>’s are about 100 times larger than they should be. Furthermore, the masking affects
odd and even multipoles in very different ways. This behavior results from the fact that
least-squares fitting is an unstable process: small changes in the input data can lead to
large variations in the fit. There are regularization methods one can employ to overcome
this difficulty; one such method is used in analyzing the Relikt CMB anisotropy data [100].

Whenever one tries to use this method to fit many multipole moments simultaneously,
the results are contaminated by this effect. But what if one tries to determine just one
multipole moment by this method? Figure 3.5 shows the results of Monte Carlo simulations
performed to test this approach. For each of 5000 realizations, coefficients a;,, for 2 <1 < 30
were chosen from Gaussian distributions with widths appropriate for a Harrison-Zel’dovich
power spectrum. Then the five coefficients by, were computed by least-squares fitting. The

input and output quadrupole moments Q% =3 |az,|? and Q2,, = 3" |bam|? are plotted in

2 _ 02
out mn

Figure 3.5. On average, the output quadrupole exceeds the input quadrupole:
has a mean value of 0.13 and a standard deviation of 0.47. This corresponds to a 1-o
uncertainty of 21% in the value of Q. Note that this uncertainty arises even when the data
are free of noise. For a discussion of the effects of noise bias on such an analysis, see [75].

Other relevant considerations are presented in [167].

3.4 Correlation Function Method

This is the method that Smoot et al. [163] used in determining the index n and

normalization @ps of the power spectrum. The idea is to compute the quantity

C(6) = (AT (i)AT(i2)) (3.18)

i -Fo=cosf
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Figure 3.3: Least-squares reconstruction

The upper panel is a particular realization of a sky map, smoothed by removing
all multipoles with [ > 10. The lower panel shows the result of trying to estimate
the spherical harmonic coefficients 2 < [ < 10 by least-squares fitting to this
map, with the region within 20° of the equator excluded. Note the large spurious

features in the masked region.

60
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Figure 3.4: Amplitudes of least-squares coefficients

The results of trying to estimate multipoles 2 — 20 by least-squares fitting
excluding a 20° region are shown. The input coefficients followed a Harrison-
Zel’dovich power spectrum, normalized so that the input quadrupole was 1. The
estimated coefficients are too large.

and determine which values of n and Q¢ best fit it. If the average is taken over the whole
sky, then C(#) is related to aj, according to equation (3.4). The remaining question is
whether this relationship is significantly corrupted by incomplete sky coverage.

We performed simulations in the following way to answer this question. We made 1100
realizations of sky maps with a Harrison-Zel’dovich power spectrum, including multipoles
2 <1 < 20. These maps were divided into 1728 pixels, and the correlation function C was
computed, excluding the region within 20° of the equator. The power A; in each multipole
was determined by a least-squares fit to equation (3.4), and a maximum-likelihood analysis
was performed to find the best-fit index n and normalization @ps in the same manner as for
the Hauser-Peebles method. Multipoles 19 and 20 were excluded from the fits, since they
were too close to the cutoff.

Of course, it is important to perform simulations without masking in order to assess
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Figure 3.5: Least-squares estimates of the quadrupole

The results of trying to estimate only the quadrupole coefficients ag,, by least-
squares fitting are shown. The solid line is the line Qou: = Q;n-

the effects of cosmic variance. In addition, it is of interest to introduce noise into the
simulations, since the actual experimental data are quite noisy. We added Gaussian noise
to each pixel with a variance of O.QQQES. This amplitude was chosen in order to make the
statistical error in C(#) approximately the same magnitude as the error bars in the Smoot
et al. [163] correlation functions. (It is important to note, however, that our procedure does
not mimic the analysis performed on the actual COBE data sufficiently precisely to expect
the results to match in detail for the noisy data sets.)

The results of our analysis are shown in Table 3.2. It appears from these results that
introducing a 20° cut increases the uncertainty in 7 and @, but does not bias the results in
either direction. It may be of interest to use the correlation function to determine the power
in individual multipoles, rather than to attempt to constrain the power spectrum. The
results of such an exercise are shown in Figure 3.6. Here the quadrupole moment determined

from the correlation function is compared with the input quadrupole in realizations that
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Cut at 20° Noise n f,s
No No 1.014+0.26 1.04+0.39
Yes No 0.96+£0.36 1.16+ 0.54
No Yes 0.974+0.73 1.1040.61
Yes Yes 1.10£0.96 1.10+£0.78

Table 3.2: Monte-Carlo simulations of the correlation function method

included a cut at 20°, but did not include noise. @2, — @ has a mean value of 0.03, and

a standard deviation of 0.45. This corresponds to a 20% uncertainty in Qoy;.

3.5 Conclusions

There are two types of questions that one might consider asking when presented with
large-angular-scale CMB anisotropy data. The first type is concerned with characterizing
the anisotropy as seen from our particular vantage point. Such questions include attempts
to determine the values of the coefficients a;,,; as we have seen, some such questions are
doomed to failure by incomplete sky coverage. Indeed, the uncertainty in estimating any
particular coefficient ay,, is formally infinite, unless assumptions are made that place bounds
on the other coefficients [167]. If we assume that the input power spectrum is of roughly
the Harrison-Zel’dovich form, we have seen that either least-squares fitting or computation
of the correlation function can produce estimates of the total quadrupole power. However,
these methods are valid only if we assume that the power spectrum generating the fluctua-
tions has a particular form, and even then there are extremely large residual uncertainties.
Masking induces an uncertainty of about 20% (1-0) in estimating the quadrupole, and this
uncertainty will invariably be augmented by noise in the data. It is also important to note
that least-squares fitting does tend to bias the estimated quadrupole upwards.

It is clear from these results that one should be very skeptical of attempts to use
the COBE estimate of the local quadrupole @ to normalize the spectrum of fluctuations in
cosmological models. ¢ cannot be determined accurately without complete sky coverage,
and so it makes a poor choice of normalization. In addition, even if @ were accurately
determined, it would still have a very high intrinsic cosmic variance [2, 187].

The second type of question involves using our local measurements of CMB aniso-

tropy to place constraints on cosmological models. Attempts to determine n and @ fall
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Figure 3.6: Estimating the quadrupole from the correlation function

The quadrupole moment obtained from the masked correlation function is plot-
ted against the input quadrupole moment.

into this category. The Hauser-Peebles method seems to be a reliable tool for this task
(although one must take care to correct for the fact that the method does not estimate
the low multipoles in an unbiased way). Unlike the correlation function method, it suffers
essentially no degradation from incomplete sky coverage. As the noise in the COBE data
continues to decrease, the combined effects of cosmic variance and incomplete sky coverage
will place limits on the accuracy with which these parameters can be determined: n will
necessarily have a 1-0 uncertainty of order 0.2, and @ps will have an uncertainty of order
20%. In order to reduce these uncertainties, it will be necessary to combine large-scale
experiments like COBE with experiments that probe smaller angular scales. (e.g., [64, 51].)
These experiments have their own limitations caused by cosmic variance and incomplete
sky coverage, but the uncertainties can be significantly reduced by increasing the fraction

of sky covered by the experiments [154].
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Chapter 4

The Karhunen-Loeve Transform

Transform me then, and to your power I'll yield.
William Shakespeare

4.1 Likelihood Analysis

In this chapter and the next we will attempt to use the DMR data to test hypotheses
about the power spectrum C;. We will also attempt the related task of parameter estimation:
we will assume that the power spectrum is a member of a few-parameter family, and we will
try to determine the best-fitting values of those parameters. We will adopt an approach
that is Bayesian in spirit, although we will comment on the merits of a complementary
frequentist approach. A useful textbook on these subjects is that of Berger [15].

In Chapter 2, we adopted the hypothesis that the CMB anisotropy forms an isotropic
Gaussian random field. If we also assume that the noise is Gaussian, then we know the prob-
ability distribution function of the data d given a theoretical power spectrum C. Following
the notation of Chapter 2, it is

1
e
(2m)N/2 det'/? M

f(d|C) = xp (—3d" - M), (4.1)
where the data covariance matrix M is

M=(dd"y=Y-C-YT +N. (4.2)

Here C = W-C-W, W is the window function, and N is the noise covariance matrix. We

will regard f as a function of C rather than as a function of the data d: after all, d is fixed
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and C is unknown. We will call it the likelihood L(C). When we wish to estimate some set
of parameters ¢ (which may of course be a set containing only one element), we will often
choose as an estimate the value of ¢ for which L(C(q)) is maximized.!

When we wish to establish credible regions around a parameter estimate, we will do
so in the following way. Bayes’s theorem states that the probability distribution of a set of

parameters ¢ given the data d is

f(71d) < f(d| Q) f(D. (4.3)
The first term is simply the likelihood L(§), and the second is some prior distribution. We
will generally adopt uniform prior distributions, taking f(§) to be a constant. Then the
likelihood L(q) is identical to the probability distribution of the parameters ¢ (up to an
overall normalization). A Bayesian credible region in g-space is then simply a volume V'

bounded by a surface of constant L such that

J v@ar=c [ L@ (4.4)

where c is the confidence level associated with the region, and the integral on the right-hand
side extends over all of ¢ space.?

These prescriptions tell us how to perform our parameter estimates. Of course, we
have no guarantee that these estimates will be unbiased. (In the case of Gaussian statistics,
parameter estimates are asymptotically unbiased; however, since we deal with finite sample
sizes, this guarantee does not apply.) If we are concerned about bias, we therefore have no
recourse but to perform Monte Carlo simulations to test for it.

Before we can do any of this we need to account properly for the fact that we do
not have any useful information about the monopole and dipole anisotropy. The natural
way to do this in a Bayesian context is to marginalize over the unknown modes as follows.
Let Z be a matrix containing the first four columns of Y, representing the monopole and
dipole.? Then our data contains not only the cosmic signal Y - @ and noise 7, but also some

unknown contribution Z - b due to the monopole and dipole. Here b is a four-dimensional

vector about which we know nothing.

1Often for compactness of notation we will think of L as a function of the parameters ¢ in our family of
power spectra and denote L(C(q)) by L(q).

2Note that this procedure is completely general, and in no way depends upon the assumption of Gaussian
statistics. Of course, if we do not make the assumption of Gaussianity, then equation (4.1) is not valid, and
we need to replace it with something else.

3Tf you choose to throw away the quadrupole as well, ignoring the advice in Section 2.7, then Z should
contain nine columns.
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We did perform a least-squares fit to the monopole and dipole in the data, but in
the absence of complete sky coverage we have no guarantee that we removed the correct
monopole and dipole. In fact, we should be concerned that we covertly removed contribu-
tions from other multipoles at the same time. The Gaussian likelihood formula (4.1) really
applies to the data that we would get if we had correctly removed the true monopole and

dipole. That is, equation (4.1) should really read

1 1 7 NT -1 - —
(271')N/2det1/2fvtexp (—i(d—Z- ymt(d-2Z- )) (4.5)

f(d|c,b) =

Bayes’s theorem tells us that the actual likelihood is simply

sdicys [ d% p(dlc.hs). (4.6)
where f(g) is the prior distribution of b. Since we have no information about [_;7 we take
this distribution to be an uninformative constant. The marginalized likelihood function is

therefore

1 - - - -
d*b L d -z M (d—Zb)). 4.7
g ] e ((HI- BT M - 2). )

L(C) =

We can evaluate this integral by completing the square in b to get

1

L(C) =
(©) (21 )N =4)/2 det'/? M det'/?(ZT - M1 . Z)1

exp (=3(P-d)T - M7 P d)),
(4.8)
where the projection operator P = 1 - Z - (ZT MLz Z"T . M~'. This operator
orthogonally projects out the monopole and dipole contributions to cf, where orthogonality
is defined with respect to the inner product (7, §) = il mg
Of course, all of these considerations are relevant only if we can compute the likelihood
function. The likelihood L(C) is rather awkward to compute, as it involves inverting the
N x N matrix M. This task has been performed for the family of models based on the
Sachs-Wolfe power spectrum (2.29) [174], but these computations are prohibitively slow for
exploring a large parameter space, especially if we want to perform Monte Carlo simulations
to test for bias. In the next section, therefore, we will propose a way of approximating the
likelihood L by projecting the data vector d onto a subspace of smaller dimension. Our
goal is to choose this subspace in such a way that the likelihood function based on the
new “compressed” data vector contains almost all of the useful information in the original

likelihood function.
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The idea behind this sort of data compression is quite simple. If the pixels in our

map covered the sky uniformly, we could estimate the coefficients ay, directly:

. qr ¥ .
Alm = W Esz—lm(rl)a (49)
i=1

where d; is the ith data point, and t; is the location of the ith pixel on the sky.* We could
then compute likelihoods using the estimates dy,, instead of d. Because the COBE data are
insensitive to small angular scales, we could consider only modes below some /.5, making
the process of computing likelihoods more efficient than computing them from the raw data.

As we saw in the previous chapter, since our data set does not cover the whole sky,
this procedure does not yield good estimates of the coefficients a;,,. We can still compute
the sum in equation (4.9), but the results no longer have a direct physical interpretation.
We know the probability distribution of the a;,,’s (like most other probability distributions
in this dissertation, it’s a multivariate Gaussian), and so we can still compute likelihoods;
however, since dy,,, is not related to a;,, in any particular way, there no longer seems to be
any compelling reason to use this procedure.

However, the procedure of expanding the data set in terms of a suitable set of basis
functions is still fruitful. Let us choose a set of basis functions {aq,...,ax} from the sky

to the real numbers. We will define a K-dimensional vector 7 by
N
Ya = Y diaa(Es), (4.10)
i=1

and use ¥ instead of d to compute likelihoods. (In effect, we are simply replacing the
spherical harmonics in equation (4.9) by other functions.) Specifically, we will compute

1

L, =
Y (2m)K/2det'/? M

exp (—%f(j’T Y 37) , (4.11)

where M = (i - /1) is the covariance matrix of 7.

If we choose the functions a appropriately, then L, may prove to be a good estimate
of the likelihood even if K is considerably less than A". In the next section we will propose
an optimal method based on the Karhunen-Loéve transformation [99, 176] for choosing the

functions a, in order to achieve this goal.

*These estimates are actually of the beam-smoothed coefficients Wi, aim.
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4.2 An Optimization Problem

Let us remind the reader of the notation established in Section 2.6. The data vector

d contains both signal and noise contributions:

d=Y-d+ 7. (4.12)
In the cosmological models we are considering, the quantities a,, are independent Gaussian
random variables with zero mean. To a very good approximation, so are the quantities n;.

The covariance matrices of these quantities are

(apay) = Ciby = Cuu, (4.13)
<n,'nj> = U?(S,’j = lV,'j, (4.14)
(ayni) = 0. (4.15)

Throughout this section, we will ignore beam-smoothing by setting the window function
W = 1. This is purely to simplify the notation and makes no essential difference to the
problem. If you absolutely must know where the W'’s go, simply replace @ by W - @ and C
by W - C - W everywhere in this section. We also ignore the small off-diagonal elements of
the noise covariance matrix N when performing the Karhunen-Loéve transformation. If we
like, we can put them back in before computing likelihoods, although it turns out to make
virtually no difference whether we do or not.

Define a matrix A by A, = aq(#;). Then the compressed data vectoris §¥ = A - d,

and its covariance matrix is
M= (7-7)V=(A-d-d"-AT)= A - M AT, (4.16)
and the likelihood of § for a given power spectrum is given by
oL =IndetM+ 77 -M~'-7="Tr (M—1 j-gr +1nM) . (4.17)

We need to choose our basis functions a,, or equivalently the matrix A. We will
adopt the following criterion. Suppose that the true angular power spectrum is Cg, and
suppose that C(g) is a one-parameter family of power spectra, with C(0) = Cy. We shall
see below that the ensemble-average likelihood function (In L), considered as a function of
¢, has a maximum at ¢ = 0. We will choose our basis functions to satisfy the criterion that

(In L) should decrease as fast as possible as we vary ¢ away from its maximum at ¢ = 0.
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In other words, we will choose A to maximize our expected rejection power for incorrect
values of gq.
If we Taylor expand (In L) about ¢ = 0, we see that this is equivalent to minimizing

v = d*(ln L)/dq?. From equation (4.17) we have
—2lL=Tr (AT (A-M-AT)T A Mo+ InA-M-AT), (4.18)

where My is the covariance matrix M evaluated at the true value ¢ = 0 and we have made
use of the fact that My = <aT JT> Denoting derivatives with respect to ¢ by primes, we

have

(InL))y=1Tr (A M- AT (A M-ATYTT A M AT (A M-ATHT

—(A-M-AT)T A M AT, (4.19)

This derivative vanishes when we set ¢ = 0 (and hence M = M), showing that the average
value of In L is maximal at the correct point ¢ = 0. Differentiating (4.19) again and setting

q = 0, we find that
y=-Tr [(A Mo-AT) (A -Mj-AT))?]. (4.20)
To find A, we set 97/dA;; = 0. After some unenlightening algebra, we get
A-My=(A-My-AT)-(A-Mo- AT A M,. (4.21)

Although it might not look like it, this is in fact a generalized eigenvalue equation for the
rows of A. In order to see this, use Cholesky decomposition to write My = L -L”, and set

A=A Land M' =L - M} (LT)~!. Then equation (4.21) becomes
A M=A M AT (A-AT)"'. A=A - M .P. (4.22)

The matrix P is the projection operator that orthogonally projects vectors onto the K-
dimensional row space of A. This equation states that the matrix A M is unchanged
under this projection, or, equivalently, that the row space of A - M’ is the same as that of
A. That means that

A M=Q A (4.23)

for some K x K matrix Q. Since M is symmetric, we can write it in the form R -4 - RT

where the columns of the orthogonal matrix R are the eigenvectors of M, and the diagonal



CHAPTER 4. THE KARHUNEN-LOEVE TRANSFORM 71

matrix A contains the corresponding eigenvalues. Let us assume for simplicity that the
eigenvalues are all distinct, although the final result does not depend on this.® Then if we
set B=A - R, we find that

B-A4=Q: B. (4.24)

If (;, is the ¢th column of B, then we have /\igi =Q- g, That is, g, is either an eigenvector
of Q or it is zero. Since Q can have at most K distinct eigenvalues, at least N'— K columns

of B must be zero. Let us rearrange the order of the eigenvectors in R so that these are

the last N — K columns of B. Then
A=B-R"=B, -Rl, (4.25)

where B, is the K x K matrix containing the first K columns of B (that is, B, is B shorn
of its zeroes), and R is the A" X K matrix containing the first & columns of R.

Recall that our goal was to find a matrix A satisfying equation (4.21). It is easy to
check that if A satisfies this equation, then Z - A also satisfies it for any nonsingular matrix
Z.% So, from equation (4.25), we can conclude that our solution to equation (4.21) can be
written in the form A = RT. That is, the rows of A are eigenvectors of M'.7 Converting
from hatted to hatless matrices, we have our final result: The rows &, of A are solutions

to the generalized eigenvalue equation

0 Oa = AaMo - d,. (4.26)
Furthermore,
K
v==> AL (4.27)
a=1

which means that we should choose the rows of A to be the solutions of equation (4.26)

with the largest eigenvalues (in absolute value).

5If some eigenvalues are degenerate, then we have additional freedom in choosing the columns of R. By
employing this additional freedom judiciously, we can make the argument we are about to give work even
in this case. The details can be worked out easily by the reader.

In fact, the entire likelihood function (4.18) is unchanged up to an overall multiplicative constant if A
is replaced by Z - A. One way to say this is that the likelihood cares only about the subspace spanned by
the rows of A, not about the basis with which we choose to specify that subspace.

"We have implicitly assumed here that B is nonsingular. This is the same as restricting our attention
to matrices A that have maximal rank K. This seems like a perfectly reasonable thing to do: it would be
hard to believe that a matrix of some rank less than K could do better than any matrix of rank K. In fact,
it is easy to prove that this can never happen. Given a matrix of rank less than K, it is always possible to
“extend” it to rank K in a way that does not decrease vy. This is proved in [174].
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We now have a definite procedure for choosing our matrix A. We solve equation
(4.26) and order the solutions from largest to smallest eigenvalues. These are the rows
of A. Furthermore, we have a criterion for choosing a value for K, the number of basis
functions we need to use: once the eigenvalues A, have gotten very small, including more
modes does not significantly increase the rejection power 7.

Let us try to get an intuitive understanding of these basis functions. Suppose that the
parameter ¢ is the overall normalization of the power spectrum, so that C(¢) = (1 + ¢)Co.

Then if we separate the covariance matrix into signal and noise contributions,
Mo = Mg+ Mugise = Y - Co - YT + N, (4.28)
then M{ = M, and equation (4.29) becomes

ML M @y = A, (4.29)

noise sig

where ;\a = Aa/(1=A4). @1is therefore an eigenmode of ML .M. ortouse Bond’s termi-

noise sig?
nology [20, 21], it is “an eigenmode of the signal-to-noise ratio.” Each vector @ corresponds
to a direction in the A'-dimensional vector space in which d lives. When we compute the
reduced data vector §, we are projecting Jalong each of these directions. Equation (4.29)
simply says that we should choose directions in that space that have large contributions
from the signal and small contributions from the noise.

Before we can compute the matrix A, we need to choose a fiducial power spectrum
Cy. We would like to choose a power spectrum that is close to the true power spectrum.
Of course, we don’t know the true power spectrum: if we did, there would be no need for
this analysis. However, we shall see below that our results are not very sensitive to the
particular choice we make for Cg, as long as it falls off fairly rapidly with /. (Remember
that in this section, C; is the beam-smoothed power spectrum Cj, which means that we
expect it to fall off roughly as a Gaussian in [.) We have chosen to use a pure Sachs-Wolfe
n = 1 spectrum,

o ﬁ (4.30)

for our fiducial power spectrum. We will discuss the effects of varying this choice below.

I can almost hear you, dear reader, muttering to yourself, “Now wait a minute. We

got into this mess because we didn’t want to invert the big matrix M. Now you’re telling

me I have to find the eigenvectors of M, which is much harder!” Things really aren’t as
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bad as all that. First of all, our objection was only to repeated inversions of M, and we
only have to solve the eigenvector problem once. Second, there is a trick that enables us to
find the eigenvectors we need without actually diagonalizing M.

Let us suppose first that the parameter ¢ with respect to which we are optimizing is
the overall normalization. The matrix Y is in principle A" X oo, but in practice after some
column L the contribution of subsequent columns is negligible. Let us truncate Y at this
point, making it an A" X L matrix. Correspondingly, C will be truncated to L x L. By a
little bit of manipulation we can reduce our eigenvector problem from an N x A problem
to an L X L one. (Of course, we will have to check to see whether we have introduced any
significant error by truncating Y.)

Equation (4.29) says

Y -C-YT.a=)\N-a. (4.31)

Let ﬁ = NY2.g4. (Any square root of N will do, but since N is diagonal, there is a natural

choice.) Setting Z = N~/2.Y . C'/2, equation (4.31) becomes
Z- 27 . F=A3. (4.32)
It is clear from this equation that ﬁlies in the row-space of Z whenever A # 0. Thus, there

is some € such that ﬁ = Z - ¢. If we choose ¢ to be a solution of the eigenvalue equation
77 .7.¢= )¢, (4.33)

then the result will be a solution of our original eigenvalue problem. Furthermore, by
simply counting solutions to the two eigenvalue equations we see that all of the solutions
of equation (4.31) with nonzero eigenvalues are obtained by this process. Of course, the
original eigenvalue equation (4.29) has a full set of A" nonzero eigenvalues. By truncating
Y we have reduced the rank of Mg, and forced some eigenvalues that should be nonzero
to zero. However, we are only interested in the eigenvectors with large eigenvalues, and it
is reasonable to suppose that these are relatively unaffected by truncation. We shall see
below that this is in fact the case.

When ¢ is some other parameter, such as the slope n in equation (2.29), the same
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substitutions yield the eigenvalue equation®

(1+C-27.2)7'.C' 2T . Z2.-7= )z (4.34)

4.3 Transforming the DMR Data

In this section we will perform the Karhunen-Loéve transform on the weighted-average
DMR data shown in Figure 2.2 and give some preliminary results. Let us adopt the fiducial
power spectrum (4.30), and take the normalization Q%s to be the parameter ¢ with respect
to which we optimize. Then we can solve the eigenvalue equation (4.33) to find the opti-
mal basis vectors @,. We can of course consider these vectors as functions on the sphere
evaluated at the locations of the data points.

In Figure 4.1 we show a sample of these eigenmodes. The modes with large eigenvalues
(i.e., the ones with high signal-to-noise ratios) tend to be slowly varying and hence probe
large angular scales. This simply reflects the fact that the fiducial power spectrum (and,
we suspect, the real power spectrum) decreases with increasing /. Note that some modes
occupy primarily only one hemisphere. These modes are always nearly degenerate with
another mode that similarly occupies the other hemisphere.

We can expand each mode in spherical harmonics with coefficients by,,, and assign
an “effective [” to each mode by computing the centroid of [ with respect to the squares of

the coefficients:

2
o Zl,m lblm
El,m blzrn

(The modes tend to have fairly narrow widths in /-space, so the exact definition of l.g is

logt (4.35)

not too important.) Figure 4.2 shows these effective I’s as a function of mode number with
the modes sorted in decreasing order by eigenvalue.

We have computed the eigenmodes using the method described at the end of the
previous section, using two different cutoffs /.y (and hence two different values of the
number L = (Iax + 1)? of columns we keep in Y). We show both cutoffs in Figure 4.2. It
is reasonable to guess that the eigenmodes are uncorrupted by the cutoff in I as long as we

restrict our attention to modes that lie well before the turnover in Figure 4.2, say around

8 Unlike equation (4.33), this equation is not cast in the form of a generalized eigenvalue problem involving
symmetric matrices. This means that one must pull a different and somewhat slower routine from one’s
package of canned eigenvector routines. The present author, incidentally, is partial to the NAG library [128]
for solving eigenvalue problems.
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Figure 4.1: DMR signal-to-noise eigenmodes

A sample of the DMR eigenmodes are shown. As you read from left to right and
top to bottom, the modes are sorted in order of decreasing eigenvalue. Modes 1,
2, 3, 4, 10, 20, 30, 40, 100, 200, 300, and 400 are plotted. This figure continues
to the next page.
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Figure 4.1 (continued)

mode 500 for l,.x = 30 and mode 1000 for /,,x = 40. We can test this by computing
the difference between modes computed with different cutoffs. To be specific, let @ be an
eigenmode computed with l,,x = 30 and let ﬁ be the corresponding eigenmode computed
with lax = 40. Take both vectors to have magnitude 1. Then A = 1— (&-E)Z, the square of
the sine of the angle between the two vectors, is a natural measure of the difference between
them. This quantity is typically less than 0.01 for the first 400 modes.?

We saw in equation (4.27) above that the sum of the squares of eigenvalues is a
measure of the expected sharpness of the peak of the likelihood function, and that we can
therefore throw away all modes that do not make a significant contribution to the sum. In
Figure 4.3 we show the eigenvalues A, as a function of mode number a, and also the running
sum of the squares of the eigenvalues. It is clear from this plot that most of the power comes
from the first 200 modes, but in order to be conservative we have chosen K = 400 as the
number of modes to keep in our analysis. Figure 4.4 shows likelihood curves for a standard
Sachs-Wolfe spectrum as a function of the normalization Qs for various values of K. As

expected, the likelihood curve does not get appreciably narrower for K > 200.

9Occasionally a near degeneracy between two modes will be broken in different ways for different lmnax’s.
The parameter A will then be large. This phenomenon, which was observed once (at mode 400) in a spot
check of 20 modes, is completely benign.
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We plot the quantity l.g defined in the text. The points plotted in the top
panel were computed using an I, of 40, while those in the middle panel were
computed with /;,,x = 30. The difference between the two is plotted in the lower

panel.

4.4 Preliminary Results

77

Having computed the eigenmodes, we are in a position to start computing likelihoods

for every model we can think of. We will describe several such batches of models in the

next chapter. For the moment we will content ourselves with mentioning some preliminary

results, most of which pertain to the simple Sachs-Wolfe family of power spectra described

by equation (2.29). We therefore have only two parameters to adjust, the normalization

Qps and the slope n.

If we restrict our attention to the Harrison-Zel’dovich n = 1 spectrum, then the

likelihood function L(Qps) is approximately Gaussian, with peak value 21.1 yK and standard

deviation 1.54 uK. For other values of n the normalization is

Qps = 21.1exp[0.69(1 — n)] pK

(4.36)
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Figure 4.3: Signal-to-noise eigenvalues

The crosses mark the eigenvalues, which have been sorted in decreasing order.
The solid curve is a running sum of the squares of the eigenvalues, with the scale
marked on the right of the plot.

for 0.5 < n < 2. The maximum-likelihood point is (Qps, n) = (16.8 pK, 1.32); marginalizing
over the quadrupole changes this to (18.6 uK,1.2). The 68% credible range is 0.93 < n <
1.54 (0.72 < n < 1.40 without the quadrupole). These credible regions are obtained by
marginalizing over the normalization. We chose to marginalize with a prior that is uniform
in @Qps; another reasonable choice is to choose a prior uniform in the normalization at the
“pivot point” Cy. (The pivot point is the value of [ such that C; is roughly unchanged as
we tilt the spectral index n.) The results obtained with these priors are negligibly different.

We need not restrict ourselves to a simple two-parameter family of power spectra. If
we are willing to overwork our computer, we can fit to as large a parameter space as we
wish. In fact, we can take all of the C;’s over some range of [ to be free parameters. Armed
with Numerical Recipes [143], we can search this whole parameter space for the point where
the likelihood is maximized.

The result of this exercise in overzealous fitting is shown in Figure 4.5. The power
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Likelihood

Figure 4.4: The effect of varying the number of modes

We plot the likelihood curve L(Qys) for a Harrison-Zel’dovich Sachs-Wolfe spec-
trum for various values of the number K of modes included. The normalizations
are arbitrary. The values of K for the various curves are 100, 200, 300, 400, and
500 from the top of the plot to the bottom.

spectrum shown was obtained by maximizing the likelihood over all C; with 2 < [ < 19.
Modes with [ > 19 were held fixed at the same values as the Harrison-Zel’dovich spectrum,
although the results are quite insensitive to varying this choice. The likelihood for this
model is 100 times that of the best-fitting n = 1 model.

The error bars on the points result from interpreting L(C) as a probability distri-
bution for C (i.e., assuming a uniform prior distribution in C;) and approximating L as a
multivariate Gaussian near the peak. The error bars are just the square roots of the diagonal
elements of the covariance matrix of this distribution. In general off-diagonal elements of

this matrix are not negligible. In particular, the estimates are correlated with their second-

nearest neighbors.!® The dimensionless correlation Cov(Cy, Cy)/1/Cov(Cy, C;)Cov(CypCy)

10Nearest-neighbor correlations are strongly suppressed by the nearly perfect reflection symmetry of our
problem. Even and odd modes are almost completely uncoupled.
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Figure 4.5: The maximum-likelihood power spectrum

The power spectrum shown here was determined by maximizing the likelihood
taking C; for 2 < 1 < 19 as free parameters. The error bars were computed
by interpreting L(C) as a probability distribution for C; and approximating L
as a Gaussian near the peak. There are non-negligible correlations between the
errors.

ranges from about 0.2 at low [ to 0.05 at high [/ for second-nearest-neighbor pairs. In most
cases, correlations between points with |l — I’| # 2 are negligible.

However, even knowing the full covariance matrix does not make the data in Figure
4.5 particularly useful for assessing other models. The reason is that the Gaussian approx-
imation for L(C) is quite poor. In particular, the likelihood is very strongly skew-positive,
meaning that power spectra that lie slightly above the data points in the figure fit better
than those that lie slightly below them. For example, if the best-fitting n = 1 model were
plotted in Figure 4.5, it would be a horizontal line at /(I 4+ 1)C; = 9.0 x 107!° which is
noticeably higher than one would get by naively fitting a horizontal line to the points in

the figure.
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4.5 Tests of the Karhunen-Loéve Method

The first thing we should probably do is assess the consistency of our results with those
of other methods. Tegmark & Bunn have performed a brute-force analysis based on the full
likelihood function without expanding in any set of basis functions [174]. They restricted
their attention to the two-dimensional space of Sachs-Wolfe power spectra, finding that the
maximum-likelihood spectrum has parameters (Qps, ) = (18.2 K, 1.15), or (21.3 K, 0.95)
if the quadrupole is excluded. The 68% credible region for n is 1.10£0.29. The discrepancies
between these results and those described in the previous section are all much smaller than
the uncertainties. In Figure 4.6 we plot the marginal likelihood for n from the brute-force
analysis together with the Karhunen-Loéve result and that of a similar analysis by Gorski
et al. [71]. To caution the reader, we also plot the likelihood function that one would obtain
by neglecting to marginalize over the monopole and dipole. Although all the results agree
fairly well, we should perhaps be concerned that the Karhunen-Loéve estimate is slightly
high compared to the others. It is therefore of interest to explore the possibility of bias in
n with Monte Carlo simulations.

In order to test for bias in our parameter estimates, we must resort to Monte Carlo
simulations. One of our primary goals is to estimate the normalization @ps for a variety of
spectral shapes. We therefore performed simulations to see whether the maximum-likelihood
estimate of Qs is unbiased. We made 1000 realizations of the CMB sky with each of three
power spectra, an n = 1 Sachs-Wolfe spectrum, an n = 1.5 Sachs-Wolfe spectrum, and the
“standard” cold dark matter spectrum described in the next chapter. In every case we chose
an input normalization equal to the maximum-likelihood normalization of the real data. We
added independent Gaussian noise with the same distribution as the actual DMR noise to
our simulated skies and determined the maximum-likelihood value of Qs corresponding to
the input power spectrum. In all three cases the mean of these estimates differed from
the input normalization by less than 0.1 uK, and the standard deviation of the estimated
normalizations was about 8% of the mean.

We would also like to know whether the maximum-likelihood value of n is an unbiased
estimator. In order to test this, we created 315 simulated skies with an » = 1 power
spectrum, added noise, and found the maximum-likelihood point in the (Qps, n) plane. The
mean value of n from these trials was 1.04, and the standard deviation was 0.30. We take

these results to indicate that any bias in our estimate of n is fairly small. These simulations
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Figure 4.6: Marginal likelihoods for n with different methods

In order of decreasing peak height, the curves are obtained by the naive brute

force method (neglecting to account properly for monopole and dipole removal),
the brute force method (shaded), the Karhunen-Loéve method described in this
chapter (dashed), Gérski et al. [71] (dotted) and the brute force method with
quadrupole removed, respectively. All five curves are based on the combined 53
and 90 GHz two year COBE data and are marginalized over the normalization
at the “pivot point” Cg. All but the last curve include the quadrupole.

probe a somewhat atypical case, in that the input power spectrum for the simulations is
identical to the fiducial power spectrum. We therefore repeated the test with an n = 2
input power spectrum. After 275 simulations, the average recovered value of n was 1.98,
and the standard deviation was 0.24. We can therefore be reasonably confident that our n
estimate is unbiased.

We can also use these simulations to define frequentist confidence intervals for n. In
68% of our simulations, n differed by its true value by less than 0.29, and so we estimate
that n = 1.32 4+ 0.29 at 68% confidence. The corresponding error bars for 90% and 95%
confidence are +0.50 and 0.58 respectively. Of course, given the relatively small number
of simulations we performed, these limits are only approximate. Furthermore, they are only
strictly valid for the n = 1 power spectrum that was used in the simulations.

It is clearly of interest to check whether the likelihoods obtained by the Karhunen-
Loéve method are sensitive to the choice of fiducial power spectrum. Our working hypothesis

is that the transformed data contain most of the useful cosmological information and that
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the modes that were thrown away are dominated by noise. If this is true, then we should
expect our results to be insensitive to variations in the input power spectrum.

In order to test this hypothesis, we repeated some of the analysis described in the
previous section, replacing the n = 1 Sachs-Wolfe spectrum, C’l_1 x I(14+1), with the n = 2

spectrum,
1

I+3

Cr x (4.37)

The difference between these two spectra is fairly extreme, and so we expect any significant
sensitivity to the choice of fiducial power spectrum to show up in a comparison of the two.

The likelihood function based on the n = 2 power spectrum peaks at the point
(Qps,n) = (16.7 uK,1.33), differing by only 0.1 ¢K in normalization and 0.01 in n. The
Harrison-Zel’dovich normalization changes from 21.1 pK to 20.9 uK when we change the
fiducial power spectrum.

Another quantity of interest in assessing sensitivity to the fiducial power spectrum is
the likelihood ratio of models with different slopes. Let us define r to be the ratios of peak

likelihoods at two different slopes n and n':

max, L(n,Qps
r(n,n') = 0. 1 ks ). (4.38)
maXQpSL(n , Qps)

We would like to know whether r changes when we change the fiducial power spectrum. As
we change from an n = 1 input power spectrum to one with n = 2, r(1.25, 1) changes from
1.69 to 1.74, and r(1,0.5) changes from 15.6 to 18.8. These changes are fairly small, and
give us confidence that our Karhunen-Loéve results are not strongly sensitive to the choice
of fiducial power spectrum.

We conclude this section with an important note about normalizations. Our results
are consistently about 5% higher than those obtained in a likelihood analysis done by the
COBE team [71]. In particular, the COBE group finds a maximum-likelihood normalization
for an n = 1 Sachs-Wolfe spectrum of 20 uK, while we find 21.1 uK. The COBE technique
is somewhat different from our own, and the discrepancy is less than the one-o uncertainty
in either result, but, nonetheless, one might have expected closer agreement. It has been
suggested [69] that the discrepancy may be due to the fact that we use the ecliptic maps
rather than the Galactic maps used by the COBE group: when the COBE team’s analysis
is performed on the ecliptic map, the discrepancy is reduced to less than 0.5 uK [73].

We confirmed this hypothesis by repeating our analysis on the Galactic sky maps,
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using exactly the same techniques as in our original analysis. Using the Galactic data, the
maximum-likelihood normalization for an n = 1 Sachs-Wolfe spectrum is Q,s = 20.1 K,
which agrees almost exactly with the COBE result. The maximume-likelihood point in the
(Qps, ) plane based on this data set is (15.9 yK,1.35), differing only very slightly in slope
from the ecliptic result. We know of no reason to prefer one data set over the other, and
we therefore conclude that there is some error intrinsic to the map-making process that
affects normalizations at a level of ~ 5%. Furthermore, the primary difference between the
two maps would seem to be the normalization: shape parameters such as n seem to be less

sensitive to the difference.

4.6 Placing Frequentist Constraints on Models

Statistical methods for using a data set like COBE to place constraints on models
come in two general varieties, Bayesian and frequentist. Most CMB work, including analyses
of the COBE data as well as other experiments, has taken a Bayesian point of view, and in
this dissertation we will generally follow this trend. However, in this section we will present
a simple technique for using the Karhunen-Loeéve-transformed data to place frequentist
constraints on models.

Once we have chosen a prior distribution, a Bayesian approach is perfectly adequate
for assessing the relative merits of the various models under consideration: with this ap-
proach we can say, for example, that model A is 10 times more likely than model B.!! These
models may only differ by a normalization or could be drawn from different cosmologies
or structure-formation scenarios. In some cases, however, we would like to assign absolute
consistency probabilities to models. The Bayesian approach is not well suited to answering
this sort of question, and the problem of assigning an absolute consistency probability to
a model is best attacked with frequentist methods. Consider for example the definition
of a Bayesian credible region in equation (4.4). It singles out the regions in a particular
parameter space that have the highest likelihood relative to the rest of parameter, but it
makes no attempt at all to assess whether any of the parameter space is an intrinsically
good fit.

In the frequentist approach, we choose some goodness-of-fit statistic 1, and compute

"The choice of prior distribution can of course be quite vexing. Most of results we give in this dissertation
are relatively insensitive to this choice, as long as we restrict our attention to fairly broad, “uninformative”
priors.
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its probability distribution over a hypothetical ensemble of realizations of the model. We
then compute the value of i corresponding to the real data, and determine the probability
P of finding a value of 1 as extreme as the observed value in a random member of our
ensemble. We take this probability to be a measure of the consistency of the data with the
model: if the such an extreme value of 77 does not occur often in realizations of the model,
we say that the model can be ruled out at a significance level P.

Two points about this technique deserve emphasis. First, the significance levels
derived in this manner are conceptually quite distinct from Bayesian likelihoods. Bayesians
and frequentists ask different questions of their data, and will therefore sometimes get
different answers. We do expect that models that have low Bayesian likelihoods will in
general have low frequentist P-values; however, there is no generally applicable quantitative
relation between the two. Second, it is clear that the P-values in the frequentist approach
depend on the goodness-of-fit statistic 7. For some classes of problems a standard choice is
available; for the problem we consider below, we are unaware of such a standard.

The first goodness-of-fit statistic one might think of for this purpose is a simple
chi-squared,

K 2
=3 <$—> , (4.39)
i=1
where z; is the amplitude of the ith element in our eigenmode expansion and o7 is the
variance predicted for z; by our model.'? (In order to remove all sensitivity to the monopole
and dipole, the eigenmodes a; should be orthogonalized with respect to these modes before
the z; are computed.) This statistic would be a natural choice if we wished to constrain
the normalization of a model; however, our primary interest here will be in constraining
the shape of the power spectrum, and this goodness-of-fit statistic is not well suited for this
purpose. In fact, given any power spectrum Cj, we can choose a normalization that gives
a x? that lies exactly at the median of its probability distribution, since o; scales with the
normalization of the theory. We would therefore conclude that for some normalization this
model is a perfectly good fit regardless of the shape of the Cj.
To focus on the power spectrum, let us consider quantities quadratic in the amplitude

of the eigenmodes. We could for example define a x2-like statistic based on z? instead of

12Gince the z; are not independent, this statistic is not chi-squared distributed. We would probably have
to estimate its distribution by Monte Carlo simulation.
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x5 p
K (.2 242
=3 (i — o) 2_;) . (4.40)
i=1 i

If our model is correct, then each z? is chi-squared distributed with mean o?. The variance
of such a distribution is 207}, and so we expect to get a contribution of about one per degree
of freedom from this sum if our model is correct. Furthermore, we expect the value of this
statistic to be higher for incorrect models than for the true model, so that it avoids the

fatal flaw of the statistic in equation (4.39).
We can improve on this choice of statistic by binning the z? together. After all, as

long as Cj is a reasonably smooth function, we expect any incorrect model to err in the

same direction for all nearby modes. That is, if we have underestimated o?

5, we expect

that we have probably underestimated O'?_H as well. (Recall from Figure 4.2 that nearby
modes probe similar /-values.) We therefore expect binning to improve the power of our
goodness-of-fit statistic.

Let us define

%= i (x—])z (4.41)
l j=(i—1)7+1 \%J
for 1 < ¢ < K/J. We should choose the bin size J to be large enough to reduce the
intrinsic width of the distribution of z; to a reasonable level, yet small enough that the
mode amplitudes in each bin probe similar angular scales. We have adopted J = 10 as a
compromise between these two considerations.

If our model is correct, then each z; will be approximately J. If the model is incorrect,
then some z; will be too low, and others will be too high. For example, if our model has
too little large-scale power, then the ratios .r?/ajz will be greater than 1 for small j, and the
first few z; will tend to be larger than .J. We can quantify this observation by defining the

goodness-of-fit statistic
K/J

n=> (z—J)> (4.42)

i=1
Since the mode amplitudes z; are in general correlated, it is not possible to compute
analytically the probability distribution of 7. We must therefore resort to Monte Carlo
simulations. For each of several models, we created 1000 random sky maps. We added
noise to each pixel by choosing independent Gaussian random numbers with zero mean

and standard deviations corresponding to the noise levels in the real data. We computed
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Model | Dj DY L | P-value
1 0.4 -1.6 3.29 22.0%
2 0 0 1.00 13.7%
3 -0.5 3.5 0.091 7.0%
4 -2 0 0.014 2.8%
5 -0.342 | 2.455 | 0.186 7.6%
6 -0.275 | 1.561 | 0.310 8.6%

Table 4.1: Goodness of fit for six models

The shape parameters D} and Df are defined in Section 5.3. L denotes the
Bayesian peak likelihood, normalized so that a pure Harrison-Zel’dovich Sachs-
Wolfe model has L = 1. The P-value is the percentage of simulated data sets
for which the goodness-of-fit statistic 7 defined in equation 4.42 is greater than
the value found for the real data.

the statistic n for each map. We chose to simulate six different models, which will be
described in detail in Section 5.3 below. The first four were chosen to span a range of
values of the Bayesian likelihood: we simulated (1) a Harrison-Zel’dovich spectrum; the
models with the highest (2) and lowest (3) Bayesian likelihoods from the grid of quadratic
power spectra described in the next chapter; and a model (4) with an even lower Bayesian
likelihood L = 0.01Lg 7. In addition, we chose two models from Table 5.2 that have identical
cosmological parameters (9 = 0.1, h = 0.75, n = 0.85), except that one has only scalar
perturbations (5) and one includes tensors (6) in the ratio C /C3y = 7(1 — n). All of these
models are approximated extremely well by quadratic power spectra as described in Section
5.3, and so their shapes can be completely characterized by the two parameters D} and DY.
We give these parameters in Table 4.1.

Table 4.1 also shows the peak Bayesian likelihood for each model, as well as the
frequentist P-value for the goodness-of-fit statistic 5. It is clear from the Table that low
Bayesian likelihoods tend to correspond to low P-values, as expected. Furthermore, those
models with likelihoods of order unity relative to a pure Harrison-Zel’dovich spectrum fit
the data reasonably well. This is a very reassuring fact: it was perfectly possible a prior:
that all of the models we have been considering would prove to fit the data poorly.

The z; for a Harrison-Zel’dovich spectrum and our worst-fitting model (model 4 of

Table 4.1) are shown in Figure 4.7. (In making Figure 4.7, we chose the coarser bin size
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The quantities z; defined in equation (4.41) are plotted. The triangles are the z;
computed with a Harrison-Zel’dovich spectrum and the squares were computed
with our worst-fitting model, model 4 of Table 4.1. The z; shown were computed
with a bin size J = 20. The solid and dashed lines show the expected value
of each z; and approximate one-sigma deviations from it.

these estimated deviations are not precise.) The effective mode numbers l.g are
indicated at the top of the figure.
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Figure 4.7: Measuring the goodness of fit

(The z; are onmly
approximately chi-squared distributed and only approximately uncorrelated, so
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J = 20 rather than J = 10, to reduce scatter in the points.) Note that the z; only loosely

correspond to C; and depend on the theory. When z; is larger than its expected value, one

can conclude that the data have more power than the theory predicts on the corresponding

angular scale; however, there is no direct proportionality between z; and the corresponding

C;. Each z; can be regarded as an estimator of the power spectrum of the signal and noise

combined. For small ¢, z; samples mostly signal, while the noise dominates for large ¢. The

value of z; for large ¢ therefore changes very little as the model parameters are varied, as

can be seen in Figure 4.7.

We have adopted our goodness-of-fit statistic # in a fairly arbitrary manner. We
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certainly have no guarantee that it is a particularly powerful discriminator among models. It
is well within the realm of possibility that a more clever choice of statistic would considerably
strengthen our ability to place frequentist constraints on models. Nonetheless, this statistic
is simple to compute, and gives us something that we can plot to get some idea of how well

our data match a particular model over different ranges of [.

4.7 Conclusions

Almost all analyses of the DMR data have involved some form of “data compres-

sion,”

either by taking linear combinations of the data points or by forming quadratic or
higher-order statistics. In this chapter we have presented a linear compression technique
that is in some sense optimal. The technique involves one moderately computationally
expensive task, namely, finding the signal-to-noise eigenmodes. However, the process of
computing likelihoods after that is relatively efficient, involving nothing worse than the
Cholesky decomposition of a 400 X 400 matrix.

Based on the tests performed in Section 4.5, we are reasonably confident that the
Karhunen-Loeve likelihood forms an adequate substitute for the much more computationally
expensive “true” likelihood. Furthermore, we have performed Monte Carlo simulations
that allow us to conclude that the maximum-likelihood normalization derived from the
transformed data is unbiased. We also conclude that the bias in shape parameters, such
as the spectral index n, appears to be small, even for spectral shapes that are somewhat
different from the shape of the fiducial power spectrum.

The Karhunen-Loéve-transformed data can be used to set frequentist constraints by
choosing a goodness-of-fit statistic n in the usual way. However, there is a great deal of
arbitrariness inherent in choosing this statistic. We have suggested one possible choice
in the previous section, but we have no great confidence in its effectiveness, and we will

therefore stick to likelihood-based Bayesian techniques for the rest of this dissertation.
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Chapter 5

Constraining Models with the
COBE Data

“That process,” said I, “starts upon the supposition that when you have elimi-

nated all which is impossible, then whatever remains, however improbable, must
be the truth.”

Arthur Conan Doyle

5.1 Introduction

Fictional characters have certain advantages not shared by the rest of us. Apparently,
for Sherlock Holmes, the space of theories divides neatly into the possible and the impossible,
with no inconvenient grey areas [54]. We are not so lucky. Even when we claim to have
“ruled out” a particular theory, all we mean is that we have reached the conclusion that it
is extremely implausible, not that it is impossible.

In this chapter we will attempt to place such constraints on several popular cosmo-
logical models, those based on the cold dark matter scenario. All of these models have
at least one free parameter, the overall normalization Qs of the fluctuations, whose value
can be accurately estimated from the COBE data. Having fixed the normalization, we can
ask whether a particular model agrees with large-scale structure observations such as the
fluctuations in galaxy counts and measurements of the velocity field.

One might imagine several different methods for estimating the normalization @

from the COBE data. We have described in the previous chapter the one that we will be
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using. Despite its gain in efficiency over the “brute-force” technique of computing the full
likelihood function, it is still a fairly cumbersome method, and one might well wonder why
simpler techniques do not work. In particular, the expected pixel variance o%(7°) of the

COBE data (after correction for noise bias) is proportional to Qf,s:

2 o Cl

(2(7)) = < St 4 1) LW, (51)
1=2 2

where W is the Legendre-polynomial expansion of the beam pattern. (Recall that a par-
ticular theoretical model predicts the shape of the power spectrum, i.e., C;/Cy.) In order
to reduce the noise, one sometimes smooths the data with a 7° FWHM Gaussian to get the

variance on an angular scale of 10°:!

2 oo
s C _
(0%(10°)) = 2= 37 (20 + 1)C—’Wﬁe orli+1) (5.2)
=2 2

where o7 = 0.4247 x 7° is the standard deviation of the 7° Gaussian. Since both of these

quantities have expected values proportional to Q% we might in principle choose to use

5
either to set our normalization. Why don’t we?

The reason is simply that reducing the data to a single number in either of these
ways throws away a lot of information. Another way to see this is to observe that both
o(7°) and 0(10°) have large cosmic variances, for the simple reason that they are dominated
by the first few terms in the sum, and therefore few independent modes of the anisotropy
contribute. A likelihood technique of the sort we employ uses more of the information
available in the data and therefore provides more precise normalizations.

The difference can be quite substantial. In Figure 5.1 we show the ensemble-averaged
quantities (02(7°))"/? and (02(10°))!/? derived from simple Sachs-Wolfe power law models
with the maximum-likelihood normalization. We can see that there are large differences

1/2 in these models. The sense of the variation with n is as we would

between ¢ and (o?)
expect, given that the sky variance o? is dominated by the quadrupole. For low n the
quadrupole is much lower than its expected value, so ¢ is much lower than <02>1/2. As n
increases this effect decreases. In short, normalizing to a single number such as o?(7°) or
02(10°) is a very dangerous practice.

The fact that the locally-measured quantity ¢(10°) differs noticeably from the en-

semble-average quantity (6%(10°))/2 (for, say, a maximum-likelihood n = 1 Sachs-Wolfe

110° being the the approximate quadrature sum of the original 7° FWHM beam-width and the additional
7° Gaussian.
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Figure 5.1: Expected pixel variance as a function of n

We show the value of the RMS power, as measured by ¢(7°) (solid) and ¢(10°)
(dashed), for the best fitting, tilted Sachs-Wolfe models, as a function of n. The
fact that the RMS fluctuation of the best fitting model depends on n shows
that there is more information in the COBE data than just the RMS power.
For comparison, the actual values of o(7°) and ¢(10°) in the COBE data are
37.5 uK and 32.5 uK respectively.

spectrum) seems to have caused a fair amount of consternation in the literature [6, 13, 31,
195], despite the fact that it is nothing more than a manifestation of cosmic variance. We
will therefore comment briefly on the significance of, and the reasons for, the discrepancy.

One relevant fact is that the COBE beam is not a pure 7° Gaussian [195]. If we
approximate W; by a Gaussian in equation (5.2), we find that (¢2(10°))'/2 = 1.99 Q,, for
a pure n = 1 model. Using the correct window function plus an extra 7° smoothing as in
equation (5.2), one has <02>1/2/st = 1.91; the corresponding ratio for a standard CDM
model is 1.95. These are to be compared with the value 0/Qps = 1.63 obtained from the
real data. Including the proper beam reduces the discrepancy only slightly.

But how significant is this discrepancy anyway? In a set of COBE-normalized stan-

dard CDM skies, we find that 7% have a ratio 0/Qps as low as that in the real data. Using
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n = 1.5 CDM instead of standard CDM improves the situation: the predicted o/Qps is
2.32, while the data give 6/Qps = 2.31. In any case, even for n = 1 the discrepancy is
not very statistically significant. The bulk of the discrepancy comes from the low COBE
quadrupole. If we remove the quadrupole from the data, then ¢(10°) and Qs are quite
consistent with each other. The ratio found in the data after removing the quadrupole is
0/Qps = 1.54, which agrees well with the prediction of 1.69 for sCDM.

We draw three conclusions from this analysis. First, the ¢/Qps discrepancy is not
terribly significant in any case. Second, the main reason for the discrepancy is simply the
fact, which we have already observed, that the quadrupole in the data is low. Finally, we
conclude that it is unwise to use a single number such as ¢(10°) to normalize models.

As soon as we go beyond the minimal “standard” cold dark matter model, a host
of new free parameters are introduced in addition to the normalization. Among the most
important parameters we can vary are the spectral index n, the cosmological constant A,
the contribution of tensor (gravitational wave) modes to the CMB anisotropy, the baryon
fraction Qp, the amount of hot dark matter £2,,, and the Hubble constant. Some of these
parameters (especially A) produce changes in the predicted spectral shape of the CMB
anisotropy on COBE scales, and therefore change the normalization Q. Others, such as
Q,, have little effect on the COBE spectral shape but strongly affect the conversion from
Qps to the amplitude of matter fluctuations on large-scale structure scales.

For those parameters that significantly affect the shape of the anisotropy spectrum,
such as A and the tensor contribution C’;‘F/Cég to the anisotropy, we can hope to use the
COBE data to do more than just set the normalization. The likelihood techniques described
in the previous chapter should have the power to discriminate good models from bad on
the basis of the spectral shape.

Throughout this chapter we will use the Bayesian techniques and the Karhunen-
Loeve-transformed DMR data described in the previous chapter. In Section 5.2 we will
estimate normalizations for a fairly small class of nearly standard CDM models. In section
5.3 we will broaden this class considerably by observing that nearly all CMB power spectra
for flat CDM-like theories have shapes that are approximated well by a simple two-parameter
family. We will provide estimated normalizations and relative likelihoods for a grid of models
in this family. Finally, in Section 5.4 we will compute the likelihood as a function of the
cosmological constant A in a cold dark matter model, and use it to place constraints on the

value of the cosmological constant.
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5.2 The COBE Normalization for Standard CDM

The CDM model (see e.g., [112, 131]) has become the ‘straw man’ model of structure
formation. In this model, Q¢ = 1, with a variable fraction Qp residing in baryons and the
rest in massive (non-relativistic) dark matter. The initial density fluctuations are assumed
to be Gaussian distributed, adiabatic, scalar density fluctuations with a Harrison-Zel’dovich
spectrum on large scales, i.e., P(k) « k™ with n = 1.2 The ‘standard’ CDM model (sCDM)
has come to mean the one with Hy = 50km/s Mpc™', as a compromise between age and Hy
constraints, and with Qg = 0.05, for consistency with the best central value from big-bang
nucleosynthesis studies [159, 181].

Since this model is in such widespread use, it is important to know as accurately as
possible the COBE normalization for it. We have already observed above that the simple
RMS amplitude of the fluctuations (either o(7°) or ¢(10°)) is not an adequate normalization.
It is much better to use the normalization given in the previous section for an n = 1 Sachs-
Wolfe spectrum. However, even this is not entirely right, since as Figure 5.2 shows, a
CDM model is not fitted well by a simple Sachs-Wolfe model, even if we allow n to vary.
(The fact that the CDM power spectra in Figure 5.2 do not coincide well with the Sachs-
Wolfe spectra indicates that other physical effects besides the simple Sachs-Wolfe effect
significantly influence the angular power spectrum.) In this section we therefore provide
COBE normalizations for the CDM power spectrum itself as computed by solving the
Boltzmann equation for the matter-radiation fluid.

Although generally successful, the sCDM model is unlikely to be precisely the correct
description of the Universe. In this section we will therefore consider a modest range of
deviations from it. (We will widen the scope of our inquiry later in the chapter.) First
one can allow for variations in A and Qp. On the scales probed by COBE, the power
spectrum is relatively insensitive to these changes, although the conversion from the COBE
normalization to measures of power on smaller scales can change dramatically as these
parameters are varied. Second, since inflation generically predicts departures from the
simple ‘flat’ n = 1 form, we will quote normalizations for a range of n. Should primordial
gravitational waves (tensors) turn out to be important in addition to the scalar fluctuations,

their effect will be to lower the inferred Q%s by roughly the fraction they contribute to Cj,

Inflation generally predicts slight deviations from the simple Harrison-Zel’dovich form. We neglect these
corrections.
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Figure 5.2: CDM and Sachs-Wolfe power spectra

The solid lines are the CMB anisotropy multipoles for CDM models for Qg =
0.01, 0.05 (‘sCDM’) and 0.10 (from bottom to top). The dashed lines are Sachs-
Wolfe spectra for n = 1.00 to n = 1.25 in steps of 0.05, as computed using
equation (2.29). The curves have all been normalized at Cg, which is approxi-
mately the ‘pivot’ point for the COBE data [71]. Note that the CDM spectra
are not represented well by Sachs-Wolfe spectra for any n.

i.e., CT/C35. This fraction is currently totally unknown, although it may be related to n for
specific models. For example, in ‘extended’ inflation it is roughly 7(1 — n) [44], although in
‘natural’ inflation it is negligible even if n < 1 [4]. Since including a tensor component also
changes the shape of the C;’s, we perform a fit to the data. The two specific possibilities
mentioned above span the usually considered range, and we quote the normalization in
both cases. The addition of a component of hot dark matter will cause a negligible effect
at COBE scales, but will change the relevant normalization on smaller scales. Models that
have a cosmological constant and/or are open (including Baryonic Dark Matter models),

and models containing topological defects, present additional difficulties, and we do not
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Figure 5.3: Power spectra for CDM models

We plot the angular power spectra for the family of CDM-like models whose
normalizations are given in Table 5.1. The solid curves are pure Sachs-Wolfe
spectra with n = 1 (flat) and n = 1.15 (rising). The short-dashed curves are
the spectra for standard CDM and the models with varying Qp. (Models with
larger values of Qp have more power at high /.) The spectrum for the h = 0.3
model is plotted with a long dashed line. The two tilted spectra are plotted
with alternating long and short dashes. The model that includes tensors is the
one with the higher quadrupole.

treat them in this section. We will treat cosmological-constant models later in the chapter;
the reader with an interest in open inflationary models is referred to theoretical work by
Lyth & Stewart [121], Ratra & Peebles [144], Bucher et al. [29] and Yamamoto et al. [197].
Some of these models have been compared with the DMR data by Gérski et al. [72].

We have applied the likelihood techniques described in the previous section to the
Karhunen-Loéve-transformed two-year DMR data to determine the best-fitting values of
Qps for this family of models. We used theoretical power spectra that were computed by
Martin White. The results are shown in Table 5.1. The angular power spectra for all of

these models are plotted in Figure 5.3
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101°¢,

Model Qps | (02(10°)2 T Vo Vao J5(10) o8
(h~Mpc)3tn (1K) (1K) (km/s) | (km/s) | (R~ 'Mpc)?

S-W n=1 3.04 7.37 1.27 19.2 38.3 — — — —
S-W n=1.15 2.06 18.38 1.03 17.3 36.5 — — — —
sCDM 2.70 6.54 1.13 18.1 37.0 328 411 484 1.24
Qp = 1% 2.76 6.68 1.15 18.3 37.2 332 416 554 1.33
Qp =10% 2.66 6.44 1.11 18.0 36.8 315 392 380 1.10
h=0.3 2.68 6.49 1.12 18.1 35.0 274 329 128 0.62
tCDM (S) 3.49 3.55 1.31 19.5 37.4 278 343 280 0.94
tCDM (S+T) 2.38 2.42 1.51 21.0 39.8 230 283 191 0.77
MDM 2.70 6.54 1.13 18.1 37.0 332 415 264 0.87

Table 5.1: Normalizations for standard CDM models

The first three normalizations are proportional to Qf,s and have fractional un-
certainties ~ 15%, while the others are proportional to @, and have errors
~ 7.5%. The first two models were normalized using equation (2.29) for the
angular power spectrum, neglecting everything but the Sachs-Wolfe effect. The
third model is sSCDM. The next three models show the effect of varying the
baryon fraction and the Hubble constant. tCDM is a tilted CDM model, with
n = 0.9, given for the case with scalars only (S) and with a component of ten-
sors added (S+T). MDM is a mixed dark matter model containing 30% hot and
69% cold dark matter, taken from [84]. The power normalizations 4 and B are
defined in equations (5.3) and (5.5) respectively. Here by ¢%(10°) we mean the
variance in AT smoothed with a 10° FWHM Gaussian. Vgg and Vg are the
predicted RMS velocities in spheres of radius 602~ 'Mpc and 402~ 'Mpc after
smoothing with a Gaussian of width ¢ = 12A~!Mpc. The J3(10) and og nor-
malizations are defined in the text. The power spectra used to compute these
results are plotted in Figure 5.3.
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For sCDM we find Qs = 19.9 £ 1.5 uK. If we unwisely marginalize over the quadru-
pole, this value increases slightly to Qs = 20.3+ 1.5 uK. Note that the effect of quadrupole
removal on the normalization is quite small: it is considerably less than the 7.5% uncer-
tainty in Qpg, and it is also less than the ~ 5% difference in normalization between the two
pixelizations of the data (see Section 4.5). The reason throwing out the quadrupole does not
affect the normalization much, despite the fact that @ is quite low, is that the quadrupole
has large cosmic variance and is therefore automatically given low weight in fitting.

The above normalizations are mean values of Qs obtained by interpreting L(Qps)
as a probability distribution for Qps. (In other words, by adopting a prior uniform in
Qps.) Since L(Qps) is quite symmetric, they differ negligibly (by less than 0.1 pK) from
the maximum-likelihood normalizations. If we choose to regard Qﬁs as the quantity of
interest and compute its mean with the same probability distribution, we get Qﬁs =403 +
61 uK2, and Q%s = 418 4 64 uK? without the quadrupole. These are slightly higher than
the maximum-likelihood values. The value of @ in CDM models depends weakly on
Qp and is virtually independent of A, as indicated in Table 5.1; however, both Q5 and A
affect the transfer function and hence the smaller-scale normalizations. Including tensor
modes degrades the fit to the data, since it increases the predicted quadrupole. With
CT/Cy = 7(1 - n) we find that the best-fitting values of Qs = ( ror+ (2?)575)1/2 are 22.9,
25.2 and 27.5 uK for CDM models with n = 0.9, 0.8 and 0.7, respectively. These models
have peak likelihoods that are 0.61, 0.35, and 0.20 times the peak likelihood for the sCDM
models. (The corresponding numbers for tilted CDM models without tensors are 0.75, 0.52,
and 0.33.)

If we assume that temperature fluctuations at large scales arise from the SW effect,

AT/T = 1/3®, the spectrum of radiation fluctuations looks like
P(k) = A(kno)" ™" . (5.3)

Here 19 ~ 3ty = 2H; " (for Q¢ = 1) is the conformal time today, with scale factor normalized
to unity, and we are working in the synchronous gauge. A is one way of quoting the
amplitude for scalar perturbations. It is related to g, the dimensionless amplitude of
matter fluctuations at horizon crossing, through %, = (4/7)A.

In terms of the normalization A, the Sachs-Wolfe formula (2.29) becomes
T3 —n)l (1+ 51

o () ()

Cy=2"n%4

(5.4)
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(see e.g., [2, 25, 137, 188]). For the special case n = 1, we have Cy/A = 47/3, and
Cl_1 x I(I41). However, as has been emphasized before [19] and as we show in Figure 5.2,
the C;’s for sCDM can depart significantly from equation (5.4) even for / ~ 10.

Another common normalization convention is to define the matter power spectrum

as

P(k) = BE"T?(k), (5.5)

where the transfer function T'(k) ~ 1 on large scales. The dimensions of B will thus depend
on n (and will be Length?* for n = 1). If the fluctuations arise purely from the SW effect,

then B and A are simply related, so for n = 1 [188]
P(k) = 2n%ng AR T2 (k) ~ 2.5 x 10" A (k/h Mpc™ ) T?(k) (b~ Mpc)®. (5.6)

Hence for n =1,

B =2r’n5A = (67%/5) ng Qps /T3 (5.7)

The assumption of pure SW fluctuations is not exact (see Figure 5.2), although when
we normalize to the quadrupole it is approximately correct. A calculation in which the
photon and dark-matter perturbations are explicitly evolved in time shows this relation
holds to an accuracy of & 4%. There is better agreement for higher values of h, which
moves last scattering further into the matter dominated regime. For example, if h = 1,
the Sachs-Wolfe formula (for C3) is good to & 1%. We have used the ratio of matter
to radiation normalizations from this calculation where appropriate. Additionally we use
numerical calculations of the transfer functions for our models. We find that variations in
the transfer function with Qp can lead to 10% changes in small-scale power.

Large-scale flows also provide a measure of the power spectrum: the variance of
the velocity field in spheres of radius r, V;2 (), can be expressed as an integral over the
power spectrum (e.g., [138]). This tends to probe scales similar to the degree-scale CMB
experiments. Bertschinger et al. [16] estimated the 3D velocity dispersion of galaxies within
spheres of radius 402~ 'Mpc and 60h~!Mpc, after smoothing with a Gaussian filter on
12~ 'Mpc scales. So we also quote the normalization in terms of the quantities V4o and
Vo, corresponding to the procedure above.

On smaller scales, associated with clusters of galaxies, one conventionally quotes

J3(10h~Mpc) (e.g. [138]), and the ‘bias’ b, or variance of the density field in spheres of
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8h~'Mpc radius og, defined through

_ % dk 351(kr)\ >
2 2 _ n+3 2
where 7 = 8 'Mpc. The variance of galaxies, possibly biased relative to the matter

(8ga1 = b6,,), is roughly unity on a scale of 84~ 'Mpc [46, 120]. For sCDM the COBE best-fit
gives og ~ 1.3, i.e., a slightly anti-biased model. However, as indicated in Table 5.1, og

depends strongly on the values of Qpg, h, etc.

5.3 Normalizations and Likelihoods for General Models

In the previous section we presented the normalization of the standard CDM model
and a small range of variants. In this section we extend this to a larger class of models,
and present a means for normalizing a whole class of models to the COBE data in a
computationally simple manner. In particular, we will consider models with a cosmological
constant and spectral tilt, both with and without the presence of tensor modes. Since this
is a fairly large parameter space, we will simplify our computations by observing that all of
the models under consideration are fitted extremely well by a simple two-parameter family
of power spectra.

Since the power spectra for all of these models are quite smooth, it makes sense to

consider approximating them with a Taylor expansion. Following [184], we will write
D(z)=1(1+1)C; with z = logo! . (5.9)

We can perform a Taylor expansion of D(z) about some fiducial point, which we shall
take to be # = 1 (I = 10). Many theories (see below) can be approximated well by
quadratic D(z) over the relevant range for COBE, roughly I = 2 to 30, and so we present the
normalizations and likelihoods of quadratic D(z). We choose to parameterize our quadratics

by the (normalized) first and second derivatives at 2 = 1: D} and DY, where
D//
D(z) ~ Dy <1 + Di(z—1)+ 71(56 - 1)2> (5.10)

(note that D/ is 1/D; times the derivative of D(z) at = 1). The normalization is then
given by quoting Dy, or Cyo, for each (D}, DY) pair, and the goodness of fit is quantified by

the relative likelihood of that shape compared to a featureless n = 1 Sachs-Wolfe spectrum.
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Now to find the normalization of any theory, one calculates the large-angle multipole
moments and finds the quadratic which best describes their shape. We have computed
maximum-likelihood normalizations for these quadratic power spectra for a grid of models
spanning the range —0.5 < D] < 0.5 and —0.5 < DY < 3.5. The best-fitting amplitude and

likelihood are given by the following formulae:
10" Cy = 0.8073 + 0.0395D — 0.0193DY, and (5.11)

In L = 0.00697 + 1.523D/ — 0.403D?? — 0.490D" — 0.0391D’ D" + 0.00855D}2.  (5.12)

The fitting formula for C19 has a worst-case error of 2% and an average error of 0.4% over
this range; the corresponding numbers for L are 7% and 1.7%. The uncertainty in Ciq
is approximately 15% for all models. The likelihood reaches its maximum at the point
(D}, DY) = (0.0,—3.0), which is beyond the range covered by the fitting formula. The peak
likelihood for this model is 3.7 times the likelihood of a flat Harrison-Zel’dovich model.
Figure 5.4 shows L as a function of D} and DY.

In Tables 5.2 and 5.3 we show the best-fitting shape parameters for some flat, low-q
variants of the CDM model. The angular power spectra that were used in fitting to the shape
parameters were computed by Martin White, as were the small-scale normalizations og and
A?. The fit of a quadratic to these theories gives an error at the worst-fit multipole (in the
range 2 < I < 30) of about 5%, with a typical error of < 2%, showing that such theories are
fitted well by quadratics over the range of scales probed by COBE. To quantify the error
introduced by approximating the power spectrum as a quadratic, we computed likelihood
curves for the worst-fitting model in our sample using both the true power spectrum and
the quadratic approximation. The two curves differ by 11% in peak likelihood and by 0.5%
in normalization.

Critical (9 = 1) CDM models with late reionization are also well fit by quadratic
D(z). The most plausible, though not the only, ionization history in hierarchical models
of structure formation is standard recombination, followed by full ionization from some
redshift z, until the present. The fully ionized phase is due (perhaps) to radiation from
massive stars on scales that go non-linear early [113]. We find that, over the range of [
probed by COBE, models that have z, < 100 are almost indistinguishable from models
with no reionization, assuming standard big-bang nucleosynthesis values for 2g. There is,

of course, damping on degree scales (I ~ 100), but little change in the spectrum at smaller
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Qo n D} DY A? o D} DY A? o
0.50 | 0.85-0.079| 0.476 | 0.027 | 1.45 -0.186 0.910 0.015 1.08
0.90 || 0.046 | 0.503 | 0.031 | 1.62 -0.043 0.785 0.020 1.31
0.95 1 0.172 | 0.557 | 0.036 | 1.82 0.115 0.693 0.028 1.62
1.00 || 0.298 | 0.635 | 0.040 | 2.05 0.298 0.635 0.040 2.05
0.40 | 0.85|/-0.110| 0.600 | 0.030 | 1.29 -0.202 0.955 0.016 0.95
0.90 (| 0.012 | 0.631 | 0.034 | 1.45 -0.065 0.853 0.022 1.15
0.95( 0.135 | 0.685 | 0.039 | 1.62 0.084 0.787 0.030 1.43
1.00 || 0.258 | 0.767 | 0.045 | 1.82 0.258 0.767 0.045 1.82
0.30 | 0.85(/-0.159| 0.853 | 0.032 | 1.10 -0.225 1.058 0.016 0.79
0.90 {|-0.040 | 0.885 | 0.036 | 1.24 -0.097 0.991 0.022 0.97
0.95 (| 0.080 | 0.944 | 0.041 | 1.39 0.041 0.975 0.031 1.21
1.00 || 0.201 | 1.022 | 0.047 | 1.56 0.201 1.022 0.047 1.56
0.20 | 0.85(/-0.240| 1.338 | 0.029 | 0.82 -0.258 1.237 0.014 0.56
0.90 (|-0.124 | 1.366 | 0.033 | 0.92 -0.143 1.229 0.019 0.69
0.95 (|-0.008 | 1.415 | 0.038 | 1.03 -0.023 1.295 0.027 0.88
1.00 || 0.108 | 1.485 | 0.043 | 1.15 0.108 1.485 0.043 1.15
0.10 | 0.85(/-0.342| 2.455 | 0.014 | 0.33 -0.275 1.561 0.006 0.21
0.90 ||-0.227| 2.462 | 0.016 | 0.37 -0.176 1.673 0.008 0.26
0.95(|-0.113 | 2.485 | 0.019 | 0.41 -0.082 1.931 0.012 0.33
1.00 || 0.000 | 2.527 | 0.022 | 0.46 0.000 2.527 0.022 0.46

Table 5.2: Shape parameters for ACDM models

We give the shape parameters D| and D/ of the radiation power spectrum in
a ACDM model with A = 0.75. Also shown is the matter power spectrum

normalization with the radiation normalized to Cyp = 10711,

For the tilted

models we show the results with (right columns) and without (left columns) a
gravity-wave component with C7 /C5 = 7(1 — n).
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Qo n D} DY A? o8 D} DY A2 o
0.50 | 0.851/-0.001| 0.657 | 0.018 | 0.80 -0.123 1.039 0.010 0.60
0.90 (| 0.130 | 0.698 | 0.020 | 0.89 0.028 0.937 0.013 0.72
0.95 || 0.262 | 0.769 | 0.023 | 1.00 0.196 0.877 0.018 0.89
1.00 || 0.396 | 0.866 | 0.026 | 1.12 0.396 0.866 0.026 1.12
0.40 | 0.85](-0.018| 0.807 | 0.018 | 0.67 -0.130 1.099 0.010 0.50
0.90 || 0.111 | 0.851 | 0.021 | 0.75 0.016 1.021 0.013 0.60
0.95 (| 0.240 | 0.924 | 0.024 | 0.84 0.178 0.992 0.019 0.74
1.00 || 0.372 | 1.025 | 0.027 | 0.94 0.372 1.025 0.027 0.94
0.30 | 0.851-0.043| 1.104 | 0.017 | 0.51 -0.140 1.222 0.009 0.36
0.90 || 0.084 | 1.154 | 0.020 | 0.56 -0.000 1.188 0.012 0.44
0.95 || 0.212 | 1.227 | 0.022 | 0.63 0.155 1.212 0.017 0.55
1.00 || 0.340 | 1.327 | 0.026 | 0.70 0.340 1.327 0.026 0.70
0.20 | 0.85/-0.071| 1.668 | 0.013 | 0.32 -0.147 1.436 0.006 0.22
0.90 || 0.055 | 1.719 | 0.015 | 0.35 -0.015 1.471 0.008 0.27
0.951 0.180 | 1.788 | 0.017 | 0.39 0.131 1.594 0.012 0.34
1.00 || 0.307 | 1.883 | 0.019 | 0.44 0.307 1.883 0.019 0.44
0.10 | 0.85(/-0.029| 2.910 | 0.003 | 0.13 -0.112 1.806 0.001 0.08
0.90 || 0.096 | 2.946 | 0.004 | 0.14 0.018 1.978 0.002 0.10
0.95 (| 0.222 | 2.998 | 0.004 | 0.15 0.163 2.326 0.003 0.13
1.00 || 0.347 | 3.072 | 0.005 | 0.17 0.347 3.072 0.005 0.17

Table 5.3: More shape parameters for ACDM models

As in Table 1 but with 2 = 0.50.
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Figure 5.4: Likelihoods for quadratic models

The likelihood, L, is plotted as a function of the power spectrum shape parame-

ters D} and DY. The contours range from L = 0.5 to L = 3 in steps of 0.5, where
L =1 corresponds to a flat spectrum D] = DY = 0. For values of (D}, DY) for
which the power spectrum goes negative over the range 2 <[ < 30 (lower right
corner) we have set the likelihood to zero. We have also indicated the values
of (D}, DY) for several of the models in Tables 5.2 and 5.3. The crosses and
asterisks are for n = 0.85 models with and without gravity waves, respectively.
Both of these models have h = 0.75. The diamonds and triangles denote n = 1
models with h = 0.75 and h = 0.5, respectively. In all cases, Q ranges from 0.1
to 0.5 in steps of 0.1, and DY decreases with increasing {2.

[. Further, the relative normalization of the matter and radiation power spectra is the same
as in models with standard recombination. For a CDM model with & = 0.5 and n = 1, the

quadratic parameters are fitted well by the formulae
1 =0.738 — 0.03072, + 3.32 x 107%22 — 1.06 x 107°22,  and (5.13)

7 = 1.554 — 0.04832, 4+ 3.67 x 107422 — 7.60 x 10722, (5.14)

over the range 30 < z, < 110.
The case of open CDM models is more complicated, since the C; exhibit features

at several scales. To add to the difficulty, there appear to be several different primordial
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spectra one can consider in open universe models. Some models based on inflationary phases
[121, 144, 29] predict power spectra that show an increase in power near the curvature radius.
All of these calculations use basis functions in which there is exponential damping of power
above the curvature radius; however, this assumption can be relaxed [122, 197]. The open
models of Ratra & Peebles [144] have already been fitted to the 2-year COBE data [72], and
we will not duplicate the results here. We mention, however, that the C; for such models
can be fitted by cubics in log,, ! to the same accuracy that the ACDM models can be fitted
by quadratics. This increases the dimension of the parameter space and makes tabulating
the results more difficult. We defer consideration of cubic fits until the situation with regard
to open models is more settled.

Once the 4-year COBE data become available, we hope that fitting formulae similar
to equations (5.11) and (5.12), but going to sufficiently high order to encompass almost all
theories, could be produced for the benefit of the astrophysics community. Such a fit, coded
into a subroutine, would allow any theory to be quickly and accurately fitted to the COBE
data. At present our simple quadratic fit is sufficient for a wide range of theories of current
interest.

The best normalization and the goodness of fit of the temperature fluctuations for a
range of models are given by equations (5.11) and (5.12). Using these results to normalize
the matter power spectrum from the CMB can present some complications. In the simplest
picture, in which the large-angle CMB anisotropy comes purely from potential fluctuations
on the last scattering surface, the relative normalization of the CMB and matter power
spectrum today is straightforward, as we saw in the previous section. For models with
Qg < 1 the normalization is not so straightforward. Naively one would think that, for fixed
CMB fluctuations at z = 1000, one would have smaller matter fluctuations today. This is
because in an open or a flat model with a cosmological constant (24 = 1 — €Qg), density
perturbations stop growing once the universe becomes either curvature or cosmological con-
stant dominated (respectively). Curvature domination occurs quite early, and the growth
of density fluctuations dp/p = ¢ in an open universe is suppressed (relative to an Qp = 1
universe) by a factor Q9% In a flat A model, the cosmological constant dominates only
at late times, and so the growth-suppression is a weaker function of the matter content:
§ o Q323 [36]. This suppression of growth in an Q¢ < 1 universe has often been cited as
“evidence” that 2o must be large — otherwise fluctuations could not have grown enough

to form the structures we observe today.
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In fact there are several other effects that come into play when normalizing the
matter power spectrum to the COBE data in a low-{2p model. The first is that, though
the growth in such models is suppressed by Q8 (p ~ 0.6 for open and 0.23 for A models
(for a more general formula, see [36]), the potential fluctuations are proportional to Q.
Hence the CMB fluctuations are even more suppressed than are the density fluctuations!
So for a fixed COBE normalization the matter fluctuations today are larger in a low-{g
universe, and the cosmological constant model clearly has the most enhancement, since the
fluctuation growth is the least suppressed. In terms of the power spectrum, P(k), we expect
for fixed COBE normalization that P(k) 62 Qg(p_l), as has been pointed out in [59].

This potential suppression is not the only effect that occurs in low-25 universes,
although it is the largest. Due to the fact that the fluctuations stop growing (or, in other
words, the potentials decay) at some epoch, there is another contribution to the large-angle
CMB anisotropy measured by COBE. In addition to the redshift experienced while climbing
out of potential wells on the last scattering surface, photons experience a cumulative energy
change due to the decaying potentials as they travel to the observer. If the potentials are
decaying, the blueshift of a photon falling into a potential well is not entirely canceled by a
redshift when it climbs out. This leads to a net energy change, which accumulates along the
photon path. This is often called the Integrated Sachs-Wolfe (ISW) effect, to distinguish it
from the more commonly considered redshifting that has become known as the Sachs-Wolfe
effect, although both effects were considered in the paper of Sachs & Wolfe [149]. This ISW
effect will operate most strongly on scales where the change of the potential is large over a
wavelength, so preferentially on large angles [104].

In A models, the ISW effect can change the relative normalization of the matter and
radiation fluctuations at the 25% level for Q¢ ~ 0.3. We show in Figure 5.5 how these various
effects on the inferred matter power spectrum normalization scale with 2 in a cosmological
constant universe (the simplest case). We see the total power is slightly changed, for fixed
C1o, because the shape of the C; depend on £2g. This affects the goodness of fit to the COBE
data [32], as we shall discuss in more detail in the next section. The ratio of the large-scale
matter normalization to Cyg is changed by the ISW contribution to Cig, the change in the
potentials and the growth of fluctuations from z = 1000 to the present. Over the range
Qo = 0.1 to 0.5 one finds for an n = 1 spectrum with Cyo = 10~!! that

lim @ =1.14 x 105053 (A~ 'Mpc)4, (5.15)
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Figure 5.5: Contributions to the normalization of ACDM models

All quantities are normalized to their values at Q¢ = 0.5. The solid line is the
RMS temperature fluctuation with Cqg fixed. The dotted line shows the ratio
of the large-scale matter normalization (limg_o P(k)/k) to C19. The dashed
lines show the effect of the shift in matter-radiation equality on the small-scale
normalization og, holding the large-scale normalization limy_q P(k)/k fixed. We
show two models: h = 0.75 (upper) and A = 0.50 (lower) with Qgh% = 0.0125.
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almost independent of h. This can be compared with the scaling presented above. Also, the

epoch of matter-radiation equality is shifted, which changes the normalization on smaller

scales for fixed large-scale P(k). Putting these effects together, we show the RMS fluctuation

on a scale 0.028 hMpc™' (see below) as a function of Qg in Figure 5.6. The sharp downturn

at low £2p is due to a combination of the larger scale of matter-radiation equality, moving

the break in the power spectrum to smaller k£, and the photon drag on the baryons having

an increased effect on fluctuation growth for large Q5 /€. For Qg ~ 0.3 the shift in matter-

radiation equality and the scaling of equation (5.15) roughly cancel, making A? much less

sensitive to Qg than the individual contributions would suggest.

We note here that the shape of the C; for the tensor (gravitational wave) modes is
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Figure 5.6: Matter fluctuations in low-density CDM models

The normalization, A2(0.028hAMpc™!), is plotted as a function of Qg for open
CDM (dashed) and ACDM (solid) models normalized to C1g = 107!!. In both
cases the upper curves are for h = 0.75 and the lower curves are for h = 0.50,
both with Q5h?% = 0.0125.

largely independent of g [178]. For this reason the radiation power spectrum of a A model
with some tilt and a component of tensors can exhibit less curvature at [ ~ 10 than a purely
scalar power spectrum. Since in some inflationary models we expect a non-negligible tensor
component [48], we have computed the tensor C; following Crittenden et al. [44] and give
results both including and excluding a significant tensor contribution. Our results update
those of Kofman, Gnedin & Bahcall [103], who also considered tilted, ACDM models with
a component of gravity waves.

In Tables 5.2 and 5.3, and in Figure 5.6, we show the normalization of the matter
power spectrum for a range of models, holding the CMB normalization (Cqg) fixed. We

quote both the value of the RMS density fluctuation at 0.028hMpc~! (large-scale) and og
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Figure 5.7: 0g in ACDM models

The dashed lines are for models in which the entire contribution to the tempera-
ture anisotropy measured by COBE comes from scalar perturbations; the dotted
lines are for models with both scalars and tensors, with CI/Cy = 7(1—n). The
slope n increases from 0.85 to 1.00 in steps of 0.05 with the lowest n yielding the
lowest og. The two solid lines are two observational determinations of og, the
top line from cluster abundances and the bottom line from large-scale structure
[equations (5.17) and (5.18)].

(small-scale). For comparison, Peacock & Dodds give [133]

d 2
A? (k = 0.028hMpc_1) = dlapk = (0.0087 £ 0.0023) Q5 °°. (5.16)
n

There are many determinations of og; here we quote those from Peacock & Dodds [133]
og = 0.75Q5%1° (5.17)

and cluster abundances [191]

og = 0.57Q5°-%¢ (5.18)

where the scaling with ¢ in both cases is for models with Qg + 254 = 1. These values

are consistent with those inferred from large-scale flows [49] and direct observations [120].
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In Figure 5.7 we compare these observations with the COBE-normalized values of og for a

range of ACDM models.

5.4 Constraining the Cosmological Constant

It has been known for some time that standard CDM models predict too much small-
scale power when normalized to COBE at large scales [59, 133]. In order to resolve this
problem, several modifications have been proposed to change slightly the shape of the power
spectrum. Among the proposed fixes are tilting the primordial spectrum [48], mixing some
hot dark matter in with the cold [47], and assuming a very small value for the Hubble
constant [9]. As we have seen in the previous section, one of the most promising modifica-
tions involves replacing some of the cold dark matter with a cosmological constant A while
keeping the geometry flat (see, e.g., [59, 60, 103]). This has the added advantage of solving
the cosmic age problem.

It is known, however, that A models produce quite different CM B anisotropies on large
scales [104] because of the integrated Sachs-Wolfe effect [149]. Sugiyama & Silk [171] numer-
ically solved the perturbation equations, and obtained CMB power spectra for different A’s.
The power spectra for A-dominated models have shapes that are quite different from the
simple power-law models that are usually used in analyzing the CMB anisotropy. Therefore,
analyses based on the simple Sachs-Wolfe power-law spectrum (2.29) (e.g., [155, 163, 71])
cannot be used to set limits on A. A direct comparison between the DMR data and the
predicted power spectra from the A models is required.

In this section we compare predicted CMB power spectrum of ACDM models with the
COBE DMR data. In these models, the Universe is supposed to be cosmologically flat, so
that the density parameter 2 and the cosmological constant A add up to unity. The matter
in the Universe is assumed to consist primarily of CDM, with a few percent of the matter
being baryonic. It should be noticed that the CMB anisotropy on the angular scales probed
by COBE is largely independent of the matter content of the Universe. Therefore our results
obtained here are general for ACDM models. The initial fluctuations are supposed to be
Gaussian and adiabatic, with a Harrison-Zel’dovich (n = 1) power spectrum, as in standard
CDM. These models fit the galaxy clustering data quite well with A ~ 0.8 [59, 60, 103].

We have applied the Karhunen-Loeve technique presented in the previous chapter to

the COBE DMR two-year sky maps. Figure 5.8 shows the angular power spectra C; for
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Figure 5.8: Angular power spectra for ACDM models

The angular power spectrum /(I + 1)C; is shown for each of the seven ACDM
models described in the text. The power spectra have been normalized so that
6C, = 1.

seven ACDM models. These power spectra were obtained by direct numerical calculations
up to the present epoch, using a Boltzmann code by Naoshi Sugiyama (see [170]). All have
Hubble constant Hy = 50 kms~! Mpc~! and baryon density Q5 = 0.03. The cosmological
constant A takes the values 0,0.2,0.4,0.6,0.7,0.8,0.9. (The model with A = 0 is, of course,
standard CDM.) The dependence on 25 of C; is quite weak, i.e., less than 10% for I < 30.
The dependence on the Hubble constant is also weak: changing Hg from 50 to 80 leaves
the Cp’s almost identical for I < 10, and causes less than a 20% difference for [ < 30. It is
clear from Figure 5.8 that the C;’s for these models are quite different from flat or simple
power-law models, particularly when A is large. For each of these models, we computed
L as a function of the power spectrum normalization @ps. These likelihoods are shown in

Figure 5.9. It is clear that the data prefer low values of A.
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Figure 5.9: Likelihood functions for ACDM models

The likelihood L is plotted as a function of Qs for each of the seven ACDM
models described in the text. The overall normalization is arbitrary.

We can place Bayesian confidence limits on A in the following way. For each of the
seven models, we compute the marginal likelihood by integrating over the normalization
Qps:

Lmarg(A) = /L(A7st) AQps. (5.19)
These marginal likelihoods are plotted in Figure 5.10 as a function of A. We then smoothly

interpolate between the data points, using a natural cubic spline. We then say that A has

an upper bound A, .x at some confidence level ¢ if

Amax 1
/ Lmarg(A) dA = C/ Lmarg(A) dA. (520)
0 0

The upper limit on A derived in this way is the boundary of a Bayesian credible region in the
Qps-A plane, adopting a prior distribution that is uniform in both @ps and A [15]. A uniform

distribution is a natural choice of prior for A. Several different choices of prior distribution
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Confidence level Aax Aoz
including @ | excluding @

68% 0.55 0.62

90% 0.78 0.85

95% 0.86 0.92

99% 0.96 0.98

Table 5.4: Upper limits on A

could be justified for @ps; however, since the data contain a very strong detection, the
results are insensitive to the prior in @ [33]. Table 5.4 shows the upper limits on A for
several different confidence levels.

An alternative procedure would be to use the maximum value of the likelihood,
Limax(A) = maxg L(A, @), in place of the marginal likelihood in equation (5.20). In practice,
it makes very little difference which procedure is followed: for example, replacing Lyarg by
Lax changes the 95% confidence level upper limit on A from 0.86 to 0.87.

The quadrupole moment of the DMR sky maps is anomalously low, and it is has
been suggested that it may be contaminated in some way (see e.g., [71]). In Section 2.7 we
argued against the presence of contamination, and, in particular, against the idea that the
quadrupole information should be thrown away entirely. Nonetheless, in order to conform
to standard practice and in order to assess the degree of sensitivity of our results to the
possibility of contamination, we removed the quadrupole from the data, and repeated the
analysis including only modes with [ > 3, marginalizing over the quadrupole as well as the
monopole and dipole. Table 5.4 contains the upper limits on A found in this way. Since
the large quadrupole predicted by ACDM models is at odds with the low quadrupole in the
data, it is not surprising that removing the quadrupole weakens the constraints. However,
as we argue in Section 2.7, we should be wary of excising the quadrupole from the data
simply because it is anomalously low: such a biased editing procedure is clearly at odds
with sound statistical practice.

The likelihood curve in Figure 5.10 is flat near A = 0. The reason for this is easily
seen by looking at Figure 5.8: the angular power spectrum for A = 0.2 is almost identical to
the A = 0 model, indicating that C; is a very weak function of A for small A. Specifically,
if we perform a Taylor expansion of C; about A = 0, the linear term is negligibly small.

In conclusion, we find that ACDM models are strongly disfavored by the DMR data.
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lLikelihood

Figure 5.10: Marginal likelihoods for ACDM models

The marginal likelihood Lyarg is plotted as a function of A. The solid curve
is the likelihood including the quadrupole, and the dashed curve is the result
of excluding the quadrupole. The crosses show the marginal likelihood for each
of the seven models described in the text. The smooth curves are cubic spline
interpolations between them. The overall normalization is arbitrary.

In particular, models with A > 0.86 are inconsistent with the data at a confidence level
of 95%, while models with A > 0.78 are inconsistent at the 90% level. The large-scale
structure data seem to prefer ACDM models with A & 0.7. It is clear from these results
that the DMR data are at best marginally consistent with such models.

Removing the quadrupole from the data weakens these constraints somewhat. How-
ever, it is important to note that the primary reason for removing the quadrupole is simply
that it is anomalously low. Removing data points simply because they do not fit our theo-
retical expectations is a dangerous statistical practice. In the absence of strong independent
evidence that the quadrupole is contaminated, one should be wary of throwing it away.

These results we obtained here are about the same as the best current limits from



CHAPTER 5. CONSTRAINING MODELS WITH THE COBE DATA 115

gravitational lensing [101, 102]. It should be noticed that our method is totally independent
and free from any ambiguities involved in the gravitational lensing method, such as the
evolution and mass distribution of galaxies, and therefore provides a valuable confirmation
of it. There is every reason to expect that, once the full four-year DMR data have been
analyzed, it will be possible to discriminate between models with A ~ 0.6 and those with
A = 0 with very high confidence, since the power spectra in these models have very different

shapes (see Figure 5.8).
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Chapter 6

Wiener Filtering of the COBE
Data

Raw data, like raw sewage, requires some processing before it can be spread
around.

James A. Carr

6.1 Introduction

Until now, our analysis of the COBE DMR data has focused primarily on the problem
of estimating the power spectrum. In fact, most workers in the field have regarded this as the
primary use for the DMR data [13, 20, 21, 31, 32, 50, 71, 151, 155, 174, 185, 194, 195, 196],
although a few have focused on other problems, such as testing the hypothesis that the
anisotropy obeys Gaussian statistics [82, 107, 164, 177]. In addition, statistical comparisons
have been made between the DMR sky maps and data from other experiments [66, 183].
Less attention has been paid to studying the spatial properties of the sky maps themselves
to determine, for example, which hot and cold spots on the maps are likely to be real, and
which are dominated by noise. Such an analysis has the potential to be quite useful in
comparing the DMR results to other experiments that probe comparable angular scales,
such as the FIRS [125] and Tenerife [45, 79, 182] experiments. In this chapter, we will use
Wiener filtering to study these questions, extending a similar study that we did for the
first-year DMR maps [34].

There are two major difficulties in studying the DMR maps. The signal-to-noise ratio
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in each pixel is quite low, and pixels near the Galactic plane are contaminated by Galactic
emission. These problems place strict limits on the accuracy with which the true structure
can be recovered [30, 167]. In this chapter we apply the techniques of Wiener filtering
and “constrained realizations” in an attempt to mitigate these problems. We assume the
correctness of the canonical theory of large-scale CMB anisotropy: that the anisotropy
forms a Gaussian random field with a known power spectrum. We then remove the pixels
that are presumed to be contaminated, and apply an optimal linear filter to the data in an
attempt to clean up the noise and see the underlying structure. The technique of constrained
realizations helps quantify the uncertainties associated with this method.

The Wiener filtering described in this chapter is based on ideas developed in a more
general context by Rybicki and Press [148], and it is similar to a technique applied recently to
galaxy catalogues [110, 198]. The formalism for making constrained realizations of Gaussian
random fields has also been discussed elsewhere [67, 83], as has the connection between this
formalism and the Wiener filter [198].

The idea behind the Wiener filter is quite simple. If we are willing to assume that
we know the statistical properties of the signal and noise contributions to the data, we can
apply a linear filter that preferentially removes noise and leaves signal. The Wiener filter is

the optimal linear filter for this purpose. It can be derived in two independent ways:

1. It is the optimal linear filter in the sense of least squares. That is, the Wiener filter
minimizes the ensemble average of the mean-square deviation between the filtered

data and the underlying cosmic signal.

2. It is a maximum-likelihood estimator of the cosmic signal. That is, the filtered sky

map is the most likely realization of the underlying signal at each point.

As long as both the signal and the noise are Gaussian, the filters chosen by these two
criteria are identical. Furthermore, we can determine the complete a posterior: probability
distribution of the true signal given the data and the assumed power spectrum. This
probability distribution is Gaussian, with mean given by the filtered data. We can compute
the covariance matrix of this probability distribution and use it to construct “constrained
realizations” of the CMB anisotropy with the correct a posteriori probability distribution.
These realizations are useful for qualitatively assessing the uncertainties in the filtered maps,

and for using Monte Carlo simulations to make predictions for other experiments.



CHAPTER 6. WIENER FILTERING OF THE COBE DATA 118

We will derive all of these results in the next two sections. We will then apply this
formalism to the two-year DMR sky maps to identify features in the data that have high
statistical significance. Finally, we will use the filtered data to make predictions for the

Tenerife experiment, which probes slightly smaller angular scales than the DMR.

6.2 Two Derivations of the Wiener Filter

As in Section 2.6, we will represent our data set as an A-dimensional vector d,

containing contributions from both signal and noise:
d=5+i=Y -W-a@+1. (6.1)

(For the moment, we ignore complications having to do with the unknown monopole and
dipole contributions; we will see how to account for them properly below.) a,, is a coefficient
of the spherical harmonic expansion of the true signal §. (Here we are using Greek indices
to represent pairs of spherical harmonic indices (Im) as usual.) Y;, = Y, (¥;) is a spherical
harmonic evaluated at the position of the ith pixel, and n; is the noise in the 7th pixel. W
is a diagonal matrix whose entries are those of the experimental window function described
in Section 2.4. We make the usual assumption of Gaussian statistics: both a, and n; are

Gaussian random variables with zero mean and covariances

(@-a’y=c, (6.2)
(ii-7’) = N, (6.3)
(ayn;) = 0. (6.4)

2

The matrices C and N are diagonal, with C,,, = C; and N;; = o;. In principle, @ and
C should be infinite-dimensional, but in practice the COBE beam smooths away modes
with high [, and we can truncate the spherical harmonic expansion at some lj,,x. We shall
see below that the filter recovers virtually no information for high I, and the results are
therefore quite insensitive to lax. From Figure 6.7, below, we can see that it is reasonable
to set lmax = 30, which means that the dimension of @ is M = (lnax + 1)2 = 961. The

covariance matrix of the data vector d contains contributions from both signal and noise:
M=(d-d'Y=Y-C-YT +N, (6.5)

where C =W .-C-W.
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We will now derive the Wiener filter as a least-squares estimator. We wish to find a
linear filter F that will enable us to estimate the true cosmic signal 5 as closely as possible.
Specifically, if we set

—

F=F-d (6.6)

then we want to choose the N/ X A matrix F to minimize

A=(7-Y- a7 (6.7)

Combining these two equations, we find that
A=Ti[(F-Y-W-Y) C(F-Y-W-Y)+F -N-F]. (6.8)
Setting dA/OF;; = 0 and solving for F, we find the least-squares filter
F=Y-C-W.Yl.M™% (6.9)

This derivation makes no use of the fact that the random variables @ and 7@ are
Gaussian; it uses only their covariances. If we make use of our assumption that these
quantities are Gaussian, we can give an alternative characterization of the filter (6.9): it
gives the maximume-likelihood estimator of the signal 3.

Bayes’s theorem states that the conditional probability density of @ being the correct

set of spherical harmonic coefficients given the data d is simply

flald) o f(d]a)f(@), (6.10)
where f(cﬂ @) is the probability density that the actual data d would have occurred assum-
ing @ is the correct set of coefficients, and f(@) is the a priori probability of getting the

coefficients @. All of these probability densities are Gaussian:

—

F@ld)cexp (-3(d=Y -W-a)T N1 (- Y - W-@))exp (-3a" - C™"-d). (6.11)

By completing the square and performing some unenlightening algebraic manipulations,

one can show that f(@|d) o exp ( — x?), where
i=(i-d, )" (CT'+W.-YT.N'.Y - W) (@—ad,)+d -M'.d, (6.12)

and

iy =(C'+W.YT.N'. Y- W) W.YT.N"!.4. (6.13)
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It is easy to see from equation (6.12) that the maximum-likelihood value of @ is @,,, . The
maximum-likelihood estimate of the actual CMB signal is therefore 5,,, =Y -d,, = F'- aT,

where the filtering matrix is
F=Y (C+W.¥YT.N".Y.- W) WY N (6.14)
Despite their different appearances, in fact F = F':
F=Y- ((3—1+W-YT-N—1-Y-W)_l-W-YT-N—l-M-M—1
-Y.- (C_1+W-YT-N_1-Y-W)_1-
(W-YT-N—l-Y-W-C-W-YT+W-YT) M~!
Y- (c WY N Y W) (6.15)
(W-YT-N_l-Y-W—|-C_1) Cc-W-YT.M™!
=Cc-wW.-Y'.Mm!
~F.

As a practical matter, equation (6.14) is more convenient computationally, since the matrix
to be inverted has dimension M x M, while the matrix in equation (6.9) weighs in at a
hefty A" x N1

Equation (6.12) gives us the entire a posteriori probability distribution of @, i.e., the
conditional probability density of @ given the data and our assumed power spectrum. This

probability density is a multivariate Gaussian with mean @,,, and covariance matrix
—1
K=(C+W.- YT N.Y.-W) . (6.16)

This probability distribution tells us how likely a particular value of @ is, given our as-
sumptions. The square roots of the diagonal elements of this matrix can be interpreted as
standard error estimates for the elements of @, , and those of Y -K-Y7 as error estimates
for the elements of 5,,;, =Y -d,, , which is the maximum-likelihood value of the true CMB
signal. In addition, armed with the full covariance matrix K, we can construct constrained
realizations of the microwave sky by simply choosing Gaussian random variables from the

appropriate distribution.? In this way we can construct simulated sky maps with a prob-

'For the DMR data N = 4038, while M is only 961 for ln.x = 30. Since matrix inversion is an N3
process, the reduction in computational time is substantial.

2For those interested in trying this at home, I recommend Cholesky-decomposing the covariance matrix
K into a lower-triangular matrix L times its transpose. Then choose ¢ to be an M-dimensional vector of
independent Gaussian random variables of zero mean and unit variance, and let @ = d@,,;, + L - ¢
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ability distribution that correctly incorporates both our presumed model and the existing
data. These simulated maps can be used to make predictions for other experiments, as we

shall see below.

6.3 Accounting for the Monopole and Dipole

Unfortunately, equation (6.1) is not a completely adequate model of the DMR data,
because the data do not contain information about all of the multipole moments. In par-
ticular, the data are completely insensitive to the monopole contribution, and the dipole is
contaminated by the much larger kinematic dipole due to our motion with respect to the
CMB rest frame. In this section we will show how the Wiener filter derived above can be
modified to account for this. For simplicity of notation, we will ignore beam-smoothing by
setting W = 1 throughout this section.

Suppose that the data contain no reliable information about modes with I < I,. To
account for the monopole and dipole, we should set I, = 1; if we decided to ignore the
polemic in Section 2.7 and discard the quadrupole, we would set I, = 2. Then we should
modify equation (6.1) as follows:

d=§+i+i=Y-a+Z b+, (6.17)

iy

where we have excised the elements of @ and the columns of Y corresponding to the modes
about which we have no information. The dimension of @ is now M = (Inax+1)% — (I, +1)?
instead (Imax + 1)2, and the corresponding dimensions of Y and C are reduced in the same
way. Z is an A" X (I, 4 1)? matrix containing the columns removed from Y, b is an (I, +1)2-
dimensional vector containing the unknown coefficients of the excluded modes, and @ = Z b
is the contribution of these excluded modes to the data.

We can still try to choose our filter F to be a least-squares estimator in the sense of
equation (6.7). However, we must impose an additional constraint on F: since we have no
knowledge at all of the true value of (_;7 we should demand that the result F - d of filtering

should be independent of b. We can do this by imposing the constraint
F.-Z=0. (6.18)

If this constraint is satisfied, then equation (6.8) is still true, and we can solve the constrained
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minimization problem by the usual method of Lagrange multipliers. The result is
(F-1)-Y-C.Y'+F-N+4a-2" =0, (6.19)

where A is an N X (I, 4+ 1)? matrix of Lagrange multipliers. We can simultaneously solve

equations (6.18) and (6.19) to find the filter F:
F=Y-C. Y- M'1-Z-(z" - M'.2)'. 20 . MY)=Y-C- Y -M'.P. (6.20)

This equation differs from the original filter (6.9) only in the projection operator P. This
operator simply projects the data vector onto a subspace orthogonal to the unwanted modes,
where orthogonality is determined with respect to the inner product (7,7) = 77 - M~ . 7.

We shall now show that Wiener filter (6.20) is also a maximum-likelihood filter.

Equation (6.11) becomes

P(@,b|d)xexp (-} (a7 -CTh e a+(d-Y-a-2-5)T N (d-Y-d-Z-D))).

(6.21)

Completing the square twice, we find that P(d@ l_;| _j x exp (— 3x?), with

X2 = ((—i_ EML)T ) (C_l + Y'.NT! Y) (C_i_ (_iML)
+(b—by ) - ZT M Z-(b—by, )+d M -d, (6.22)
where
i, =C-YT.-M™'.P.d, (6.23)
by, =(1—P)-d. (6.24)
The maximum-likelihood filter F’ is therefore
-1

F=Y (c+Y".N".Y) .Y".N".P, (6.25)

which differs from equation (6.14) only by the presence of the projection operator P. We still
have F = F’ exactly as in the last section. Furthermore, equation (6.16) for the covariance
matrix K in the a posteriori probability density of @ is unchanged.

We conclude this section with a pragmatic note. It is in fact not generally necessary
to compute the projection operator P in order to properly project out the unwanted modes.

Rather, one can achieve identical results by simply including the unwanted modes together
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with the others, so that @ is once again an (Imax + 1)2—dimensiona1 vector as it was in the
previous section. We extend the signal covariance matrix C by setting C,, = o0d,, in
the rows and columns corresponding to the unwanted modes. Then the filter F and the
covariance matrix K computed in the previous section give precisely the right results.?
This result is easy to justify heuristically: since we have no information about the
coefficients (_;’ it is natural to assign them an infinitely wide prior distribution.? It is also
straightforward to verify by a direct computation that the results of the previous section
approach the results of this section as the unknown elements of C tend to infinity. See [148]

for such a calculation.

6.4 Results

In this section we will apply the filter derived above to the two-year DMR data. Figure
6.1 shows the result of applying the Wiener filter to the two-year DMR data. The figure
was made from the weighted-average sky map in Figure 2.2 with the usual 20° Galactic cut.
The input power spectrum was the standard cold dark matter power spectrum described
in Chapter 5. (We will assess the effect of varying the choice of power spectrum below.) It
comes as no surprise that there is less information in the Galactic plane.

For illustrative purposes we have also applied the Wiener filter to the world map
shown in Figure 2.4. The result is shown in the final panel of the figure. (For this map we
used the correct power spectrum as estimated from the raw data shown in the top panel of
Figure 2.4. The power spectrum of this data set is approximated well by a broken power
law: C; «x 7Y for I < 5 and C; x 727 for | > 5.) Although the large-scale structure in
the filtered map is approximately right, it is clear that the Wiener filter does not recover
small-scale details correctly. We will see below that the same statement can be made about
the real Wiener-filtered data.

The root-mean-square anisotropy level in the filtered map in Figure 6.1 is 30.6 K.
The ensemble-average expected signal for the power spectrum we have chosen is 42.5 uK,

so we have reason to believe that we have recovered a significant fraction of the power. We

30mne does not of course set anything equal to infinity in one’s code: matrices with infinite entries are
notoriously ill-conditioned. In practice, if we use equation (6.14) to compute F, we need only C~ !, never
C, and we can simply set the appropriate entries of C~! to zero.

*In fact, we sneakily did exactly that in equation (6.21), when we did not multiply by P(l_;) on the
right-hand side.
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Figure 6.1: The Wiener-filtered DMR data

The result of applying a Wiener filter to the two-year COBE DMR data. The

input power spectrum is that of a standard cold dark matter model. See Figures
6.2 and 6.3, as well as the text, for assessments of the uncertainty in the map,
and Figure 6.8 for a qualitative assessment of the effect of varying the input
power spectrum. The region of sky observed by the Tenerife experiment, i.e.,
the region with equatorial coordinates 140° < R.A. < 260° and 35° < ¢ < 45°,
is also marked on the plot. In Section 6.5 we will use the filtered DMR map to
make predictions for this experiment. The part of the strip near 260° in right
ascension is split in half in this projection.

can assess the uncertainty in this filtered map in a variety of ways. Given the data and
the assumed power spectrum, the a posteriori probability distribution of the true signal is
Gaussian with mean equal to the filtered signal. The simplest way to assign uncertainties is
simply to compute the standard deviation of this probability distribution. In other words,
we compute the square roots of the diagonal elements of the covariance matrix Y - K- YT,
These error estimates are plotted in Figure 6.2. The ratio of the signal to the uncertainty
is shown in Figure 6.3.

We can get a qualitative idea of the statistical significance of features in the map from
these figures: individual pixels in the most prominent hot and cold spots are significant

at the three to four sigma level. Of course, the various pixels are not independent: the
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Figure 6.2: Uncertainties in the Wiener-filtered map

We show the one-sigma expected fluctuations about the filtered map in Figure
6.1. The contour levels range from 15 to 35 K in steps of 0.5 pK. The highest
uncertainties are near the Galactic plane, where no data exist.

covariance matrix Y - K - YT has off-diagonal elements. Figures 6.4 and 6.5 show the
extent of the correlation for one particular pixel. We can also get a handle on the degree
of uncertainty in the filtered maps by making constrained realizations of the temperature
anisotropy in the manner described in the previous section. Four such realizations are shown
in Figure 6.6.

We can define the angular power spectrum of the filtered map:

1 l

e - (6.26)

A

m=—1

This power spectrum, shown in Figure 6.7, is a useful indicator of the amount of information
recovered by the filtering process. On large scales the recovered power 4; is comparable to
the input power spectrum, while for modes with high [ the power is nearly zero. The Wiener
filter, by construction, returns zero values for modes for which we have no information: after
all, in the absence of any information from the data, the a posteriori probability distribution

for aj,, is the same as the prior distribution, which is a Gaussian of zero mean.
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Figure 6.3: Signal-to-noise ratio in the filtered map

The ratio of the filtered map in Figure 6.1 to the uncertainty in Figure 6.2 is
plotted. The contours take values 2,43, +4, with dashed lines representing
negative values.

Figure 6.8 shows the effect of varying the input power spectrum. The top panel was
made with an n = 0 power spectrum having very little small-scale power, and the bottom
panel is the result of assuming an n = 2 spectrum. The large-scale features are seen to
be robust, persisting through all of the maps, while the amount of small-scale power varies

significantly with the power spectrum.

6.5 Predictions Based on the Wiener-Filtered Map

One use for the Wiener-filtered DMR maps is to make predictions for other experi-
ments. We can process the filtered map through the window function of the other experi-
ment to determine the most probable signal for the experiment to observe, given the DMR
data and the assumed power spectrum. Furthermore, since we know the entire conditional
probability distribution for AT given the DMR data and the assumed prior distribution, we

can compute the probability distribution for the predicted signal. Since we have incorpo-
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Figure 6.4: Correlated errors in the Wiener-filtered map

We plot the correlation of errors of all points in the Wiener-filtered map
shown in Figure 6.1 with respect to the the specific point (/,b) = (0°,60°).
Specifically, if y; value of the ith pixel of the filtered map and ig is the
number of the pixel with the above coordinates, then the quantity plotted is
Cov(yi, ¥iy )/ /Cov(y;, 4 )Cov(¥iy, Yip )- The contour levels are 0 (dashed), 0.2,
0.4, 0.6, 0.8. Note that a large portion of the sky, especially that part near the
Galactic plane, is weakly anticorrelated with the point 7. This is a consequence
of the fact that the map is constrained to have no monopole contribution.

rated the DMR information, this distribution will in general be narrower than the a prior:
probability distribution associated with our theoretical model. We should therefore be able
to place tighter constraints on our model than we could without using the DMR data.

Of course we only expect to gain significantly if we choose an experiment whose
window function has significant overlap with the DMR window function, so that the modes
that we have estimated well from the DMR data make a substantial contribution to the
signal in the other experiment. The Tenerife experiment would seem to be ideal for this
purpose, since its beam size of 5°5 (FWHM) is only slightly smaller than the 7° DMR beam.
Unfortunately, the fact that Tenerife is a triple-beam experiment works against us, since

the sensitivity to modes with low |m| is quadratically suppressed (see Section 2.4). We will
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Figure 6.5: Error correlations as a function of angle

This figure shows the correlations shown in Figure 6.4 plotted as a function of
angular separation between points ¢ and 9. The central lobe of the correlation
function is fitted well by a Gaussian with standard deviation 5°7.

see below that this fact greatly reduces the amount of information we can recover from the
filtered DMR map.

The Tenerife experiment has taken data covering the range 140° to 260° in right
ascension and 35° to 45° in declination. Qualitative maps of the entire data set have been
published [146], but only the strip near 40° has been quantitatively analyzed [182]. We will
attempt to predict as much as we can of the Tenerife signal over the entire range. The strip
of sky observed by the experiment is shown in Figure 6.1.

The process of making predictions is fairly simple. We take the spherical harmonic
coefficient @,;;, and multiply it by the Tenerife window function W{Ten) given in Section
2.4.5 The resulting vector contains the coefficients of a spherical harmonic expansion of the
most probable a posteriori Tenerife signal Ry,

RML(Oyﬁ‘O) = ZWl(n’ll‘en)(aML)le'lm(ng‘o)' (627)

Im

®The window function is only simple in a coordinate system in which the chop is in the azimuthal direction.
We must either compute &@,;; in these coordinates in the first place or else rotate to them afterwards. The
Tenerife experiment always chops in right ascension, so the rotation is easy to perform.
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Figure 6.6: Constrained realizations

Four constrained realizations of the microwave sky are shown. The realizations
represent typical expected fluctuations about the Wiener-filtered map in Figure
6.1, and were drawn from the Gaussian probability distribution described in the
previous section.

The result is shown in Figure 6.9. The portion of sky plotted corresponds to the
region of sky covered by the Tenerife experiment. The root-mean-square value of Ry, over
this region is 16.3 pK. For the standard CDM model we are considering, the expected r.m.s.
signal is 32.7 uK, and so it appears that we have predicted a significant fraction of the total
signal. Recall that the Wiener filter returns low values for modes for which it has little
information, and values near the expected value for modes with high signal-to-noise ratio
(see Figure 6.7). The ratio of the Wiener-filtered prediction to the a priori expectation
value is thus a rough indicator of how much signal has been recovered.

We can of course do much better than this qualitative argument. We know that the

vector @ is Gaussian with mean @,,; and covariances given by (6.16). The Tenerife response

L

R is therefore Gaussian distributed with mean Ry, and covariance

Cov(R(#1), R(2)) = Y WY, (#) WY, (£2) K, (6.28)
My

where p and v represent pairs of indices (Im) as usual. The standard error associated with
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Figure 6.7: Power spectrum of the Wiener-filtered map

The power spectrum A4; defined in equation (6.26) is shown. The standard
CDM input power spectrum is also plotted for comparison.

each point in Figure 6.9 is therefore o(r) = /Cov(R(r), R(r)). The standard error ranges
from 26.4 uK to 29.7 uK.

One way to get an idea of the amount of information we have gained by this exercise
is to compare these standard errors with the level of uncertainty we would have without
the DMR data. If we made no use of the DMR data, then our probability distribution
for R(r) would simply be Gaussian with zero mean and standard error given by the r.m.s.
expected signal of 32.7 K. Using the DMR data reduces the standard error by about 15%.
This may not seem like anything to write home about, but it should amount to at least a
modest improvement in our ability to assess the consistency of this model with the Tenerife
data. Furthermore, the large positive feature near right ascension 250° appears to have
moderately high statistical significance.

In Figure 6.11 we have plotted the predicted signal and associated errors in several
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Figure 6.8: Wiener filtered maps with different power spectra

The maps shown here were produced by Wiener filtering in the same manner
as the map in Figure 6.1, but with different power spectra. The top panel was
made with an n = 0 Sachs-Wolfe power spectrum, using the formula in equation
(2.29). The bottom panel was made with an n = 2 spectrum. Note that the
large features in all three of the Wiener filtered maps coincide, but the amount
of small-scale power varies with the input power spectrum.
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Figure 6.9: Tenerife predictions

A map of the most probable (a posteriori) Tenerife signal over the region 120° <
RA < 260°, 35° < § < 45°. The greyscale ranges from —60 uK to 60 K, and
the uncertainty associated with each point is approximately 28 uK.

individual strips for greater ease of comparison with the actual data. The maximum at
right ascension of 250° coincides almost exactly with the largest peak in the Tenerife map
[146].

The standard errors simply represent the diagonal part of the covariances in equa-
tion (6.28). For a complete statistical description of the prediction, we need to know the
correlations between distinct points as well. Because of the beam-switching strategy, these
correlations can be quite important. These correlations are shown in Figure 6.10 for the
central point in the map. The general shape of the correlations is as one would expect from
the beam-switching patterns: a positive lobe flanked by two symmetric negative lobes. The
following fitting formula reproduces the three main lobes to about 5% accuracy, although

it misses the outer ripples:

Cov(R(r1)R(r2)) = Cov(R(fl)R(f.l))e—Aééﬁ/2(4‘!7)2 x
(=242 /26°0)7 _ g ,gge=(2A=9%27 250 _ goe=(24+9°2P 2607} | (g.29)

where A¢ is the declination difference between r{ and ry, and AA = Agcosd; is the
separation in azimuth.

As with the original Wiener-filtered map, it may be helpful to look at constrained
realizations of the statistical fluctuations about the maximum-likelihood Tenerife prediction
in order to get some idea of the level of uncertainty. Five such realizations are plotted in
Figure 6.12. We show both greyscale maps for comparison with Figure 6.9 and linear plots

of the strip at declination 35° for comparison with Figure 6.11.



CHAPTER 6. WIENER FILTERING OF THE COBE DATA 133
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Figure 6.10: Correlations in the Tenerife predictions

This figure shows the correlations in the residuals of the various points in the
map with respect to the central point. The correlation is divided by the variance
of the central point so that its maximum value is unity.

6.6 Conclusions

Wiener filtering is a promising tool for the analysis of CMB sky maps. Filtering
provides a significant improvement in the signal-to-noise ratio in the regions covered by
the raw data, and allows some small amount of information to be reconstructed about the
anisotropy within the Galactic cut region. It is possible to identify several hot and cold
spots in the map which carry high statistical significance.

This reduction in noise is not without a price. In order to apply the Wiener filter, one
needs to assume a power spectrum. The cleaned data therefore depend on more assumptions
than do the raw data. However, the maps do not undergo great qualitative changes as one
varies the slope of the power spectrum over a wide range of reasonable values.

One great advantage of the Wiener-filtered map is that the statistical properties of
the residuals are known precisely, assuming the underlying model is correct. It is therefore
possible to assess the goodness of fit of any other data set with the combined DMR data and
assumed theory. In addition, it is easy to make constrained realizations of the microwave

sky with the correct a posteriori probability distribution. This technique can in principle
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Figure 6.11: Tenerife predictions with uncertainties

The solid lines show slices through the map in Figure 6.9, and the dashed lines
show plus and minus one-sigma errors. The top, middle,and bottom panels
correspond to declinations of 45°, 40°, and 35° respectively.

be used to perform Monte-Carlo simulations of the CMB for comparison with experiments
on similar angular scales.

The Tenerife experiment seems to be the most promising experiment on which to
test the possibility of using the Wiener filtered maps to make predictions. Unfortunately,
the triple-beam strategy used in the experiment drastically reduces Tenerife’s sensitivity
to the modes that are constrained well by the DMR. It is possible, however, to predict
some modest fraction of the Tenerife signal from the filtered DMR data. By incorporating
this information into a Tenerife analysis, it should be possible to place somewhat tighter

constraints on models than would be possible with the Tenerife data alone.
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Figure 6.12: Constrained realizations of the Tenerife data

We show five constrained realizations of the Tenerife predictions to assist the
reader in qualitatively assessing the uncertainties in the predictions in Figures
6.9 and 6.11. The top panel shows five realizations covering the same range as
Figure 6.9. The greyscale in this map ranges from -110 to 100 K. The bottom
panel is a strip through the five realizations at declination 35°, and is thus to
be compared with the lowest panel of Figure 6.11.
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Appendix A

The Aitoff Projection

The Aitoff projection is a common equal-area projection of the sphere into the plane.
We make frequent use of it in this dissertation, and we therefore include the equations of
the projection here. These formulae are taken from the IRAS Explanatory Supplement [10].
For the forward projection, in which a point on the sphere with spherical coordinates

(8, ) is mapped into a point with Cartesian coordinates (z,y) in the plane, we define p and

v by

p = cos™! (sinf cos(¢/2)), (A1)

v = sin™! (sin fsin(p/2)/ sinp). (A.2)

(The range of ¢ is taken to be [—180°,180°].) Then the coordinates (z,y) are

r = —V2sin(p/2)siny, (A.3)
Y= i% sin(p/2) cosy. (A.4)

The sign of the equation for y is the sign of cosf. Note that (z,y) lies within the ellipse

2?2 + 2y%* = 1. The equator § = 7/2 lies along the major axis of the ellipse, and the North

and South poles (§ = 0 and = 7) lie at the points (0,3) and (0, —1) respectively. Lines
of constant # and ¢ are plotted in Figure A.1.

The inverse transformation is

6 = cos™? <2y\/2 —z2 - 4y2> , (A.5)
NN
o =—2sin"" (ac ° . (A.6)

sin 6
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120 60 0 -60 —120

Figure A.1: The Aitoff Projection

In the unlikely event that there are any non-astronomers reading this, let us point
out that Galactic longitude [ is simply the azimuthal coordinate ¢ of a spherical coordinate
system with its axis perpendicular to the Galactic plane and [ = 0 in the direction of
the Galactic center. Galactic longitude b is the complement of the spherical coordinate 6.
Finally, let us point out that the transformation given here is appropriate for sky maps, in
which the viewer is presumed to be situated inside the sphere. In Figure 2.4 the viewer is
situated outside of the sphere, and so we have used the reflection of the above projection

through the line z = 0.
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Appendix B

Likelihoods and Weighted

Averages

In this Appendix we prove the assertion made in Section 2.5 that the results of a
likelihood analysis of the weighted-average map are identical to those of a joint likelihood
analysis of the individual maps. We will prove the assertion for the case where two maps
are averaged together, and then indicate how the generalization to several maps follows by

induction.

We begin by establishing some notation. Let #; and &5 be two independent measure-

ments of the same underlying signal:
T; = 8+ 1, (B.l)
where the signal 5 and the noise 7i; are Gaussian-distributed with zero mean and covariances

(5-5

—~

)

fi; - il ) = N;,
)
)

A~ S S~
W & W W
[ e N U~ I A
— N e N

In our case, the vectors Z; contain the N pixel values for each of two sky maps. The signal
covariance matrix Sis Y- C-Y7T. Let us assume further that the noise covariance matrices
N, are diagonal. The weighted average ¥ of these two data vectors has components
rij /0% + 2i/ 03,

1/o};+1/03;

yj = (B.6)
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where of; = (N;);; is the variance of the noise in pixel j of data vector #;. Since the noise
covariance matrices are presumed to be diagonal, we can write this expression in matrix

form:

7=(N7'+ Ny (N7 F 4+ Ny ). (B.7)

We wish to compare the joint likelihood Ly = L(Z, %) with the likelihood Ly = L(¥)
derived from the average map alone. Specifically, we wish to show that L; « Lo, where the
proportionality constant does not depend on the signal covariance matrix S.

Define a 2A/-dimensional vector X to be the direct product of #; and Zy:

X = (fl) (B.8)

Then L, is the likelihood associated with X. X is Gaussian-distributed with zero mean

and covariance matrix

(X X7y = ( (B.9)

Likelihoods are unaffected (up to an uninteresting constant multiplicative factor) by a

S + N, S
S S+ N,/

change of basis: we can replace X by X' = Q- X for any nonsingular Q without changing

L,.! Let us make a change of basis so that

7

", B.10
’) (8.10)

where ¥ is given in equation (B.7), and 6 = #; — Z3. Then the covariance matrix associated

with X' is

i gl 7.6T
o - (25 ; ;g, mi) | (B.11)
Let us examine the cross-covariance (7 - 5T>
(7-87) = (NT'+ N7 ((NTH - 80+ NGt 2) - (7 = 82)T). (B.12)

Making the substitutions (7; - 77) = S + N; and (#; - Z1) = S, we find that (7-67)

2

0.
Since there are no cross-correlations, the likelihood L(X') factors into L(7)L(8). But L(8)

is a constant (independent of S), so we have proved the result we were looking for:

— —

I = I(X) « L(X) « L(7) = Ls. (B.13)

'To see this, let M = ()_f . )?T) be the covariance matrix of X. Then the covariance matrix of X' is

Q- M- Q" L(X)ocdet™/2(Q-M-Q")exp (-4(Q-X)" - (Q- M-Q")™" - (Q- X)) = L(X)/det Q.
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The same result holds if more than two maps are averaged together. The easiest way
to see this is by induction. Note that weighted averaging is associative: if we denote the
operation of forming a weighted average by &, then ZH§PHZ = T (§$ Z). We can therefore
form a weighted average of arbitrarily many maps by repeatedly averaging maps together

two at a time. Nomne of these operations will change the likelihood.
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Appendix C

Anisotropic Cosmological Models

In this dissertation we have generally restricted our attention to “standard” cosmo-
logical models based on the Friedmann-Robertson-Walker (FRW) solutions to the Einstein
field equation. In particular, we have used the assumption that space is isotropic to argue
that the angular power spectrum C; = (a},,) provides a complete description of the Gaus-
sian statistics of the CMB anisotropy. There are certain cosmological models in which these
assumptions are relaxed and this conclusion therefore does not follow. In these models, the

covariance matrix
Clmt'm! = (Am Q1) (C.1)

need not be diagonal, and may depend on the azimuthal mode number m.

In this Appendix we will make brief comments on this class of anisotropic models.
Specifically, we will consider models that are locally isotropic, and hence locally FRW, but
that have nonstandard global topology. We will not discuss any of the other anisotropic
cosmological models here. Among the most important of these are the Bianchi models, in
which the assumption of isotropy is abandoned completely, while that of homogeneity is
retained. CMB anisotropy spectra have been computed in simple cases for these models,
which can be used to describe Universes in which there is large-scale shear or vorticity [7].

In Chapter 2 we pointed out that the usual assumptions of homogeneity and isotropy
imply that spacetime must be locally isometric to one of the standard FRW solutions.
Spacelike sections of these models look locally like portions of a three-sphere, Euclidean
space, or hyperbolic space. The most natural assumption seems to be that these isometries

are global rather than local. However, this need not be the case. All of the FRW models in
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principle admit solutions of nontrivial topology. Since the Einstein equation is local, these
manifolds satisfy general relativity just as well as the standard FRW solutions.

The nontrivial solutions are easiest to visualize in the case of a flat Universe. For
example, we can take a cube of side L and identify opposite sides to make a three-torus.!
Furthermore, if we like we can replace the cube by an arbitrary rectangular solid with
different lengths Lq, Ly, L3 in the three directions. Although this is the simplest model
to visualize, there are three other orientable topologies based on a rectangular solid as a
fundamental cell, which are obtained by twisting some of the sides through 180° or 90°
before making the identification. There are also two topologies based on a fundamental cell
shaped like a hexagonal prism. A complete classification of these possibilities is given in
[74]. If we like, we can let one or more of the length-scales in these models go to infinity
(although if we let all three go to infinity, we’re back to the standard topology).

Similar nontrivial topologies exist for the hyperbolic case, although they are, if possi-
ble, even uglier and less plausible than the flat toroidal models. There is, for example, the
Lobell topology, which is based on a fundamental cell containing two hexagons and twelve
pentagons [118]. There is one interesting difference between the flat and open compact
geometries. In the flat case, the torus sizes in the three directions are completely arbitrary,
while in the hyperbolic geometry the polyhedron’s diameter is fixed with respect to the
curvature radius. The Lobell topology is but one of an infinite number of possible choices
for an open Universe [65, 165]. If the Universe is closed, on the other hand, the number of
possible topologies is finite. For a complete classification, see [193].

The cosmological implications of nontrivial topologies have been explored for only the
flat toroidal models.? If the torus sizes L; are all much larger than the horizon distance, then
the model is impossible to distinguish from one with the standard topology. If the torus
size is smaller than the horizon, then there are a number of observational consequences,
including changes in the statistical properties of the CMB anisotropy. Several people have
analyzed the DMR data for signs of a finite torus size, concentrating on the cubical case
Ly = Ly = L3. As we shall see below, such a “small Universe” is expected to have less
large-scale power than a Universe with the standard topology. The low DMR quadrupole

therefore fits small-Universe models well. Jing & Fang [96] go so far as to claim a positive

!This spacetime is like that of the video game Asteroids, in which a spaceship that disappears off the
right side of the screen reappears on the left.

21t comes as no surprise that no one has leapt to work out the CMB fluctuations in a Universe with the
Lobell topology.



APPENDIX C. ANISOTROPIC COSMOLOGICAL MODELS 154

detection of such an infrared cutoff in the DMR data; other authors [50, 168] have performed
more careful analyses and are more circumspect in their conclusions.

It is not hard to see why the topology of the Universe affects the CMB anisotropy
spectrum. Consider the derivation of the Sachs-Wolfe angular power spectrum in Section
2.3. In equation (2.25) the angular power spectrum Cj is expressed as an integral over all
wavevectors k in Fourier space:

1
3674

= /dSkP¢(k)j,2(kR) - %/dk k2 Py(k)j2(kR). (C.2)

This equation simply expresses the fact that the CMB anisotropy is a superposition of all
of the different Fourier modes of the gravitational potential. If the Universe is toroidal with
some cell size L, then the Fourier transform of ¢ is discrete rather than continuous. This
integral should therefore be replaced by a sum over all wavevectors k = (27 /L)(mq, mg, m3),
where {m;} are integers.

The dominant contribution to the integral in equation (2.25) comes from modes whose
physical wavelength is approximately the angular scale of the anisotropy times the distance
R to the last scattering surface. That is, most of the power comes from modes with &k ~ [/ R.
The case that is of interest to us is when L ~ R,® and so for low [ we expect the sum to be
dominated by the first few modes. In other words, we expect the integral in equation (2.25)
to be a good approximation for high [ but not for low I. The DMR data are therefore a
natural source of evidence for or against a toroidal Universe. It turns out that for L ~ R
the quadrupole is strongly suppressed, and as L is reduced, the suppression is extended to
the octupole and successive modes.

All attempts to compare the DMR data with the predictions of toroidal Universes
have proceeded as if the usual rotationally-symmetric expression for the covariances of the

ay, were still correct. Specifically, the assumption is made that
<almal’m’> = Cléll’émm’- (C3)

However, since these models are not isotropic, this need not be the case. We can illustrate
this with a direct computation. We begin by modifying equation (2.22), which expresses
the Sachs-Wolfe contribution to a;, in terms of the Fourier transform of the gravitational

potential, to correspond to the toroidal topology. This involves simply replacing the integral

31f L < R, then we would see the periodicity of space directly, while if L > R the torus size is much
larger than the horizon, and there is no hope of seeing any effect at all.
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Figure C.1: CMB anisotropy in a toroidal Universe

We show simulated sky maps of the CMB anisotropy in a toroidal Universe

with two different choices of cell sizes. The top panel shows a model in which
the L1y = Ly = 53R and L3 = 0.2R, while the bottom is a model in which
Ly = Ly = 0.2R and Ly = 5R. Both were made assuming pure Sachs-Wolfe
fluctuations with an n = 1 power spectrum.
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over k by a discrete sum:
G / 49 3 Vi ()~ FEF Gy (C.4)
k
We then form the product a,ap, and take an ensemble average:

<almal’m'> & /dQ /dﬂ/ ZY—lm(f'l)Y'l’m’(f'Z) P¢(k) eiRk.(fz_fl)' (C5)
k

This equation is analogous to equation (2.23). We can expand the exponential in spherical

harmonics as in Chapter 2, to find that

(Umpm) o > ji(R)jy(kR)Yi (k) Vi (K). (C.6)
k

This sum does not vanish in general when (I, m) # (I',m’). In the limit L — oo, the sum
over k becomes an integral, and the off-diagonal correlations do tend to zero because of the
orthogonality of the spherical harmonics.

In the case of a cubic toroidal model, this sum turns out to be quite small when
(I,m) # (I'ym'). This is perhaps not surprising, since space is in some heuristic sense
“nearly isotropic” in these models. Previous analyses of these models are therefore probably
not significantly compromised by their neglect of off-diagonal correlations. However, if one
wishes to consider the more strongly anisotropic models in which the three fundamental
length-scales of the torus differ, off-diagonal elements are quite important. One way to see
this is to make simulated sky maps based on such toroidal models. We show such maps
in Figure C.1 for two interesting cases. It is clear that the structures in the maps have
characteristics that are not captured by a simple isotropic power spectrum, and that a

simple power-spectrum analysis may not be sufficient to test these models.



