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Abstract

Volunteer distributed computations utilize spare proces-
sor cycles of personal computers that are connected to the
Internet. The resulting platforms provide computational
power previously available only through the use of ex-
pensive clusters or supercomputers. However, distributed
computations running in untrustworthy environments raise
a number of security concerns, including computation in-
tegrity and data privacy.

This paper introduces a strategy for enhancing data pri-
vacy in some distributed volunteer computations, providing
an important first step toward a general data privacy so-
lution for these computations. The strategy is used to
provide enhanced data privacy for the Smith-Waterman
local nucleotide sequence comparison algorithm. Our
modified Smith-Waterman algorithm provides reasonable
performance, identifying most, and in many cases all, se-
quence pairs that exhibit statistically significant similarity
according to the unmodified algorithm, with reasonable
levels of false positives. Moreover the modified algorithm
achieves a net decrease in execution time, with no increase
in memory requirements. Most importantly, our scheme
represents an important first step toward providing data
privacy for a practical and important real-world algorithm.

Keywords: distributed computation, data privacy,
Smith-Waterman algorithm

1. Introduction

Distributed volunteer computing platforms, in which
personal computers connected to the Internet volunteer idle
processor cycles to a large-scale distributed computation,

∗This work was partially supported by the National Science Founda-
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enable computations once feasible only via expensive clus-
ters or supercomputers. The computing power harnessed
by these systems can top several petaflops, making them
well suited for solving some SIMD-style parallel computa-
tions. Application domains benefiting from this technique
include DNA gene sequence comparisons and protein fold-
ing in the biotechnology industry, advanced graphics ren-
dering in the entertainment industry, exhaustive regression
and other statistical applications in the financial industry,
some forms of data mining, and Monte Carlo simulations.
The typical computation in this setting is easily divisible
into independent tasks small enough to be handled in a few
hours by a typical personal computer.

In the common scenario, thesupervisorof a volunteer
distributed computing platform recruitsparticipantswho
agree to allow the supervisor to execute code on their per-
sonal computers, either in exchange for some form of re-
muneration (in a commercial setting) or on a voluntary ba-
sis. Participants then download code that serves as the local
execution environment for assigned computationaltasks.
For a given computation, participants are chosen, tasks are
assigned and transmitted, and, as tasks are completed, sig-
nificant results are returned to the supervisor. Though task
results may be related, the tasks themselves are indepen-
dent, so no communication is necessary between partici-
pants.

Because code is executed in untrustworthy environ-
ments, several security concerns are raised. Among the
major issues is data privacy. Firms may have obtained data
at great expense and are often reluctant to expose this pro-
prietary information to unknown individuals. This is espe-
cially relevant in the biotechnology industry, where genetic
data gleaned from years of experimentation is often closely
guarded.

While there is a small but growing body of literature
dealing with providing greater assurance of the validity of
results of volunteer computations ([21, 22, 25, 32, 34, 35]),
to our knowledge no research has addressed the associated
issue of data privacy. There is a long history of research



concerning computing with encrypted data ([2, 3, 5, 12,
15, 17, 29, 31]) that has resulted in many interesting and
elegant results. Unfortunately, there are few real-world ap-
plications for which these methods are practical.

Our approach to providing data privacy is similar in
spirit to computing with encrypted data. In that scenario,
Alice has a functionf and an inputx. She wants Bob to
computef(x) for her, but she does not wish to revealx.
So she encryptsx (creatingE(x)), and asks Bob to com-
putef ′(E(x)), wheref ′ is such that Alice can easily de-
terminef(x) from f ′(E(x)), but Bob cannot determinex
from E(x) and/orf ′(E(x)). If this can be accomplished,f
is said to beencryptable, and the transformations involved
comprise anencryption schemefor f .

For a volunteer distributed computation that seeks to
identify essential (in some sense) inputs the constraints are
significantly relaxed. In this case, Alice has severalx val-
ues and seeks to determine which are important in her con-
text. Because Alice does not necessarily require the spe-
cific function values to make this determination, there is
far greater flexibility in the definition off ′. We call this
loosely defined notionsufficient accuracy.

Alice enjoys another advantage in the present context:
she has several (possibly millions of) potential suitors of-
fering computing services. Thus, the possibility exists that
for eachx, Alice can distribute the work of computing
f ′(E(x)) over several parties. Provided this can be done
in a manner that ensures that no participant possesses suf-
ficient information to determinex, then Alice can, in the
absence of collusion, keepx confidential.

The notion of sufficient accuracy is particularly rele-
vant for distributed optimization computations, i.e., those
computations intended to locate optimum (or sufficiently
close to optimum) values of some functionf . These com-
putations act as filters because identification of the distin-
guished input(s) is sufficient to determine the associated
extreme value(s). Many important applications deployed
on volunteer distributed computing platforms, including
exhaustive regression, genetic sequence comparisons, and
protein folding, are optimizing computations. In practice,
the data identified as meaningful by participants are subse-
quently subjected to far more extensive, and typically more
expensive, postprocessing analysis by the supervisor. This
further relaxes problem constraints: data can sometimes be
(mis)identified as important, provided the number of these
false positivesis sufficiently small, as long as truly impor-
tant data is rarely, if ever, missed.

The specific contributions of this paper are to:

• Introduce the concept ofsufficient accuracy.

• Present a strategy for enhancing data privacy in a prac-
tical and important real-world application: the Smith-
Waterman local nucleotide sequence comparison al-

gorithm. The importance of this algorithm is under-
scored by the fact that Smith-Waterman has been im-
plemented in commercial distributed computing set-
tings.

• Present a practical and important real-world applica-
tion that requires data privacy and is efficiently par-
allelizable. Such applications have so far proven elu-
sive. The present example thus represents a possible
first entry for a benchmark suite of applications for
privacy study.

The strategy described here is not applicable toall vol-
unteer distributed optimization computations — there are
cases in which the information required to determine the
importance of data cannot be preserved without revealing
the data itself. Nor do we claim that our scheme repre-
sents the final (or only) solution to the problem of data pri-
vacy for the Smith-Waterman algorithm. In many ways,
our solution for this example is less than ideal. In the
best possible situation, formal privacy and adversary mod-
els would be developed, and the efficacy of our solutions
proved within that framework. Unfortunately, such mod-
els tend to be far too restrictive for real-world applications.
Our approach, on the other hand, is more heuristic in na-
ture. Heuristic solutions are problematic because they are
not formally verified, and are thus often vulnerable to unan-
ticipated attack strategies. Regardless, our solution repre-
sents a first step: for many configurations, our modified
algorithm identifies all statistically significant sequences
without a single false positive. Moreover its security can
be reasonably estimated, though not rigorously measured,
via entropy calculations. The second shortcoming of our
strategy is that in no case, and for no specific configura-
tion, do we achieve the sensitivity of the unmodified Smith-
Waterman algorithm, which is theoretically guaranteed to
find the best matching substrings from a pair of sequences.
Our methods do, however, in many cases exhibit sensitiv-
ity comparable to Smith-Waterman. Finally, the methods
here apply only to nucleotide sequence comparisons, not
to amino acid sequence comparisons (for reasons that are
discussed in Section 4).

The remainder of the paper is organized as follows. In
Section 2 we present our model for the distributed compu-
tations and platforms under consideration. Section 3 dis-
cusses the general technique as applied to optimizing dis-
tributed volunteer computations. We provide brief intro-
duction to biological sequence analysis in Section 4. Sec-
tions 5 and 6 present the details of our privacy scheme
for Smith-Waterman and present related simulation results.
Related work is discussed in Section 7. We present our
conclusions in Section 8.
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2. The model

We consider parallel computations in which the primary
computation, thejob, is easily divided intotaskssmall
enough to be solved by a PC in a reasonable amount of
time (typically on the order of several hours of CPU time).
Individual tasks are independent of one another.

The computing platform consists of a trusted central
control server or server hierarchy (which we denote using
the termsupervisor) coordinating typically between104

and107 personal computers in a master-slave relationship.
These slave nodes, orparticipants, are assigned tasks by
the supervisor. Participants download code, typically in the
form of a screen saver or applet, that serves as the local ex-
ecution environment for tasks. Because tasks are indepen-
dent, communication between participants is unnecessary
and, assuredly, not permitted.

Formally, a job consists of the evaluation of a function or
algorithmf : D → R for every input valuex ∈ D. Tasks
are created by partitioningD into (possibly overlapping)
subsetsDi, with the understanding that taskT (Di) will
evaluatef(x) for every inputx ∈ Di. Each taskT (Di)
is assigned a filter functionGi : P (R) → P (Z+ ∪ {0}),
whereP (R) is the power set ofR. Eachx ∈ D is as-
sumed to have a unique (nonnegative integer) identifier,
id(x). The elementx ∈ Di is considered significant
(equivalentlyf(x) is a significant result) if and only if
id(x) ∈ Gi(f(Di)), wheref(Di) ≡ {f(x)|x ∈ Di}. That
is, the filter function returns the indices of significant el-
ementsx ∈ Di. The filter functions have domainP (R),
rather thanR itself, because the significance of an input
may depend on its function value relative to the function
values of other elements ofDi.

We assume the existence of a global intelligent adver-
sary. The adversary possesses sufficient technical skills to
efficiently decompile, analyze, and/or modify executable
code as necessary. In particular, the adversary has knowl-
edge both of the algorithm used for the computation and of
the measures used to prevent data disclosure.

Attacks that result from a compromise of data in transit
are beyond the scope of this paper — we assume the in-
tegrity of such data is verified by other means. In addition,
we do not consider attacks that result from the compromise
of the central server or other trusted management nodes. Fi-
nally, we do not consider attacks resulting from malicious
participants returning incorrect results or through the col-
lusion of such adversaries.

3. Leveraging Sufficient Accuracy

The theory behind the sufficient accuracy method is
straightforward. The success of a taskT (Di) in a filtering
computation is based solely on whether important values

in Di are identified. Presumably the intrinsic value of in-
putx ∈ Di will depend (at least in part) on the valuef(x).
But determination of the importance ofx, rather than re-
turning the valuef(x), can sometimes be achieved using
inputsx′ and functionsf ′ that differ significantly fromx
andf . In effect, considerable flexibility is introduced into
the precise definitions of inputs and functions.

Our strategy for achieving data confidentiality with task
T (Di) involves transforming the setDi, functionf , and fil-
ter functionG into a setD′

i, functionf ′ and filter function
G′ such thatT (Di) can be replaced with the taskT (D′

i)
consisting of the evaluation off ′ onD′

i. Ideally, the trans-
formation achieves the followingtransformation proper-
ties.

1. The taskT (D′
i) should not leak any additional infor-

mation about the values inDi other than what can be
learned from public sources and the values,f(Di),
output by the untransformed function.

2. The set of identifiersG′(T (D′
i)) returned fromT (D′

i)
contains the set of identifiersG(T (Di)).

3. The differenceG′(T (D′
i))−G(T (Di)) is reasonably

small, where the definition of reasonable is application
dependent.

In practice there is flexibility in these requirements. Some
applications may tolerate a few missed important results
provided that a certain proportion of identified important
results are generated. Others may accept some flexibility
on the number of false positives, provided that no important
results are missed1.

Note that the transformations here differ from tradi-
tional encryption algorithms and hash functions in impor-
tant ways. Good encryption algorithms must be reversible,
and should exhibit a strong avalanche effect. A strong
avalanche effect in the current context, however, will likely
obscure information to a degree that similar inputs will
not be identified as such. Furthermore, our transforma-
tion, like hash functions, should not be reversible. How-
ever hash functions should also exhibit a strong avalanche
effect. They must also be repeatable, while the transforma-
tions here need not be.

4. Smith-Waterman Sequence Comparison

A thorough treatment of sequence comparison tech-
niques would (and does) fill several texts. This section
gives a brief description of a dynamic programming align-
ment technique developed by Smith and Waterman [33].

1The notion that encryption/decryption schemes can have lessthan
100% accuracy is not unprecedented in the cryptographic literature (see
e.g., [4], [6], [16])

3



The sequences that biologists study consist of either nu-
cleotide bases (occurring in DNA fragments) or amino
acids (the building blocks of proteins). We consider only
DNA sequences, for which the underlying alphabet,Σ,
consists of the set{A,C, T,G} representing the nucleic
acids adenine, cytosine, thymine, and guanine.

Let U = u1u2 . . . un be a sequence2 overΣ. Sequences
evolve primarily in three ways. Either an element of a se-
quence is removed (adeletion), an element is inserted (an
insertion), or an existing element is transformed into a dif-
ferent element (asubstitution). Biologists track evolution-
ary changes by writing the original sequence alongside the
new sequence with appropriate positions aligned. For ex-
ample, if U = CTGTTA, andu2 undergoes a transforma-
tion from T to A, this would be written

U : CTGTTA
V : CAGTTA

If insteadu4 is deleted fromU , this is written

U : CTGTTA
V : CTG–TA

where the ‘–’ symbol acts as a placeholder, allowing the
other symbols to remain aligned. Positions in a sequence
with the ‘–’ symbol are calledgaps. If U is modified by
inserting the nucleotide G in position 2 , this is represented
by

U : C–TGTTA
V : CGTGTTA

After several such mutations,U may have evolved signifi-
cantly. We can represent this evolution with an alignment
such as the following.

U : C–TGT– –TA– –
V : CTA–TGCT–CG

In the example above, we assume thatV evolves fromU .
In general, however, when given an alignment of two se-
quences, there is no implied origin — it is impossible to
tell whether a particular gap is caused by a deletion or an
insertion. Because of this symmetry, insertions and dele-
tions are considered the same event, anindel.

Note that two sequences can be aligned in several ways,
and that aligned sequences need not have the same length.
Waterman [37] asserts that the number of alignments of
two sequences of lengthn is asymptotically equal to
(25/4/

√
π)(1 +

√
2)2n+1(1/

√
n). Thus, for example, two

2Though computer scientists typically begin sequences with index zero
rather than one, biologists prefer to begin their sequenceswith index 1. We
adhere to the biologists practice in this paper, so that the Smith-Waterman
description here matches that in the biology literature. In addition, this
convention eliminates the need for negative indices in the resulting dy-
namic programming matrices.

sequences of length 1000 have approximately7.03×10763

distinct alignments.
Goodness of an alignment is measured using a scoring

functions defined on pairs of symbols inΣ, and typically
having the form

s(u, v) =

{

c if u = v
−d if u 6= v,

(1)

for nonnegative integersc andd with c equal to or slightly
larger thand. This function can also be described using a
matrix, called theweight matrix. The form of scoring func-
tion described by (1) is unique to nucleotide comparisons.
Amino acid comparisons, in contrast, use scoring functions
that do not exhibit this binary property (one score when
symbols match, and one when they do not, regardless of the
literal). Because our strategy for Smith-Waterman relies on
this property, our methods are not applicable to amino acid
comparisons.

Gaps are scored using agap function(or gap penalty) g.
Gap functions for local alignments typically have anaffine
form, with

g(k) = α + β(k − 1),

wherek is the length of the gap3, α > 0 is the penalty of
the initial indel in a multiple column gap, andβ > 0 is the
penalty for each subsequent indel in the gap. The score of
an alignment is defined as the sum of the scores of each
individual column, minus the gap penalties. By carefully
choosing the scoring function and gap penalty, goodness of
fit can be made to correspond to intuitive notions such as
the probability that the sequences evolved from a common
ancestor.

The similarity S(U, V ) of sequencesU and V is de-
fined to be the maximum score over all alignments between
the two sequences. Although the number of alignments
is huge, a dynamic programming algorithm developed by
Needleman and Wunsch [26] allows the similarity of se-
quences of lengthn to be determined inO(n2) time.

The alignments discussed thus far areglobalalignments
because they include every element of both sequences. In
practice, local alignments, in which one seeks the best
matching substrings of the two sequences, is much more
useful. The local alignment problem seeks to find

H(U, V ) =

max{S(uiui+1 . . . uj−1uj , vkvk+1 . . . vl−1vl) :

0 ≤ i ≤ j ≤ n − 1, 0 ≤ k ≤ l ≤ m − 1}.

Waterman [37] notes that even using Needleman-Wunsch
(see Appendix A for details) for global alignments, the

3The length of a gap is determined by the number of consecutive
“dashes” in asingle sequence. Thus, say, a column with a dash in se-
quenceU , followed immediately by a column with a dash in sequenceV

is considered two length-one gaps, as opposed to a single length-two gap.
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naive approach of computing the
((

n
2

))2
global alignments

required for a single local alignment of two length-n se-
quences requiresO(n6) time. Fortunately, the Smith-
Waterman local alignment dynamic programming algo-
rithm [33] reduces this toO(n3) time. Specifically, define
for each(i, j) pair the functionH by

Hi,j = max{0;

S(uxux+1 . . . ui−1ui, vyvy+1 . . . vj−1vj) :

1 ≤ x ≤ i, 1 ≤ y ≤ j}.

ThenH can be computed using the following two results.

Theorem. Assume that the gap functiong is a function of
gap length. SetH0,0 = 0, and setHi,0 = H0,j = 0 for
1 ≤ i ≤ n and1 ≤ j ≤ m. Then

Hi,j = max

[

0, max
1≤k≤i

{Hi−k,j − g(k)},

Hi−1,j−1 + s(ui, vj), max
1≤l≤j

{Hi,j−l − g(l)}
]

.

Corollary.

H(U, V ) = max{Hk,l : 1 ≤ k ≤ n, 1 ≤ l ≤ m}.

Significance of a Smith-Waterman score is based on
probabilistic considerations. Specifically, similarity scores
for random sequences compared using gapless (i.e., gaps
are not allowed) Smith-Waterman were shown by Karlin
and Altschul to follow an approximate extreme value distri-
bution [23, 24]. Though their proof technique breaks down
when gaps are allowed, empirical evidence ([7, 27]) has
demonstrated that scores using gapped Smith-Waterman
are approximately extreme value as well. The significance
threshold valuep is chosen so that a match will be con-
sidered significant provided the probability that a random
comparison generates a score greater than or equal top is
small, typically less than0.003. Note thatp depends in
part on the length of the sequences being compared, and
thus varies between Smith-Waterman executions.

Tasks in a large-scale distributed implementation of
Smith-Waterman consist of the comparison of two task-
specific sets of sequencesA andB, with each sequence
in one set compared to all sequences in the other. In most
cases, one set consists of proprietary sequences, and the
other consists of sequences contained in a public database
such as the National Institutes of Health GenBank database
[18]. In other cases, both sets consist of proprietary data.
This would be the case, for example, if a company wished
to use external participants to compare some newly identi-
fied sequences against the company’s own large proprietary
database. Unless otherwise specified, we assume for the re-
mainder of this paper that sequences inA are proprietary
and sequences inB are publicly available.

4.1 Sequence Comparison Assumptions

There is no uniform set of assumptions under which
biologists run sequence comparisons. We consider here
Smith-Waterman computations of an exploratory nature, in
which the supervisor compares the proprietary sequences
against sequences from a variety of species, in order to
inform further small scale investigations. Chargaff [13]
showed in 1951 that nucleotide frequencies are not uni-
form, but instead vary in known ways between species,
and often vary among different evolutionary branches of
the same species. Thus the total population of public se-
quences exhibits a wide range of nucleotide frequencies.
Because we cannot know the exact distribution of the pub-
lic database sequence population, we assume, both in our
analysis and simulations, the worst case (in terms of de-
termining sequence similarity) that all sequences inA ∪ B
share the same relative nucleotide frequencies. We assume
also, that nucleotide frequency distributions are reason-
able, with, for example, all nucleotide frequencies between
0.15 and 0.35. With these assumptions, our algorithm per-
forms in practice no worse (for the comparison configura-
tions considered in this paper) than the results presented.It
should be noted, however, that the security of our scheme
doesdepend in part on the specific frequency distributions
of the nucleotides being compared, and that there are patho-
logical cases, such as a sequence consisting entirely of only
one or two nucleotide literals, in which our proposed mech-
anisms provide little, if any, data privacy.

An actual large-scale distributed implementation of
Smith-Waterman has tasks for which the setsA andB each
contain approximately 100 sequences. We assume, without
loss of generality and for relative simplicity of analysis,that
A consists of a single sequence.

5. The Transformation

In applying the strategy outlined in Section 3 to the
specifics of sequence comparison, our method for achiev-
ing data privacy requires transforming the setsA andB,
scoring and gap functionss andg, and filter parameterp
into setsA′, B′, scoring functionss′ andg′ and filter pa-
rameterp′. We then assign the taskT (A′,B′, s′, g′, p′) in
place ofT (A,B, s, g, p).

Our transformation involves computing the offsets be-
tween occurrences of individual nucleotide literals. The
resulting sequences of offsets are then distributed, and can
be compared using the Smith-Waterman algorithm with the
original scoring function and gap penalty information.

Specifically, for a sequenceU over the alphabetΣ, and
δ ∈ Σ, let uδ

i be the index (position) of theith occurrence
of δ in U . Define theoffset sequence, F (U, δ) to be the
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sequence

F (U, δ) = {uδ
1, u

δ
2 − uδ

1, u
δ
3 − uδ

2, . . . , . . . u
δ
k − uδ

k−1},

where the literalδ occurs inU exactlyk times. Though
we are assuming that all sequences begin at index 1, if for
notational convenience we letuδ

0 = 0, then we have

F (U, δ)i = uδ
i − uδ

i−1

for i = 1, 2, . . . , k. For example, ifU is the sequence

U : GCACTTACGCCCTTACGACG

then the offset sequences for eachδ ∈ Σ are

F (U,A) = {3, 4, 8, 3}
F (U,C) = {2, 2, 4, 2, 1, 1, 4, 3}
F (U,G) = {1, 8, 8, 3}
F (U, T ) = {5, 1, 7, 1}

For E a set of nucleotide sequences, letF (E , δ) de-
note the setF (E , δ) ≡ {F (U, δ)|U ∈ E}. The ba-
sic scheme for transforming a sequence comparison task
T (A,B, s, g, p) is to randomly choose a nucleotide lit-
eral δ, computeF (A, δ) and F (B, δ) and send the task
T (F (A, δ), F (B, δ), s, g, p′), wherep′ is a revised thresh-
old. We determine the value ofp′ by applying statistical
distribution fitting techniques to the results of small simu-
lation runs. A detailed description of this is given below.

The intuition behind our method is that similar se-
quences should have similar offsets. Thus sequences with
offsets that differ significantly from the sequence inA can
be excluded. The security of the transformation, in con-
trast, results from its many-to-one property. Thus in or-
der to avoid a black-box analysis (in which the adversary
can reconstruct the sequence of nucleotides by identify-
ing the substrings of a public sequence that match well
with those of a proprietary sequence), the public databases
should contain many sequences that could be the preim-
age, under our transformation, of the proprietary sequence.
This, however, results in a potentially large number of false
positives. These can be reduced significantly by creating
two tasks, one corresponding to each of two nucleotide lit-
erals, and assigning those tasks to different participants. A
sequence pair is then classified as significant only ifboth
tasks indicate significant similarity.

We have found through experimentation that creating
a set of tasks, each of which corresponds to a different
nucleotide literal, greatly increases the accuracy of our
scheme when compared with using only the offsets corre-
sponding to a single nucleotide4. Two different methods,

4This holds true as well for Needleman-Wunsch global sequenceanal-
ysis. However in the global sequence alignment, using even a single offset
provides high accuracy.

to be described next, for creating and using these multiple
tasks performed well. In both methods, a single task from
the unmodified computation becomes multiple tasks in the
modified computation.

Maximum method: In the first method, all four offset
sequences are computed for every sequence in the original
task. Then four tasks are created, one for each nucleotide
literal; each task contains the corresponding nucleotide off-
set sequence for each sequence in the original task. The
four tasks measure significance against a single common
threshold value, returning any matches that exceed the
threshold. A pair of sequences is deemed well-matched
(i.e., exhibit statistically significant similarity) provided the
maximumof the four similarity scores exceeds the thresh-
old. This approach can be augmented by requiring that two
or more of the four similarity scores exceed the threshold,
thus decreasing the rate of false positives.

Adding method: In the second method, the participants
assigned each of the four tasks do not measure significance,
but instead return all scores to a fifth participant, who adds
the scores. Twp sequences are deemed well-matched pro-
vided the sum of the similarity scores for all four offset se-
quences exceeds the significance threshold. This approach,
in which communication is required between participants
and each participant generates significant network traffic,
is not currently practical due to platform limitations. How-
ever, such network traffic will be far less an impediment in
future platforms with increased bandwidth. Moreover, vol-
unteer computing platforms in the near future likely will
allow communication among participants via hierarchical
architectures (as opposed to the flat master-slave architec-
ture we have been considering). Such platforms have al-
ready been proposed [28] as a means of dealing with the
inclusion of mobile wireless devices (such as cell phones
and PDAs) into the computational grid.

Note that both schemesdecreasenet execution time as
compared to the unmodified Smith-Waterman algorithm
because they operate on shorter sequences. A Smith-
Waterman comparison of two length-N sequences has time
costO(n3). Reducing sequence lengths by a factor of four
(on average) decreases run time by roughly a factor of 64.
Thus, even if five modified tasks are required to perform the
work of a single unmodified task, one can expect an order
of magnitude decrease in net execution time.

5.1 Analysis

We now consider the performance of our sequence
transformation scheme as it relates to the ideal transforma-
tion properties described in Section 3.

Property 1 states that a transformed task
T (F (A, δ), F (B, δ), s, g, p′) should not leak any in-
formation about the original private sequencesA other
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Figure 1. Distributions of Smith-Waterman scores us-
ing our transformation (with no mask) and the maxi-
mum method for determining significance. Curves gen-
erated from 10,000 comparisons with base sequence
length between 600 and 800, matching portion length
300, and with well-matched sequences suffering an av-
erage of 52.5 substitutions and 52.5 indels.
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Figure 2. Distributions of Smith-Waterman scores us-
ing our transformation (with no mask) and the adding
method for determining significance. Curves generated
from 10,000 comparisons with base sequence length be-
tween 600 and 800, matching portion length 300, and
with well-matched sequences suffering an average of
52.5 substitutions and 52.5 indels.

than what could possibly be gleaned from the scores re-
turned by an unmodified Smith-Waterman implementation.
This corresponds to asserting that the adversary cannot, us-
ing our scheme, learn any more about a private sequenceU
than what is revealed by the unmodified Smith-Waterman
scores of alignments ofU with the sequences inB. This
is clearly not satisfied by our transformation, since it leaks
information: though the public databases are large (Gen-
Bank, for example, is estimated to contain more than 54
billion bases in 50 million sequences as of this writing), we
must assume that an adversary can completely determine
the contents ofB, and will thus know the locations of all
instances of a single nucleotide literal inU .

Entropy calculations give a rough estimate of the
amount of information leaked. Assuming thatCδ is the
number of instances of literalδ in the length-N sequence
U , then the conditional entropy ofU given F (U, δ) is
(N − Cδ) log 3 (justification in Appendix B). Since the
entropy ofU is 2N , approximately2N − (N − Cδ) log 3
bits of information are leaked. Thus, for example, given a
sequence of 600 nucleotides in which1/4 areδ, the entropy
is 1200 and the conditional entropy is450 log 3 ≈ 713.23.
That is, approximately1200 − 713 = 487 bits of infor-
mation are leaked by the scheme, with roughly713 bits of
uncertainty remaining.

Implicit in our use of entropy in this context is the as-
sumption that nucleotides in a string arerandomly dis-
tributed according to some predetermined relative fre-
quency. This is not accurate in general. Many genomes
have multiple “repeat regions” as well as individual pat-

terns (such as “ATATATAT”) that appear several times. It is
conceivable that an adversary could exploit this property to
gain information about the position of multiple nucleotide
literals in parts of the sequence. Such patterns, however,
can be (and often are) in practice removed from sequences
prior to analysis, because apart from possibly identifying
boundaries of specific regions of the genome, the current
wisdom is that they reveal little useful information. An
analogy in the context of English language text would be
inserting multiple copies of the word “the” between words
at random places in an unknown document: identifying
copies of the pattern “the” would provide little useful infor-
mation about the contents of the document. For this reason,
many public genome databases offer a “scrubbed” version
with such patterns removed.

Regardless of whether nucleotides are randomly dis-
tributed, entropy calculations in the present context do not
provide provable security because of the possibility (which
is difficult to quantify in any meaningful way) that a molec-
ular biologist might be able to infer the values of some nu-
cleotides based on the locations of the known nucleotides.
For this reason we do not claim that our transformation
provides provable security. The biologists [30] with whom
we have consulted, however, believe that in practice, given
only the positions of a single nucleotide literal, no addi-
tional elements can be inferred. Moreover, they believe
that there is no biologically useful information (given biol-
ogists’ current understanding of the structure and function
of the genome) that can be gleaned from a nucleotide se-
quence in which only the positions of a single nucleotide

7



literal are revealed.
They are, however, quick to point out that given all of

the positions oftwo or more nucleotide literals, the private
sequence could likely be almost completely reconstructed.
For this reason, variants of our scheme that require the cre-
ation of multiple tasks (corresponding to distinct nucleotide
literals), are vulnerable to collusion. Specifically, under the
assumption that the public sequences in a task can be com-
pletely known, it is trivial for an adversary to determine
whether two tasks represent the same sets of sequences
transformed under different nucleotides. The adversary
then knows the positions of more than one nucleotide. This
is a significant concern, since current volunteer computing
platforms lack an effective method for preventing a single
individual (as opposed to user name) from obtaining sev-
eral distinct tasks. Fortunately, under some configurations
(e.g., global sequence alignment and local alignment of rel-
atively long sequences) multiple tasks are not necessary.
Regardless, though the present paper assumes no collusion,
collusion resistance is an important consideration that must
be addressed before any scheme designed for these plat-
forms can be considered secure.

The conditional entropy of our transformation can be in-
creased by augmenting the basic scheme so that some ele-
ments of the offset sequences are masked. That is, we pick,
for each task, a sequence over the set{0, 1}. Each offset se-
quence in the task is multiplied, element by element, by the
task specific mask. Zero entries in the resulting sequence
are removed. The increase in entropy resulting from this
is based on the proportionρ of “1” elements in the mask.
We have found that for some common application configu-
rations,ρ = 0.9 works well.

Note that in the case in which both of setsA andB con-
sist of proprietary data, then the adversary cannot ascertain
the identity of the nucleotide used to generate a given offset
sequence. Moreover, the potential for the type of black-box
analysis mentioned in the previous section is removed.

Properties 2 and 3 given in Section 3 state roughly that
under the transformation, significant results remain signif-
icant (i.e., they are returned as significant results), while
the number of false positives (results returned as signifi-
cant that would not have been significant in the unmodi-
fied computation) remains reasonably small. Using stan-
dard statistical inference techniques, extreme value density
functions can be fit to the simulated score data. Then, by
choosing a threshold that corresponds to a lower percentile
of the distribution of well-matched scores, the false posi-
tive error rate can be controlled. In fact, as seen in Figures
1, 2, 4, 5, and 6, the degree of overlap between the two
distributions is often so minuscule that the probability that
a randomly generated sequence has a higher score than a
well-matched one is rarely more than10−4.

The benefit is clear: our scheme maintains Properties

2 and 3 by ensuring that scores for appropriate sequences
(i.e., well-matched) are clearly separated from inappropri-
ate sequences.

6. Simulation Results

We tested our scheme using several parameter set-
tings, and for each setting generated four scoring distri-
butions: random unmodified sequences, random modified
sequences, well-matched untransformed sequences, and
well-matched transformed sequences. In this context, “ran-
dom” refers to a sequence whose nucleotides are gener-
ated at random, where a single probability distribution de-
termines, for all positions, the likelihood that a given nu-
cleotide literal occurs; “well-matched” refers to a sequence
that is derived from a given random sequence via a finite
number of mutations (i.e., random indels or substitutions),
and should match the original sequence better than a differ-
ent, completely random, sequence; “unmodified” refers to
using the original Smith-Waterman algorithm; and “modi-
fied” refers to using our modified Smith-Waterman scheme.

“Goodness” of a score is relative to an a priori thresh-
old that quantifies statistical significance. Hence the best
matched pair in a specific task is not necessarily statisti-
cally significant overall. The efficacy of an algorithm in
the present context thus depends on the ability to generate
statistically significant scores for sequences that descend
from a common ancestor.

Simulation results use data generated from samples of
size 10,000. More specifically, 10,000 pairs of random se-
quences were generated and scored (compared) using the
Smith-Waterman algorithm. These same sequence pairs
were then modified according to our various transforma-
tions and scored again. A similar process was used with
10,000 artificially generated well-matched sequence pairs.

We use the scoring functions(a, b) = 1 if a = b and
s(a, b) = −1 if a 6= b, and affine gap penaltyg(k) =
2 + 1(k − 1), wherek represents gap length. These values
are used in practice, and are the same as those used by Wa-
terman [37]. The viability of our strategy depends only on
the binary nature of the scoring function (any matching pair
of literals receives the same score, as does any pair of mis-
matched literals), and not on the specific values assigned as
scores.

Figures 1 and 2 depict score distributions for random
and well-matched sequence pairs transformed according to
our basic scheme. Parameters for these experiments were
sequence length of 600-800, and the relative frequency of
each symbol was0.25. Well-matched sequences were mu-
tated over 15 “generations” using a 0.01 mutation proba-
bility per symbol per generation. With these parameters,
mutated sequences are expected to differ from the origi-
nal in approximately 15% of the symbols before our pri-
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Figure 3. Distributions of Smith-Waterman similar-
ity scores using our transformation (with no mask) and
the maximum method for measuring significance and
long sequences. Curves generated from 1000 compar-
isons with base sequence length 2000, matching portion
length 1000, and with well-matched sequences suffer-
ing an average of 150 substitutions and 150 indels.
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Figure 4. Distributions of Smith-Waterman scores using
our transformation (with no mask) and the add method
for measuring significance. Curves generated from 1000
comparisons with base sequence length 2000, matching
portion length 1000, and with well-matched sequences
suffering an average of 150 substitutions and 150 indels.

vacy scheme is applied. Figure 1 represents the “maxi-
mum” scoring scheme, in which a single unmodified task
is divided into four tasks (each containing the offsets cor-
responding to a single nucleotide literal), and a result is
deemed significant provided the maximum score of the four
tasks exhibits a statistically significant match. Figure 2 rep-
resents the “adding” scoring scheme, in which the scores
from each of the four modified tasks are added to determine
significance. The separation between the curves in these
figures is a measure of the efficacy of the Smith-Waterman
algorithm as applied to transformed sequences. Specifi-
cally, the greater the separation between curves, the more
like Smith-Waterman our transformed algorithm performs.

These particular experiments represent a worst case: rel-
atively short (from a biological perspective) sequences. De-
spite this, our statistical analysis indicates that the prob-
ability of a transformed well-matched sequence scoring
higher than a transformed random sequence is approxi-
mately1.3× 10−9. Stated another way, the expected num-
ber of trials one would need to run before seeing a random
sequence pair score better than a well-matched sequence
pair is greater than7.5 × 108.

Scores generated from longer sequences exhibit far
greater separation. Figure 3 depicts Smith-Waterman sim-
ilarity scores using the basic transformation with the max-
imum method for measuring significance. These curves
were generated using length 2000 sequences with match-
ing portions of length 1000. The well-matched sequences
experienced an average of 150 substitutions and 150 indels.
Figure 4 in Appendix?? depicts a similar experiment but
with the adding method of determining significance. In

both of these cases, the probability that a well-matched
sequence pair scores less than a random sequence pair is
infinitesimally small. The expected number of trials one
would need to run before seeing a random pair score better
than a well-matched pair is more than1.8 × 1061.

Figure 5 depicts score distributions for the basic scheme
augmented with masking (ρ = 0.9) as applied to sequences
of length 1000-1300. Well-matched sequences have match-
ing portion length 500. Here, there is a small probabil-
ity that a pair of random sequences can score better than
a well-matched pair (the overlap of the dashed and solid
curves). This can be eliminated entirely if the supervisor
is willing to incur some false positives. This is reasonable,
since the matches that are missed are at the low end of the
spectrum, indicating that a higher proportion of them (if
found) would be culled in the postprocessing.

These figures demonstrate that our strategy preserves
sufficient information such that similarity between se-
quences can be accurately measured. More important, they
validate the concept of sufficient accuracy: that suitable
modification of task procedures can preserve functionality
while simultaneously enhancing data privacy.

7. Related work

There are a number of recent studies that focus on the
general issue of securing volunteer distributed computa-
tions. Golle and Mironov [21] study computations involv-
ing inversion of a one-way function (IOWF). These appli-
cations seek the pre-imagex0 of a distinguished valuey0

under a one-way functionf : D → R. Golle and Mironov
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Figure 5. Distributions of Smith-Waterman similar-
ity scores using our transformation and the maximum
method for determining significance and augmented
with a ρ = 0.9 mask. Curves generated from 1000
comparisons with base sequence length between 1000
and 1300, matching portion length 500, and with well-
matched sequences suffering an average of 86.25 sub-
stitutions and 86.25 indels.

present several variations of a basicringer scheme de-
signed to detect participants who attempt to claim credit for
work not completed. Their strategy involves precomputing
values off and planting those results in task data spaces.
Since participants are not able to distinguish ringers from
true data, the probability of detecting cheating is increased.
Szajda, Lawson, and Owen [34] extend the ringers method
to handle more general functions, and also present a tech-
nique for handling sequential computations, in which a task
consists of the repeated application off to a single in-
put. Golle and Stubblebine [22] and Sarmenta [32] discuss
strategies for the intelligent application of redundancy to
volunteer distributed computations. The former discusses
a security based administrative framework for commercial
distributed computations. This provides increased flexibil-
ity and protection by varying the distributions that dictate
the application of redundancy. Sarmenta instead proposes a
credibility-based system in which multiple levels of redun-
dancy are used, with parameters determined by a combina-
tion of security needs and participant reputations. Monrose,
Wyckoff, and Rubin [25] deal with the problem of guaran-
teeing that a participant assists in a computation, assuming
that the participant’s goal is to maximize profit by minimiz-
ing cost. Their method involves instrumenting task code at
compile-time to produce checkable state points that consti-
tute a proof of execution. Participants return results along
with the proof to a verifier, which then runs a portion of the
execution and checks it against the returned state check-
points. None of these papers considers the topic of provid-
ing data confidentiality for these computations.

There has been a considerable amount of work in the-
oretical computer science concerning computing with en-
crypted data. Feigenbaum [17] examines plausible formal
definitions of encryptability, and shows that under one such
definition, all NP-complete problems that are polynomially
isomorphic to CNF-SAT are encryptable. Abadi, Feigen-
baum, and Killian [2, 3] develop a framework for describ-
ing in an information-theoretic sense what data information
is hidden and what is leaked in a given encryption scheme.
Their main encryptability result is that iff can be com-
puted in expected polynomial time with zero error proba-
bility, thenf is encryptable such that no information about
x is leaked. Their protocol, however, requiresm rounds of
communication, wherem is constrained to be polynomial
in |x|. Interactive confidentiality protocols are impractical
in our context because they scale poorly.

Abadi and Feigenbaum [1] describe a two-party proto-
col for secure circuit evaluation on a general boolean cir-
cuit. Secure circuit evaluation protocols provide greater
security than what is necessary in our context because
they assume that the details off remain hidden from the
owner of the data. Regardless, their method (and others
requiring interaction [8, 9, 36]) requires much more server-
participant interaction than is practical for a volunteer
distributed computation. Sander, Young, and Yung [31]
develop a non-interactive protocol called Symmetrically-
secure CryptoComputing (SYC), which provides a variant
of secure circuit evaluation, hiding the inputx and reveal-
ing only a bound on the depth of the circuitf . Their solu-
tion, however, is limited to log-depth circuits, and is thus
impractical in our context.

Rivest, Adleman, and Dertouzos [29] formally intro-
duced the notion of privacy homomorphism, whose exis-
tence in theory allows computing with encrypted functions.
They conclude that these homomorphisms are inherently
limited in their capabilities since comparisons cannot be
included in the possible set of operations without creating
a vulnerability to ciphertext-only attacks. They also raise
the (still open) question of the existence of highly secure
privacy homomorphisms that use large sets of operations.
Ahituv, Lapid, and Neumann [5] show that if a privacy ho-
momorphism allows the addition operation, then it is inse-
cure under chosen plaintext attacks. Brickell and Yacobi
[12] introduce R-additive privacy homomorphisms, which
are secure under addition, but place constraints on the num-
ber of ciphertexts that can be added. In general, secure
privacy homomorphisms that preserve more than one oper-
ation are difficult to find. An exception is a homomorphism
developed by Ferrer [15] that preserves addition and mul-
tiplication while resisting known plaintext attacks. Though
elegant, these homomorphisms have far too limited opera-
tion sets to be of practical use in volunteer distributed com-
putations.
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The problem of multiparty function computation in-
volves playersPi, 1 ≤ i ≤ n, with private inputsxi who
wish to evaluate a functionf(x1, . . . , xn) without reveal-
ing any more information about thexi than is implicitly
contained in the output value. Yao [38] introduces this
problem and develops a protocol for the two player case.
Goldreich, Micali, and Wigderson [20] extend this result
to several parties, developing a protocol that leaks no input
information provided a majority of honest players. Both
of these results are based on assumptions of intractability
of certain functions (the cryptographic approach). Results
based on the information-theoretic approach, which does
not assume limits on processor computation power, include
work of Ben-Or, Goldwasser, and Wigderson [10], who
present a protocol that achieves a tight bound on the size of
the group of colluding players that can disrupt the compu-
tation, and Chaum, Crépeau, and Damgard [14], who show
that any “reasonable” multiparty protocol can be achieved
if at least 2/3 of the players are honest. Goldreich [19] pro-
vides a survey of results in this area. As with the secure cir-
cuit evaluation work above, these protocols have communi-
cation and computation complexity that precludes their use
in the current context.

8. Conclusions

Via a specific application, we have introduced a strategy
for enhancing data privacy in some distributed volunteer
computations. The strategy is based on the observation that
the requirements for computing with obscured data can be
much less restrictive in some of these computations than in
traditional execution models because of the filtering nature
of certain volunteer computations. In particular, because
the identification of important data, rather than the output
associated with this data, is the goal of these computations,
there can be considerable flexibility in task procedure def-
initions. This flexibility can be leveraged to provide data
privacy by allowing transformations to data and procedures
that retain sufficient information for filtering, while simul-
taneously obscuring data details so that identification is dif-
ficult, if not impossible.

We illustrated the potential of this strategy by describ-
ing a scheme for enhancing data privacy in the Smith-
Waterman local sequence comparison algorithm. Our mod-
ifications are a promising first step, in that they provide rea-
sonable, though not rigorously provable, data privacy while
preserving sufficient information for distinguishing well-
matching sequences. In addition, by presenting a practi-
cal, important, and non-trivial real-world application that
requires privacy and is efficiently parallelizable, we have
begun to populate a potential benchmark suite of applica-
tions for privacy study.
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A. Sequence Comparison Algorithm Details

The details of the Smith-Waterman global sequence
alignment algorithm follow. We assume here, for simplic-
ity of notation, that lengthn sequences begin at index 1
and end at indexn. Recall thatS denotes the similarity
score of a sequence pair,s denotes the similarity function
for symbols, andg denotes the gap penalty.

Theorem. [37]. If U = u1u2 . . . un andV = v1v2 . . . vm,
define

Si,j = S(u1u2 . . . ui, v1v2 . . . vj).

Also, set

S0,0 = 0, S0,j =

j
∑

k=1

g(vk), andSi,0 =

i
∑

k=1

g(uk).

Then

Si,j = max{Si−1,j + g(ui), Si−1,j−1 + s(ui, vj),

Si,j−1 + g(vj)}.
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Proving the validity of the dynamic programming ap-
proach in this context is straightforward. One need only
observe that an alignment ending with indicesi andj must
end with one of the choices below.

· · ·ui · · ·ui · · · −
· · · − · · · vj · · · vj

Thus the best alignment ending with indicesi andj must
be the best alignment ending with indicesi andj − 1 plus
the gap penalty, or the best alignment ending with indices
i− 1 andj − 1 pluss(ui, vj), or the best alignment ending
with indicesi − 1 andj plus the gap penalty.

For local sequence comparison, define for(i, j) pair the
functionH by

Hi,j = max{0;

S(uxux+1 . . . ui−1ui, vyvy+1 . . . vj−1vj) :

1 ≤ x ≤ i, 1 ≤ y ≤ j}.

ThenH can be computed using the following two re-
sults from [37].

Theorem. Assume that the gap functiong is a function of
gap length. SetH0,0 = 0, and setHi,0 = H0,j = 0 for
1 ≤ i ≤ n and1 ≤ j ≤ m. Then

Hi,j = max

[

0, max
1≤k≤i

{Hi−k,j − g(k)},

Hi−1,j−1 + s(ui, vj), max
1≤l≤j

{Hi,j−l − g(l)}
]

.

The proof is similar to that of the global alignment algo-
rithm.

Finally, we have the following

Corollary.

H(U, V ) = max{Hk,l : 1 ≤ k ≤ n, 1 ≤ l ≤ m}.

B. Entropy Calculation

Given that the adversary has determined the location of
all instances of a single nucleotide, we can measure con-
ditional entropy. Assume that our original sequenceU has
lengthN , and that the adversary has been provided with
F (U, δ) for some fixed literalδ ∈ Σ. There are4N possi-
ble lengthN sequences overΣ, and we may assume that
these are enumerated such that each has a unique integer
index in the range1 to 4N inclusive. That is, all possible
lengthN sequences overΣ occur exactly once among the
setS = {S1, S2, . . . , S4N }. Let X be the random variable
that has a uniform distribution overS. (Technically,X is
the random variable that has a uniform distribution over the

set of integers between1 and4N inclusive.) The entropy
[11], H(X), of X is easily shown to be2N , which is to be
expected, since in effect each nucleotide contains two bits
of uncertainty. Now let us consider the conditional entropy
H(X|Y ) of X given that the adversary has received off-
set sequenceY = F (U, δ). Let Cδ denote the number of
occurrences of literalδ in U . Then

H(X|Y ) =

−
4

N

∑

i=1

P (X = Si|Y = F (U, δ)) ×

log(P (X = Si|Y = F (U, δ))).

Since, however, the positions of literalδ are revealed by
F (U, δ), andδ is known to the adversary, thus there are
3N−Cδ sequences inS that could be the preimage ofU .
Let k1, k2, . . . , k3N−Cδ be the indices (over the setS of
these possible preimages). Thus,

H(X|Y ) =

−
3

N−CA
∑

i=1

P (X = Ski
|Y = F (U, δ)) ×

log(P (X = Ski
|Y = F (U, δ)))

= −3N−CA
1

3N−CA

log

(

1

3N−CA

)

= (N − CA) log 3.
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