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Block Ciphers
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Recall: Symmetric-Key Encryption 
Algorithms

• Both parties share the key needed to encrypt 
and decrypt messages, hence both parties are 
equal

• Modern symmetric key ciphers (developed from 
product ciphers) include DES, Blowfish, IDEA, 
LOKI, RC5, Rijndael (AES) and others
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Block Ciphers

• One of the most widely used types of 
cryptographic algorithms 
– For encrypting data to ensure secrecy
– As a cryptographic checksum to ensure integrity
– For authentication services

• Used because they are comparatively fast, and 
we know how to design them

• We’ll look at both DES (Data Encryption 
Standard) and AES (Advanced Encryption 
Standard)
– Focus on DES in this slideset
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Block vs Stream Ciphers
• Block ciphers process messages in blocks, each 

of which is then en/decrypted 
– So all bits of block must be available before 

processing

• Like a substitution on very big characters
– 64-bits or more

• Stream ciphers process messages a bit or byte 
at a time when en/decrypting
– Though technically the only difference here is block 

size, there are significant differences in how stream 
and block ciphers are designed.
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Claude Shannon

• Wrote some of the pivotal papers on modern 
cryptology theory

– C E Shannon, "Communication Theory of Secrecy 
Systems", Bell System Technical Journal, Vol 28, Oct 
1949, pp 656-715

– C E Shannon, "Prediction and Entropy of printed 
English", Bell System Technical  Journal, Vol 30, Jan 
1951, pp 50-64 
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Claude Shannon

• Among other things, he developed the concepts 
of:
– Entropy of a message
– Redundancy in a language
– Theories about how much information is needed to 

break a cipher 
– Defined the concepts of computationally secure vs 

unconditionally secure ciphers
– Introduced the idea of substitution-permutation (S-P) 

networks, basis of current product ciphers  
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Shannon S-P Network 

• cipher needs to completely obscure statistical 
properties of original message
– E.g., a one-time pad does this

• more practically Shannon suggested combining 
elements to obtain:
– diffusion – dissipates statistical structure of plaintext 

over bulk of ciphertext
– confusion – makes relationship between ciphertext 

and key as complex as possible

• S-P networks designed to provide these
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Shannon S-P Network 

• Every block cipher involves a transformation of 
a block of plaintext into a block of ciphertext, 
where the transformation depends on the key

• Diffusion seeks to make the statistical 
relationship between the plaintext and 
ciphertext as complex as possible in order to 
thwart attempts to deduce the key

• Confusion seeks to make the relationship 
between the statistics of the ciphertext and the 
value of the encryption key as complex as 
possible, again to thwart attempts to discover 
the key.



CS 334: Computer SecurityCS 334: Computer Security
9

Shannon S-P Network 

• So successful are diffusion and confusion in 
capturing the essence of the desired attributes 
of a block cipher that they have become the 
cornerstone of modern block cipher design
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Block Cipher Requirements

• Must be reasonably efficient

• Must be able to efficiently decrypt ciphertext to 
recover plaintext

• Must have a reasonable key length

• First attempt: Arbitrary reversible substitution
– For a large block size this is not practical for implementation and 

performance reasons
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Why Not Arbitrary Reversible 
Substitution?

• If we’re going from n bit plaintext to n bit 
ciphertext:
– There are 2n possible plaintext blocks.

– Each must map to a unique output block, so total of 
2n! reversible transformations 

• List all n-bit binary (plaintext) strings.  First one can go 
to any of 2n n-bit binary strings, next to any of 2n-1 
output strings, etc.
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Why Not Arbitrary Reversible 
Substitution?

• If we’re going from n bit plaintext to n bit 
ciphertext:
– So, to specify a specific transformation, essentially 

need to provide the list of ciphertext outputs for each 
input block.

– How many? Well, 2n inputs, so 2n outputs, each n bits 
long implies an effective key size of n(2n) bits.  

• For blocks of size 64 (very minimum desirable to thwart 
statistical attacks) this amounts to a key of length 
64(264) = 270 = 267 bytes ~ 1.47 × 1020 bytes = 147 TB
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Feistel Cipher Structure
• Horst Feistel devised the Feistel cipher

– based on concept of invertible product cipher
– His main contribution was invention of structure that 

adapted Shannon’s S-P network into easily inverted 
structure.

• Process consists of several rounds.  In each 
round:
– partitions input block into two halves
– Perform substitution on left half by a round function

based on right half of data and subkey
– then have permutation swapping halves

• implements Shannon’s substitution-
permutation network concept
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Feistel Cipher Design Principles

• block size
– increasing size improves security, but slows cipher 
– 64 bits reasonable tradeoff.  Some use 128 bits

• All variants of AES use 128 bit blocks

• key size
– increasing size improves security, makes exhaustive key 

searching harder, but may slow cipher 
– 64 bit considered inadequate.  128 bit is common size (for 

now)
• AES has variants based on key size: AES-128, AES-192, AES-

256

• number of rounds
– increasing number improves security, but slows cipher
– AES-128 (10 rounds), AES-192 (12 rounds), AES-256 (14 

rounds), DES (16 rounds)
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Feistel Cipher Design Principles

• subkey generation
– greater complexity can make analysis harder, but slows 

cipher

• round function
– greater complexity can make analysis harder, but slows 

cipher

• fast software en/decryption & ease of analysis
– are more recent concerns for practical use and testing
– Making algorithms easy to analyze helps determine cipher 

effectiveness (DES functionality is not easily analyzed)
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Feistel Cipher Decryption
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Data Encryption Standard (DES)

• was once the most widely used block cipher in 
world 

• adopted in 1977 by NBS (now NIST)
– as FIPS PUB 46

• encrypts 64-bit data using 56-bit key
• still has widespread use
• At first, considerable controversy over its 

security
– Tweaked by NSA?
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DES History

• IBM developed Lucifer cipher
– by team led by Feistel
– used 64-bit data blocks with 128-bit key

• then redeveloped as a commercial cipher with 
input from NSA and others

• in 1973 NBS issued request for proposals for a 
national cipher standard

• IBM submitted their revised Lucifer which was 
eventually accepted as the DES
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DES Design Controversy

• Although DES standard is public was 
considerable controversy over design 
– in choice of 56-bit key (vs Lucifer 128-bit)
– and because design criteria were classified
– And because some NSA requested changes 

incorporated

• Subsequent events and public analysis 
show in fact design was appropriate
– Changes made cipher less susceptible to 

differential or linear cryptanalysis
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DES Encryption
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Initial Permutation IP

• first step of the data computation 
• IP reorders the input data bits 

– Permutation specified by tables (See FIPS 46-3)
• even bits to LH half, odd bits to RH half 
• quite regular in structure (easy in h/w)
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DES Round Structure

• uses two 32-bit L & R halves
• as for any Feistel cipher can describe as:

Li = Ri–1

Ri = Li–1 xor F(Ri–1, Ki)
• takes 32-bit R half and 48-bit subkey and:

– expands R to 48-bits using perm E
– adds to subkey (XOR)
– passes through 8 S-boxes to get 32-bit result

• Each S-box takes 6 bits as input and produces 4 as 
output

– finally permutes this using 32-bit perm P
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S-boxes

There are four more
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DES Round Structure
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Substitution Boxes S

• have eight S-boxes which map 6 to 4 bits 
• each S-box is actually 4 little 4 bit boxes 

– outer bits 1 & 6 (row bits) considered 2-bit number 
that selects row

– inner bits 2-5 (col bits) considered 4-bit number that 
selects column.  

– Decimal number in table is converted to binary and 
that gives the four output bits

– result is 8 sets of 4 bits, or 32 bits
• row selection depends on both data & key

– feature known as autoclaving (autokeying)
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DES Key Schedule

• forms subkeys used in each round
• consists of:

– initial permutation of the key (PC1) which selects 56-
bits in two 28-bit halves 

– 16 stages consisting of: 
• selecting 24-bits from each half 
• permuting them by PC2 for use in function f, 
• rotating each half separately either 1 or 2 places 

depending on the key rotation schedule K
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DES Decryption

• decrypt must unwind steps of data 
computation 

• with Feistel design, do encryption steps again 
• using subkeys in reverse order (SK16 … SK1)
• note that IP undoes final FP step of encryption 
• 1st round with SK16 undoes 16th encrypt 

round
• ….
• 16th round with SK1 undoes 1st encrypt round 
• then final FP undoes initial encryption IP 
• thus recovering original data value 
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Avalanche Effect 

• Desirable property for an encryption algorithm

• A change of one input or key bit results in 
changing approx half output bits

• This makes attempts to “home-in” by guessing 
keys impossible

• DES exhibits strong avalanche
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Strength of DES – Key Size

• 56-bit keys have 256 = 7.2 x 1016 values
• brute force search looks hard
• recent advances have shown is possible (as 

we’ve seen)
– in 1997: on Internet in a few months 
– in 1998: on dedicated h/w (EFF) in a few days 
– in 1999: above combined in 22hrs!
– in 2012: 399 seconds on supercomputer

• still must be able to recognize plaintext
• AES has replaced DES as the encryption 

standard (but DES still widely used)



CS 334: Computer SecurityCS 334: Computer Security
34

Strength of DES – Timing 
Attacks

• attacks actual implementation of cipher
• use knowledge of consequences of 

implementation to derive knowledge of 
some/all subkey bits

• specifically use fact that calculations can take 
varying times depending on the value of the 
inputs to it

• particularly problematic on smartcards 
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Strength of DES – Analytic Attacks
• now have several analytic attacks on DES
• these utilize some deep structure of the cipher 

– by gathering information about encryptions 
– can eventually recover some/all of the sub-key bits 
– if necessary then exhaustively search for the rest

• generally these are statistical attacks

• include
– differential cryptanalysis 
– linear cryptanalysis 
– related key attacks 
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Triple DES

• A replacement for DES was needed
– theoretical attacks can break it
– demonstrated exhaustive key search attacks

• AES is a new cipher alternative that didn’t exist 
at the time

• prior to this alternative was to use multiple 
encryption with DES implementations

• Triple-DES was the chosen form
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Why Not Double DES?

• That is, why not just use C=EK1[EK2[P]]?
– Proven that it’s NOT same as C=EK3[P]

• Susceptible to Meet-in-the-Middle Attack
– Described by Diffie & Hellman in 1977
– Based on observation that if C= EK2[EK1[P]], then 

X=EK1[P]=DK2[C]
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Meet-in-the-Middle Attack

• Given a known plaintext-ciphertext pair, 
proceed as follows:
– Encrypt P for all possible values of K1

• Cost is on order of 256

– Store results in table and sort by value of X
– Decrypt C for all possible values of K2

• During each decryption, check table for match.  If find 
one, test two keys against another known plaintext-
ciphertext pair
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Meet-in-the-Middle Attack
– For any given plaintext P, there are 264 possible 

ciphertexts produced by Double DES.
– But Double DES effectively has 112 bit key, so there are 

2112 possible keys. 
– On average then, for a given plaintext, the number of 

different 112 bit keys that will produce a given 
ciphertext is 2112/264=248

– Thus, first (P,C) pair will produce about 248 false alarms
– Second (P,C) pair, however, reduces false alarm rate to 

248-64 = 2-16.  So for two (P,C) pairs, the probability that 
correct key is determined is 1–(1/216).

– Bottom line: a known plaintext attack will succeed 
against Double DES with an effort on order of 256, not 
much more than the 255 required to crack single DES
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Triple-DES with Two-Keys

• Would think Triple DES must use 3 encryptions 
but can use 2 keys with E-D-E sequence
– C = EK1[DK2[EK1[P]]]
– N.b. encrypt & decrypt equivalent in security
– if K1=K2 then can work with single DES

• standardized in ANSI X9.17 & ISO8732
• no current known practical attacks

– Though some indications of potential attack 
strategies, so some use Triple DES with three keys

– has been adopted by some Internet applications, eg 
PGP, S/MIME

• Three times slower than DES
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Modes of Operation

41
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Modes of Operation

• block ciphers encrypt fixed size blocks
• eg. DES encrypts 64-bit blocks, with 56-bit key 
• need way to use in practice, given usually have 

arbitrary amount of information to encrypt 
• four were defined for DES in DES Modes of 

Operation, FIPS PUB 81, in 1981
• subsequently now have 5 for DES and AES
• have block and stream modes
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Electronic Codebook Book (ECB)

• message is broken into independent blocks which 
are encrypted
– Pad last block if necessary to make message length 

multiple of 64 bits 
• each block is a value which is substituted, like a 

codebook, hence name 
• each block is encoded independently of the other 

blocks 
Ci = DESK1 (Pi)
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Electronic Codebook Book (ECB)
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Problem (Example from Applied 
Cryptography. B. Schneier)

• Adversary can modify encrypted messages 
without knowing the key or even the algorithm 
in manner that fools recipient

• Example: Money transfer between banks
– Assume an agreed standard message format (below)

45
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Problem (cont.)

• Transfers encrypted using some block cipher in  ECB 
mode

• Trudy, listens on communication lines between Bank 
of Alice and Bank of Bob

• She opens accounts at both banks, and transfers $100 
from her account at Bank of Alice to her account at 
Bank of Bob.  Twice.

• Checks communication records to find two identical 
messages (presumably her transfer)

• Inserts copies of her transfer into communication link 
at will!
– If clever, done with large amounts and many 

banks!

46
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Solution?: Timestamp

• Bank adds timestamp to messages so they 
can’t be replayed:

47
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Solution?: Timestamp

• Trudy then sends multiple messages, this time 
examining blocks 5 through 12

• She replaces blocks 5 - 12 of many transfers 
with her ciphertext blocks 5 - 12!
– This one won’t be caught nearly as quickly (since 

banks books will still balance at end of day)!

48
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Graphics Issue with ECB

• Why does this happen (thanks to unknown 
colleague at San Jose State)?

49
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Bottom Line:

• repetitions in message may show in ciphertext 
– if aligned with message block 
– particularly with data such as graphics 
– or with messages that change very little, which 

become a code-book analysis problem 
• weakness due to encrypted message blocks 

being independent
• Attacker can reorder cipher blocks in transit

– or perhaps even insert or replace a block 
• main use is sending a few blocks of data

– E.g. Transmitting an encryption key 



CS 334: Computer SecurityCS 334: Computer Security

ECB: Advantages

• Encryption is not serial, so it can be done on 
individual blocks regardless of location in file
– E.g., large data file

• Encryption/Decryption can be parallelized
• bit error in one ciphertext block does not 

prevent decryption of other blocks

51
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Cipher Block Chaining (CBC) 

• Wanted a method in which repeated blocks of 
plaintext (and whole messages) are encrypted 
differently each time

• Like ECB, message is broken into blocks, but 
these are linked together in the encryption 
operation 

• each previous cipher blocks is chained with 
current plaintext block, hence name 

• Encryption: use Initial Vector (IV) to start 
process
– Ci = EK(Pi ⨁ Ci-1),  C-1 = IV

• Decryption: start from last block of ciphertext
– Pi = DK(Ci) ⨁ Ci-1

• Used for bulk data encryption, authentication
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Cipher Block Chaining (CBC)
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CBC Decryption

Encryption step
Decryption step
(with justification)
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Graphics with CBC

55
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Another Graphics Example (thanks 
Wikipedia)

56
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Advantages and Limitations of CBC
• Good: each ciphertext block depends on all message 

blocks, thus a change in the message affects all 
ciphertext blocks after the change as well as the original 
block 

• need Initial Value (IV) known to sender & receiver 
– however if IV is sent in the clear, an attacker can 

change bits of the first block, and change IV to 
compensate 

– hence either IV must be a fixed value or it must be 
sent encrypted in ECB mode before rest of message

– Note that randomly chosen IV means attacker cannot 
supply known plaintext to underlying cipher even if 
they can supply plaintext to CBC

– Weak IV was cause of weakness of WEP
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Counter Mode
• In this mode, a cipher is used to generate a sequence of 

pseudorandom blocks that are XORed with the plaintext 
blocks

• Assume plaintext P = P1 || P2 || P3 || … || PL

• When I use this, I think of the method as follows:
– Choose key K and initial counter value IV

• IV is the state that prevents the same plaintext 
from encrypting to the same ciphertext if it’s 
encrypted multiple times with K.

– Create a sequence of pseudorandom blocks as 
follows: EK(IV), EK(IV+1), EK(IV+2),…, EK(IV+L)

• Ciphertext is C = (EK(IV)⨁P1) || … || (EK(IV+L) ⨁ PL)
– That is Ci = EK(IV+i) ⨁ Pi
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Counter Mode: Notes

• Ciphertext is C = (EK(IV)⨁P1) || … || (EK(IV+L) ⨁ PL)
• Note that IV is supposed to be pseudorandom.  Thus 

by choosing a different value each time we encrypt P, 
we get different ciphertexts, even if we use the same 
key K

• IV needs to be kept secret, otherwise method 
becomes deterministic

• Advantages:
– Can be parallelized
– Can encrypt or decrypt a single block without 

having to do same to other blocks
• Note that in this formulation, IV needs to be known by 

both encrypting and decrypting parties.  
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Counter Mode: Alternative Form
• Assume plaintext P = P1 || P2 || P3 || … || PL

• Choose key K and initial counter value IV, where IV is 
requires about 3n/4 bits (n is block length) 

• Create a sequence of pseudorandom blocks as follows: 
EK(IV || <1>), EK(IV || <2>), EK(IV || <3>),…, EK(IV || 
<L>)
– <i> standard notation for “binary rep. of i”
– integers encoded using n/4 bits

• Ciphertext is plaintext XORed with this pseudorandom 
sequence of blocks
– That is Ci = EK(IV || <i>) ⨁ Pi

• IV is sent in the clear as part of ciphertext (so 
technically it is block 0, though not quite block 
length)
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Counter Mode Alternative Form: 
Notes

• Ciphertext is plaintext XORed with this pseudorandom 
sequence of blocks
– That is Ci = EK(IV || i) ⨁ Pi

• Here clearly IV is not kept secret
• Number of bits used for i limits the number of 

blocks that can be in the plaintext (you only 
have 2n/4 different counter values)

• Advantage: decryptor does not need to know IV 
beforehand

• Important: Note that slight modifications of a 
protocol can have significant impact on its use!
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There are Other Modes...

• See Wiki article on block cipher modes of operation

63
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IV Misuse
• If the same IV is used in counter mode (either version) 

with a given key K, this is insecure -- the same 
pseudorandom blocks are generated
– So we can XOR two ciphertexts together and end up 

with an COR of plaintexts, which we’ve already noted 
is insecure 

• IV revealed when using CBC is not usually an issue
– Unless the adversary can know the IV in advance!
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Chained CBC Mode
• Sometimes, in order to only have to generate a single IV 

when encrypting multiple plaintexts, chained CBC mode 
is used. 
– Potentially saves bandwidth
– BUT is vulnerable to a chosen-plaintext attack 

• An IV is chosen when encrypting the first plaintext.  For 
subsequent plaintexts, we use the last block of the 
previous ciphertext as the IV.  

• It may appear that chained CBC mode is secure: after 
all, if plaintext P1 is blocks m1 || m2 || m3, and plaintext 
P2 is blocks m4 || m5 || m6, then with a given IV, chained 
CBC modes of the two plaintexts is the same as regular 
CBC mode encryption of P1 || P2.  



CS 334: Computer SecurityCS 334: Computer Security
66

Chained CBC Mode

• The difference is that in this case, the attacker can know in 
advance the IV used when encrypting P2!

• So, assume the attacker knows that m1 is either m1
0 or 

m1
1, and observes the first ciphertext: IV, c1, c2, c3

• Attacker requests encryption of message m4 || m5 || m6
with m4 = IV ⨁ m1

0  ⨁ c3, and observes resulting 
ciphertext c4 || c5 || c6
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Chained CBC Mode

• Attacker requests encryption of message m4 || m5 || m6
with m4 = IV ⨁ m1

0  ⨁ c3, and observes resulting 
ciphertext c4 || c5 || c6

• Claim: m1 = m1
0 if and only if c1 = c4

– You figure out why

• Another example of how a small and seemingly innocuous 
modification to a secure protocol can have significant 
security implications!
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Recall: Chosen-ciphertext attacks

• Adversary is able to choose ciphertexts and 
receive the corresponding plaintexts

• We now know the material we need to an 
example of one of these: Padding-Oracle 
Attacks!

• This attack has been shown to work in practice 
on various deployed protocols

• Thanks: Introduction to Modern Cryptography 
(3rd Edition) by J. Katz and Y. Lindell
– A really nice crypto text/reference, by the way
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Recall: Chosen-ciphertext attacks

• The setting:
– Clients send messages encrypted using CBC-mode to 

server
– We assume the attacker can impersonate a client and 

send ciphertexts of its choice to the server, which the 
server will decrypt

– We assume only that the attacker can tell when 
resulting decrypted messages are valid
• So attacker does not need the resulting plaintext

– This is realistic: when receiving ciphertexts that don’t 
decrypt correctly, servers do things like send 
retransmission requests or terminate the connection, 
both observable by the adversary
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OK, So I Lied

• We actually need one more piece of background 
info: PKCS #7 
– This is a padding scheme standard
– So I lied twice: we don’t always pad with zeros

• PKCS #7
– Assume the block length of our cipher is L
– If length of plaintext is not a multiple of L bytes, we 

might have to pad (added padding is called encoded 
data)

– Any padding scheme must be such that receiver can 
unambiguously distinguish original message from 
encoded data
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PKCS #7

• Let b > 0 be the number of bytes that need to 
be padded to the original message to make the 
total length a multiple of block length L

• Append to message the integer b, represented 
as one byte (i.e. two hex digits) exactly b 
times.  
– Ex. If one byte needed, pad with the byte 0x1
– Ex. If four bytes needed, pad with the four bytes 0x4 

0x4 0x4 0x4
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PKCS #7

• b must be an integer between 1 and L inclusive 
– can’t have b = 0 (it would lead to ambiguous 
padding)
– So if original message length is a multiple of L, then b 

= L and the message is padded with a whole block of 
bytes that are integer representation (in one byte) of 
L

– E.g., if block length is 128, get a whole block of 0x80 
bytes
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PKCS #7

• When decrypting, server uses CBC-mode as 
usual, then checks the last byte of the resulting 
plaintext.  
– If the last byte has value b, then verify that the final b 

bytes all have value b
• If this check fails, server returns some kind of 

“bad padding” error (as mentioned above)
– So server acts as a “padding oracle” – it tells 

adversary whether a ciphertext corresponds to a 
message that was correctly padded
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Padding-Oracle Attack

• We describe the attack on three block 
ciphertext: Let IV, c1, c2 be a ciphertext that 
corresponds to a message padded using PKCS 
#7 and observed by the attacker, and m1, m2
the underlying plaintext (including encoded 
data)

• Recall formula for decrypting data encrypted 
using CBC mode: Pi = DK(Ci) ⨁ Ci-1
– So m2 = DK(c2) ⨁ c1

– The second block, m2, ends in b bytes of value 
0xb
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Padding-Oracle Attack

• The key issue (pardon the pun): Certain 
changes to the ciphertext yield predictable 
changes in the encoded data after CBC-
decryption

• So, let c1’ be identical to c1 except for 
modification of the final byte, and consider 
decrypting the ciphertext IV, c1’, c2
– Result is m1’, m2’ where m2’ = DK(c2) ⨁ c1’
– So m2’ differs from m2 only by modification of 

final byte
– Similarly if c1’ differs only from c1 in the ith 

byte, same will be true of m2’ and m2
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Padding-Oracle Attack

• More generally, if c1’ = c1 ⨁ 𝚫 for any string 
𝚫, then m2’ = m2 ⨁ 𝚫

• Bottom line: adversary has significant control 
over final block of encoded data
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Padding-Oracle Attack

• Use this to learn b, the amount of padding 
(which also yields length of the original 
message):
– Attacker modifies first byte of c1 and sends resulting 

IV, c1’, c2 to server
– If this fails, then the server must be checking ALL 

bytes of m2 for padding, so therefor b = L.  
– Otherwise, b < L, so attack repeats the process, but 

this time changing only the second byte of c1

– Left most byte for which decryption fails reveals 
exactly left most byte being checked by server, and 
thus the value of b
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• With b known, now find bytes, one by one, of 
the original message in m2

• We’ll show how to find the final byte, M, of the 
original message:
– Attacker knows that m2 ends in M 0xb 0xb … 0xb and 

wants to learn M
• For 0 ≤ i < 28, define 𝚫i to be 
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• For 0 ≤ i < 28, define 𝚫i to be

• Note that the final b+1 bytes of 𝚫i contain the 
integer i (in hex) followed by the value (b+1) ⨁ b

• If the attacker submits the ciphertext IV, c1 ⨁ 𝚫i, 
c2, then what happens with CBC-decryption?
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• Note that the final b+1 bytes of 𝚫i contain the 

integer i (in hex) followed by the value (b+1) ⨁ b
• If the attacker submits the ciphertext IV, c1 ⨁ 𝚫i, 

c2, then what happens with CBC-decryption?
• DK(c2) ⨁ (c1 ⨁ 𝚫i) = (DK(c2) ⨁ c1) ⨁ 𝚫i = m2 ⨁ 𝚫i

• Recall that the last b bytes of m2 are all b, so the 
last b bytes of m2 ⨁ 𝚫i are all (b+1) ⨁ b ⨁ b = 
b+1

• The byte to the left of all those b+1 values is M ⨁ i
• So, if M ⨁ i = b+1, the padding is legal and the 

ciphertext will be accepted.  If not, then the server 
will return a “bad padding” error
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• So, if M ⨁ i = b+1, the padding is legal and the 

ciphertext will be accepted.  If not, then the server 
will return a “bad padding” error

• Bottom line: the value of i that does not cause a 
bad padding error, is the value such that M ⨁ i = 
b+1

• So by trying at most 256 values of i, adversary 
knows M.  

• Question for you: how does the adversary get the 
byte to the left of M?
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• Let i0 be the value of i that makes M ⨁ i = b+2
• This time define 𝚫i to be 

• Then when doing CBC-decrypt, as before, the right 
most b bytes will all be b+2.  The byte where M is 
located will also be b+2, because you’ll have M ⨁
(b+2) ⨁ M =b+2

• If M’ is the byte to the left of M in m2, then the 
value of i that does not generate a padding error is 
the one where M’ ⨁ i = b+2



CS 334: Computer SecurityCS 334: Computer Security
83

Padding-Oracle Attack

• So, the question: We have shown how you can 
recover the last block of the plaintext message.  
Call that mj. How do you now learn block mj-1?
– That is, assuming P = m1 || m2 || … || mj
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• Using this technique, the adversary can recover 
the entire plaintext!

• And they did it without every learning the 
encryption key K!


