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Recall: Symmetric-Key Encryption
Algorithms

e Both parties share the key needed to encrypt
and decrypt messages, hence both parties are
equal

e Modern symmetric key ciphers (developed from
product ciphers) include DES, Blowfish, IDEA,
LOKI, RC5, Rijndael (AES) and others
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Block Ciphers

e One of the most widely used types of
cryptographic algorithms
— For encrypting data to ensure secrecy
— As a cryptographic checksum to ensure integrity
— For authentication services

e Used because they are comparatively fast, and
we know how to design them

o We'll look at both DES (Data Encryption
Standard) and AES (Advanced Encryption
Standard)

— Focus on DES in this slideset
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Block vs Stream Ciphers

e Block ciphers process messages in blocks, each
of which is then en/decrypted

— So all bits of block must be available before
processing

e Like a substitution on very big characters
— 64-bits or more

e Stream ciphers process messages a bit or byte
at a time when en/decrypting

- Though technically the only difference here is block
size, there are significant differences in how stream
and block ciphers are designed.
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Claude Shannon

e Wrote some of the pivotal papers on modern
cryptology theory

— C E Shannon, "Communication Theory of Secrecy
Systems"”, Bell System Technical Journal, Vol 28, Oct
1949, pp 656-715

— C E Shannon, "Prediction and Entropy of printed
English"”, Bell System Technical Journal, Vol 30, Jan
1951, pp 50-64
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Claude Shannon

e Among other things, he developed the concepts

of:

Entropy of a message
Redundancy in a language

Theories about how much information is needed to
break a cipher

Defined the concepts of computationally secure vs
unconditionally secure ciphers

Introduced the idea of substitution-permutation (S-P)
networks, basis of current product ciphers

CS 334: Computer Security



Shannon S-P Network

cipher needs to completely obscure statistical
properties of original message
- E.g., a one-time pad does this

more practically Shannon suggested combining
elements to obtain:

- diffusion - dissipates statistical structure of plaintext
over bulk of ciphertext

— confusion - makes relationship between ciphertext
and key as complex as possible

S-P networks designed to provide these
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Shannon S-P Network

e Every block cipher involves a transformation of
a block of plaintext into a block of ciphertext,
where the transformation depends on the key

e Diffusion seeks to make the statistical
relationship between the plaintext and
ciphertext as complex as possible in order to
thwart attempts to deduce the key

e Confusion seeks to make the relationship
between the statistics of the ciphertext and the

value of the encryption key as complex as
possible, again to thwart attempts to discover

the key.
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Shannon S-P Network

e So successful are diffusion and confusion in
capturing the essence of the desired attributes
of a block cipher that they have become the
cornerstone of modern block cipher design
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Block Cipher Requirements

Must be reasonably efficient

Must be able to efficiently decrypt ciphertext to
recover plaintext

Must have a reasonable key length

First attempt: Arbitrary reversible substitution

— For a large block size this is not practical for implementation and
performance reasons
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Why Not Arbitrary Reversible
Substitution?

e If we're going from n bit plaintext to n bit
ciphertext:
— There are 2" possible plaintext blocks.

— Each must map to a unique output block, so total of
2"l reversible transformations
e List all n-bit binary (plaintext) strings. First one can go

to any of 2" n-bit binary strings, next to any of 2n-1
output strings, etc.
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Why Not Arbitrary Reversible
Substitution?

e If we're going from n bit plaintext to n bit
ciphertext:

- So, to specify a specific transformation, essentially
need to provide the list of ciphertext outputs for each
input block.

- How many? Well, 2" inputs, so 2" outputs, each n bits
long implies an effective key size of n(2") bits.
e For blocks of size 64 (very minimum desirable to thwart

statistical attacks) this amounts to a key of length
64(264) = 270 = 267 pytes ~ 1.47 x 1020 bytes = 147 TB
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Feistel Cipher Structure

Horst Feistel devised the Feistel cipher

— based on concept of invertible product cipher

- His main contribution was invention of structure that
adapted Shannon’s S-P network into easily inverted
structure.

Process consists of several rounds. In each

round:

— partitions input block into two halves

- Perform substitution on left half by a round function
based on right half of data and subkey

- then have permutation swapping halves

implements Shannon’s substitution-
permutation network concept
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Feistel Cipher Design Principles

e block size
— increasing size improves security, but slows cipher

— 64 bits reasonable tradeoff. Some use 128 bits
e All variants of AES use 128 bit blocks

o key size
— increasing size improves security, makes exhaustive key
searching harder, but may slow cipher

- 64 b)it considered inadequate. 128 bit is common size (for
now

o S\Eg has variants based on key size: AES-128, AES-192, AES-

e number of rounds
— increasing number improves security, but slows cipher

— AES-128 (10 rounds), AES-192 (12 rounds), AES-256 (14
rounds), DES (16 rounds)
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Feistel Cipher Design Principles

e subkey generation

- g_rerz\;\ter complexity can make analysis harder, but slows
cipher

e round function

- g_rerz\;\ter complexity can make analysis harder, but slows
cipher

o fast software en/decryption & ease of analysis
— are more recent concerns for practical use and testing

— Making algorithms easy to analyze helps determine cipher
effectiveness (DES functionality is not easily analyzedg
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Feistel Cipher Decryption

Output {plaintext)

Input (plaintext) T
I I RD;g = LEg LD, =RE,

laDz - RE.4 RDZ - IJE14

LE;e6 RE;¢

RE ;6 LE;¢ [ |

l Input (ciphertext)

Output {(ciphertext) 17



Data Encryption Standard (DES)

was once the most widely used block cipher in
world

adopted in 1977 by NBS (now NIST)
- as FIPS PUB 46

encrypts 64-bit data using 56-bit key
still has widespread use

At first, considerable controversy over its
security
— Tweaked by NSA?
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DES History

IBM developed Lucifer cipher
- by team led by Feistel
— used 64-bit data blocks with 128-bit key

then redeveloped as a commercial cipher with
input from NSA and others

in 1973 NBS issued request for proposals for a
national cipher standard

IBM submitted their revised Lucifer which was
eventually accepted as the DES
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DES Design Controversy

e Although DES standard is public was
considerable controversy over design
— in choice of 56-bit key (vs Lucifer 128-bit)
— and because design criteria were classified

— And because some NSA requested changes
incorporated

e Subsequent events and public analysis
show in fact design was appropriate

— Changes made cipher less susceptible to
differential or linear cryptanalysis

CS 334: Computer Security
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DES Encryption

64-bit plaintext

F—M——\:

64-bit key

Initial Permutation

Ieft circular shift

Permuted Choice 2

Permuted Choice 2 IL.eft circular shift

; | §

Round 16

I.eft circular shift

Permuted Choice 2

32-bit Swap

Inverse Initial
Permutation

64-bit ciphertext
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Initial Permutation IP

first step of the data computation

IP reorders the input data bits
- Permutation specified by tables (See FIPS 46-3)

even bits to LH half, odd bits to RH half
quite regular in structure (easy in h/w)
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DES Round Structure

e uses two 32-bit L & R halves

e as for any Feistel cipher can describe as:
Li = Rj_4
R; = L. xor F(Ri_1, Kj)

o takes 32-bit R half and 48-bit subkey and:
— expands R to 48-bits using perm E
— adds to subkey (XOR)

— passes through 8 S-boxes to get 32-bit result

e Each S-box takes 6 bits as input and produces 4 as
output

— finally permutes this using 32-bit perm P
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- 32 bits - - 32 bits - ~-tf—28 bits—»- -tf—18 bits—»

Li-1 R;-1 Ci-1 Dj-y

___________ # e

Expansion/permutation
(E table)

Left shift(s) Left shift(s)

/K \ Permutation/contraction
48 { (Permuted Choice 2)

Substition/choice
(S-box)

Permutation

P—

Figure 3.8 Single Round of DES Algorithm



S-boxes

14 Rl 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 s 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 L 9 | 7 5 11 3 14 10 0 6 13
15 1 8 14 6 11 3 Rl 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 | 10 6 9 11 =
0 14 7 11 10 Rl 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 - 14 9
10 0 9 14 6 3 15 5 1 13 12 7 11 Rl 2 8
13 7 9 - Rl 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
7 13 14 3 0 6 9 10 | 2 8 5 11 12 + 15
13 8 11 5 6 15 3 + 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 K 5 11 12 7 2 14

There are four more
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DES Round Structure

R (32 bits) |

| 32 bits |
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Substitution Boxes S

e have eight S-boxes which map 6 to 4 bits
e each S-box is actually 4 little 4 bit boxes

outer bits 1 & 6 (row bits) considered 2-bit number
that selects row

inner bits 2-5 (col bits) considered 4-bit number that
selects column.

Decimal number in table is converted to binary and
that gives the four output bits

result is 8 sets of 4 bits, or 32 bits

e row selection depends on both data & key
— feature known as autoclaving (autokeying)
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DES Key Schedule

e forms subkeys used in each round

e consists of:
— initial permutation of the key (PC1) which selects 56-
bits in two 28-bit halves
— 16 stages consisting of:
e selecting 24-bits from each half
e permuting them by PC2 for use in function f,

e rotating each half separately either 1 or 2 places
depending on the key rotation schedule K
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Table 3.4 DES Key Schedule Calculation

(a) Input Key
1 2 = 4 5 6 7 8
9 10 11 12 13 ot 15 16
17 I8 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 et 45 46 47 48
49 50 51 52 4 54 S 56
57 58 59 60 61 62 63 64

(b) Permuted Choice One (PC-1)

57 49 4] 33 25 17 9
I 58 50 42 24 26 18
10 2 59 51 43 35 27
19 11 2 60 52 - 36
63 55 47 39 31 23 15
7 62 54 46 3R 20 22
14 6 61 53 45 37 29
21 13 5 28 20 12 -
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(¢) Permuted Choice Two (PC-2)

14 17 11 24 1 = 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 S

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 S0 36 29 32

(d) Schedule of Left Shifts

Round number 1 2 3 4 5 6 7 8 9 ] ] ) O] ] g e oy ]
2 2 2 2 1 2 2 2 2 2 2 1

Bits rotated
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DES Decryption

decrypt must unwind steps of data
computation

with Feistel design, do encryption steps again
using subkeys in reverse order (SK16 ... SK1)
note that IP undoes final FP step of encryption

1st round with SK16 undoes 16th encrypt
round

16th round with SK1 undoes 1st encrypt round
then final FP undoes initial encryption IP
thus recovering original data value
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Avalanche Effect

Desirable property for an encryption algorithm

A change of one input or key bit results in
changing approx half output bits

This makes attempts to “home-in” by guessing

keys impossible

DES exhibits strong avalanche

CS 334: Computer Security
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Strength of DES - Key Size

56-bit keys have 2-% = 7.2 x 1016 values
brute force search looks hard

recent advances have shown is possible (as
we've seen)

- in 1997: on Internet in a few months

- in 1998: on dedicated h/w (EFF) in a few days

- in 1999: above combined in 22hrs!

— in 2012: 399 seconds on supercomputer

still must be able to recognize plaintext

AES has replaced DES as the encryption
standard (but DES still widely used)
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Strength of DES - Timing
Attacks

attacks actual implementation of cipher

use knowledge of consequences of
implementation to derive knowledge of
some/all subkey bits

specifically use fact that calculations can take
varying times depending on the value of the
inputs to it

particularly problematic on smartcards
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Strength of DES - Analytic Attacks

e now have several analytic attacks on DES

e these utilize some deep structure of the cipher
- by gathering information about encryptions
— can eventually recover some/all of the sub-key bits
— if necessary then exhaustively search for the rest

e generally these are statistical attacks

e include
— differential cryptanalysis
- linear cryptanalysis
- related key attacks
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Triple DES

A replacement for DES was needed
— theoretical attacks can break it
— demonstrated exhaustive key search attacks

AES is a new cipher alternative that didn’t exist
at the time

prior to this alternative was to use multiple
encryption with DES implementations

Triple-DES was the chosen form
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Why Not Double DES?

e That is, why not just use C=Ey{[Ex>[P]]?
— Proven that it's NOT same as C=Ey3[P]
e Susceptible to Meet-in-the-Middle Attack

— Described by Diffie & Hellman in 1977

— Based on observation that if C= E,,[E«{[P]], then
X=Eg1[P]=Dy,[C]

K, K,
Encryption
K, K,

Decryption

(a) Double Encryption
CS 334: Computer Security
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Meet-in-the-Middle Attack

e Given a known plaintext-ciphertext pair,
proceed as follows:

— Encrypt P for all possible values of K1
e Cost is on order of 2°°

— Store results in table and sort by value of X

— Decrypt C for all possible values of K2

e During each decryption, check table for match. If find
one, test two keys against another known plaintext-
ciphertext pair
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Meet-in-the-Middle Attack

For any given plaintext P, there are 264 possible
ciphertexts produced by Double DES.

But Double DES effectively has 112 bit key, so there are
2112 possible keys.

On average then, for a given plaintext, the number of
different 112 bit keys that will produce a given
ciphertext is 2112/264=248

Thus, first (P,C) pair will produce about 248 false alarms
Second (P,C) pair, however, reduces false alarm rate to
248-64 = 2-16 = Go for two (P,C) pairs, the probability that
correct key is determined is 1-(1/219).

Bottom line: a known plaintext attack will succeed

against Double DES with an effort on order of 25, not
much more than the 25 required to crack single DES
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Triple-DES with Two-Keys

Would think Triple DES must use 3 encryptions

but can use 2 keys with E-D-E sequence
— C = Ex [Dgp [Exa [P]]]

- N.b. encrypt & decrypt equivalent in security
- if K1=K2 then can work with single DES

standardized in ANSI X9.17 & IS08732

no current known practical attacks

— Though some indications of potential attack
strategies, so some use Triple DES with three keys

- has been adopted by some Internet applications, eg
PGP, S/MIME

Three times slower than DES

CS 334: Computer Security
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Modes of Operation

CS 334: Computer Security
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Modes of Operation

block ciphers encrypt fixed size blocks
eg. DES encrypts 64-bit blocks, with 56-bit key

need way to use in practice, given usually have
arbitrary amount of information to encrypt

four were defined for DES in DES Modes of
Operation, FIPS PUB 81, in 1981

subsequently now have 5 for DES and AES
have block and stream modes
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Electronic Codebook Book (ECB)

e message is broken into independent blocks which

are encrypted

— Pad last block if necessary to make message length
multiple of 64 bits

e cach block is a value which is substituted, like a
codebook, hence name

e each block is encoded independently of the other
blocks

C; = DESy; (P;)
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Electronic Codebook Book (ECB)

Plaintext Plaintext Plaintext
CITTTTTTT] [TTT1 l (LTI TTIT]
. ' .
Block Cipher Block Cipher Block Cipher
Key —=  Encryption Key —=| Encryption Key —=  Encryption
' ' '
111711 [TTTTTT] CITT T
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Ciphertext Ciphertext Ciphertext
[Illillll [ Iil [ Llul |
Block Cipher | Block Cipher Block Cipher

Key —=| Decryption Key —»  Decryption Key —=| Decryption
(I T TTT1] LT TTTTT] EEEEEEER

Plaintext Plaintext Plaintext

Electronic Codebook (ECB) mode decryption
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Problem (Example from Applied
Cryptography. B. Schneier)

e Adversary can modify encrypted messages
without knowing the key or even the algorithm
in manner that fools recipient

e Example: Money transfer between banks
- Assume an agreed standard message format (below)

Bank One: Sending 1.5 blocks
Bank Two: Receiving 1.5 blocks
Depositor’'s Name 6 blocks
Depositor’s Account 2 blocks
Amount of Deposit 1 block
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Problem (cont.)

Transfers encrypted using some block cipher in ECB
mode

Trudy, listens on communication lines between Bank
of Alice and Bank of Bob

She opens accounts at both banks, and transfers $100

from her account at Bank of Alice to her account at
Bank of Bob. Twice.

Checks communication records to find two identical
messages (presumably her transfer)

Inserts copies of her transfer into communication link
at will!

— If clever, done with large amounts and many
banks!
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Solution?: Timestamp

e Bank adds timestamp to messages so they
can’t be replayed:

Date/Time Stamp: 1 block
8ank One: Sending 1.5 blocks
Bank Two: Receiving 1.5 blocks
Depositor’s Name 6 blocks
Depositor’s Account 2 blocks
Amount of Deposit 1 block
Block Number
1 2 3 4 5 6 7 8 g 10 | 11 12 | 13
Time- Sending Receiving Depositor's Deposltor's Amount
stamp Bank Bank Name Account
. Field
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Solution?: Timestamp

e Trudy then sends multiple messages, this time
examining blocks 5 through 12

e She replaces blocks 5 - 12 of many transfers
with her ciphertext blocks 5 - 12!

— This one won't be caught nearly as quickly (since
banks books will still balance at end of day)!

Block Number
1 2 3 4 5 6 7 8 9 10 11 12 13
Time- Sending Receiving Depositor's Depositor's Amount
stamp Bank Bank Name Account
Field
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Graphics Issue with ECB

e Why does this happen (thanks to unknown
colleague at San Jose State)?

CS 334: Computer Security
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Bottom Line:

repetitions in message may show in ciphertext
— if aligned with message block
— particularly with data such as graphics

- or with messages that change very little, which
become a code-book analysis problem

weakness due to encrypted message blocks
being independent

Attacker can reorder cipher blocks in transit
— or perhaps even insert or replace a block

main use is sending a few blocks of data
- E.g. Transmitting an encryption key
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ECB: Advantages

Encryption is not serial, so it can be done on
individual blocks regardless of location in file
- E.qg., large data file

Encryption/Decryption can be parallelized

bit error in one ciphertext block does not
prevent decryption of other blocks

CS 334: Computer Security 51



Cipher Block Chaining (CBC)

Wanted a method in which repeated blocks of
plaintext (and whole messages) are encrypted
differently each time

Like ECB, message is broken into blocks, but
these are linked together in the encryption
operation

each previous cipher blocks is chained with
current plaintext block, hence name

Encryption: use Initial Vector (IV) to start
process
- G=E(Pi®Cy) Ci=1V

Decryption: start from last block of ciphertext
- P = D(G) & Ci4

Used for bulk data encryption, authentication

CS 334: Computer Security
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Cipher Block Chaining (CBC)

Plaintext Plaintext Plaintext
(ITTITTIT] (LIITTITT] (IITTITT]
Initialization Vector (IV) l
T ITT1] $ - -
. : y
Block Cipher Block Cipher Block Cipher
Key —=| Encryption Key —=| Encryption Key —=| Encryption
' ' v
CITTTTTT] OITTTTT] I TTT]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Initialization Vector (IV) Ciphertext Ciphertext Ciphertext
LTI (ITTTTTT] LITTTTTIT] CIITTITTT)
v v '
Block Cipher Block Cipher Block Cipher
Key —= | Decryption Key —= Decryption Key —=  Decryption
4. A A
' v
CCITTTIT] [ O [TTTTTT]
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption
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CBC Decryption

/Encryption step
Cj = EK[CJ._1 @ P]] Decryption step

(with justification)

DK[Cj] = Dy [EK(CJ—I D PJ)]

Dy[C;]=(C,, @ F)

C,®D(C,]1=C, ®C, ®P =P
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Graphics with CBC

CS 334: Computer Security
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Another Graphics Example (thanks
Wikipedia)

Original image Encrypted using ECB mode Modes other than ECB result in
pseudo-randomness

The image on the right is how the image might appear encrypted with CBC, CTR or any of the other more secure modes —
indistinguishable from random noise. Note that the random appearance of the image on the right does not ensure that the
image has been securely encrypted: many kinds of insecure encryption have been developed which would produce output
just as ‘random-looking'.
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Advantages and Limitations of CBC

e Good: each ciphertext block depends on all message
blocks, thus a change in the message affects all
ciphertext blocks after the change as well as the original
block

e need Initial Value (IV) known to sender & receiver

- however if IV is sent in the clear, an attacker can
change bits of the first block, and change IV to
compensate

- hence either IV must be a fixed value or it must be
sent encrypted in ECB mode before rest of message

— Note that randomly chosen IV means attacker cannot
supply known plaintext to underlying cipher even if
they can supply plaintext to CBC

— Weak IV was cause of weakness of WEP
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Counter Mode

In this mode, a cipher is used to generate a sequence of
pseudorandom blocks that are XORed with the plaintext
blocks

Assume plaintext P =Py || P> || Ps || ... || P
When I use this, I think of the method as follows:
— Choose key K and initial counter value IV

e IV is the state that prevents the same plaintext
from encrypting to the same ciphertext if it's
encrypted multiple times with K.

— Create a sequence of pseudorandom blocks as
follows: Ex(IV), Ex(IV+1), Ex(IV+2),..., Ex(IV+L)

Ciphertext is C = (Ex(IV)®P;) || ... || (Ex(IV+L) & P))
— That is G, = Ex(IV+i) & P,
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Counter Mode: Notes

Ciphertext is C = (Ex(IV)®P1) || ... || (Ex(IV+L) & P))
Note that IV is supposed to be pseudorandom. Thus
by choosing a different value each time we encrypt P,
we get different ciphertexts, even if we use the same
key K

IV needs to be kept secret, otherwise method
becomes deterministic

Advantages:
— Can be parallelized

— Can encrypt or decrypt a single block without
having to do same to other blocks

Note that in this formulation, IV needs to be known by
both encrypting and decrypting parties.
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Counter Mode: Alternative Form

Assume plaintext P =Py || P> || Ps || ... || P

Choose key K and initial counter value 1V, where 1V is
requires about 3n/4 bits (n is block length)

Create a sequence of pseudorandom blocks as follows:
Ec(IV || <1>), Ex(IV || <2>), Ex(IV || <3>),..., Ex(IV |]
<L>)

— <i> standard notation for “binary rep. of i”
- integers encoded using n/4 bits

Ciphertext is plaintext XORed with this pseudorandom
sequence of blocks

- That is G = Ex(IV || <i>) & P

e IV is sent in the clear as part of ciphertext (so
technically it is block 0, though not quite block
length)
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Counter Mode Alternative Form:

Notes

Ciphertext is plaintext XORed with this pseudorandom
sequence of blocks

- That is C; = Ex(IV || i) & P
e Here clearly IV is not kept secret

e Number of bits used for i limits the number of
blocks that can be in the plaintext (you only
have 24 different counter values)

Advantage: decryptor does not need to know IV
beforehand

Important: Note that slight modifications of a
protocol can have significant impact on its use!
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There are Other Modes...

Initialization Vector (1V)
EEEEEEEE

| I x
Block Cipher Block Cipher Block Cipher
Key —=| Encryption Key —=  Encryption Key —= | Encryption

Plaintext ! Plaintext
CErrrrrt) —cp o 7 ) — »_«'1 _~~  Plaintext ’]L

v
CLTTTTTT] LTI CLITTTTT]

Ciphertext Ciphertext Ciphertext

Cipher Feedback (CFB) mode encryption

Initialization Vector (1V)

0111111
l . l

Block Cipher Block Cipher Block Cipher

Key —=| Encryption | Key ——+=| Encryption Key —=| Encryption
P -—[TTTTTTT] @ -—[II11r1r1l P-—[1TITTTT]
Ciphertext ) Ciphertext Ciphertext
OOTTITTT] O TITT17T]
Plaintext Plaintext Plaintext

Cipher Feedback (CFB) mode decryption

e See Wiki article on block cipher modes of operation
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IV Misuse

o If the same IV is used in counter mode (either version)
with a given key K, this is insecure -- the same
pseudorandom blocks are generated

— S0 we can XOR two ciphertexts together and end up
with an COR of plaintexts, which we’ve already noted
IS Insecure

e IV revealed when using CBC is not usually an issue
— Unless the adversary can know the IV in advance!
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Chained CBC Mode

e Sometimes, in order to only have to generate a single IV
when encrypting multiple plaintexts, chained CBC mode
is used.

— Potentially saves bandwidth
— BUT is vulnerable to a chosen-plaintext attack

e An IV is chosen when encrypting the first plaintext. For
subsequent plaintexts, we use the last block of the
previous ciphertext as the IV.

e It may appear that chained CBC mode is secure: after
all, if plaintext P, is blocks m; || m, || ms, and plaintext
P, is blocks m4 || ms || mg, then with a given 1V, chained
CBC modes of the two plaintexts is the same as reqgular
CBC mode encryption of Py || P».
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Chained CBC Mode

m m, my

e The difference is that in this case, the attacker can know in
advance the IV used when encrypting P,!

e S0, assume the attacker knows that m; is either m;° or
m;1, and observes the first ciphertext: 1V, ¢4, ¢y, C3

o Attacker requests encryption of message my || ms || mg
with m, = IV & m4°® & c3, and observes resulting
ciphertext c4 || c5 || cq
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Chained CBC Mode

m m, m,

Ma My Mg
¥
IV W JL 4 . 4 A
N T’ C3 D " "D
v K3 k

’:“ ’:.l ’5‘ ’}.‘ ’.a.‘ ’:"

v tﬁ {7 { }_ % t
Iv CI (-: Cy C4 CS c6

o Attacker requests encryption of message my || ms || mg
with m, = IV & m4°® & c3, and observes resulting
ciphertext ¢4 || c5 || Cq

e Claim: m;y = my0ifandonly ifc; = ¢4
- You figure out why

e Another example of how a small and seemingly innocuous
modification to a secure protocol can have significant
security implications!
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Recall: Chosen-ciphertext attacks

Adversary is able to choose ciphertexts and
receive the corresponding plaintexts

We now know the material we need to an
example of one of these: Padding-Oracle
Attacks!

This attack has been shown to work in practice
on various deployed protocols

Thanks: Introduction to Modern Cryptography

(3rd Edition) by J. Katz and Y. Lindell
- A really nice crypto text/reference, by the way
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Recall: Chosen-ciphertext attacks

e The setting:

Clients send messages encrypted using CBC-mode to
server

We assume the attacker can impersonate a client and
send ciphertexts of its choice to the server, which the
server will decrypt

We assume only that the attacker can tell when
resulting decrypted messages are valid

e So attacker does not need the resulting plaintext

This is realistic: when receiving ciphertexts that don’t
decrypt correctly, servers do things like send
retransmission requests or terminate the connection,
both observable by the adversary
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OK, So I Lied

e We actually need one more piece of background
info: PKCS #7
— This is a padding scheme standard
- So I lied twice: we don't always pad with zeros

e PKCS #7

— Assume the block length of our cipheris L

- If length of plaintext is not a multiple of L bytes, we

might have to pad (added padding is called encoded
data)

- Any padding scheme must be such that receiver can
unambiguously distinguish original message from
encoded data
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PKCS #7

e Let b > 0 be the number of bytes that need to
be padded to the original message to make the
total length a multiple of block length L

e Append to message the integer b, represented
as one byte (i.e. two hex digits) exactly b
times.

- EXx. If one byte needed, pad with the byte 0x1

- Ex. If four bytes needed, pad with the four bytes 0x4
Ox4 0x4 0x4
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PKCS #7

e b must be an integer between 1 and L inclusive
— can't have b = 0 (it would lead to ambiguous
padding)

— So if original message length is a multiple of L, then b
= L and the message is padded with a whole block of
bytes that are integer representation (in one byte) of
L

- E.qg., if block length is 128, get a whole block of 0x80
bytes

CS 334: Computer Security -



PKCS #7

e When decrypting, server uses CBC-mode as
usual, then checks the last byte of the resulting
plaintext.

— If the last byte has value b, then verify that the final b
bytes all have value b

e If this check fails, server returns some kind of

“bad padding” error (as mentioned above)

— S0 server acts as a “padding oracle” - it tells
adversary whether a ciphertext corresponds to a
message that was correctly padded
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Padding-Oracle Attack

e We describe the attack on three block
ciphertext: Let IV, c4, ¢, be a ciphertext that
corresponds to a message padded using PKCS
#7 and observed by the attacker, and my, m,

the underlying plaintext (including encoded
data)

e Recall formula for decrypting data encrypted
using CBC mode: P, = D(C) & C;_4
- S0 m, = Dg(c;) & ¢4

- The second block, m,, ends in b bytes of value
Oxb
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Padding-Oracle Attack

e The key issue (pardon the pun): Certain
changes to the ciphertext yield predictable

changes in the encoded data after CBC-
decryption

e SO, let c{’ be identical to c; except for
modification of the final byte, and consider
decrypting the ciphertext 1V, c¢{’, ¢,

- Result is my’, m5;" where m," = Dy(c,) & ¢4’
- S0 m,’ differs from m, only by modification of
final byte

— Similarly if ¢’ differs only from c; in the ith
byte, same will be true of m," and m,
CS 334: Computer Security
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Padding-Oracle Attack

e More generally, if c;" = ¢c; @ A for any string
A, thenm,”=m, @ A

e Bottom line: adversary has significant control
over final block of encoded data
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Padding-Oracle Attack

e Use this to learn b, the amount of padding
(which also yields length of the original
message):

Attacker modifies first byte of c1 and sends resulting
IV, ¢/, ¢, to server

If this fails, then the server must be checking ALL
bytes of m, for padding, so therefor b = L.

Otherwise, b < L, so attack repeats the process, but
this time changing only the second byte of ¢,

Left most byte for which decryption fails reveals
exactly left most byte being checked by server, and
thus the value of b
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Padding-Oracle Attack

e With b known, now find bytes, one by one, of
the original message in m,

e We'll show how to find the final byte, M, of the
original message:

— Attacker knows that m, ends in M Oxb Oxb ... Oxb and
wants to learn M

e For 0 < i < 28, define A, to be
b times
A; = 0x00---0x00 Oxi Ox(b+1)---0x(b+ 1)

b ti;pes
@ 0x00---0x00 0x00 0Oxb- - - 0xb
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Padding-Oracle Attack

e For 0 < i < 28, define A, to be
b times
A; = 0x00 - --0x00 Oxi Ox(b+1)---0x(b+ 1)

b ti@es
® 0x00---0x00 0x00 Oxb---0xb

e Note that the final b+1 bytes of A, contain the
integer i (in hex) followed by the value (b+1) & b

o If the attacker submits the ciphertext IV, c; @ 4,
C,, then what happens with CBC-decryption?
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Padding-Oracle Attack

Note that the final b+1 bytes of A; contain the
integer i (in hex) followed by the value (b+1) @ b

If the attacker submits the ciphertext IV, c; & A,
C,, then what happens with CBC-decryption?
Dk(C2) @ (c1 @ Aj) = (Dk(cy) & ¢1) © A = my © A,
Recall that the last b bytes of m2 are all b, so the
ast b bytesof m, @ A;are all (b+1) ®@ b @ b =
0+1

The byte to the left of all those b+1 valuesis M & i
So,ifM@i=b+1, the padding is legal and the
ciphertext will be accepted. If not, then the server
will return a “bad padding” error
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Padding-Oracle Attack

So,ifM@i=b+1, the padding is legal and the
ciphertext will be accepted. If not, then the server
will return a “bad padding” error

Bottom line: the value of i that does not cause a
bad padding error, is the value suchthat M @ i =
b+1

So by trying at most 256 values of i, adversary
knows M.

Question for you: how does the adversary get the
byte to the left of M?
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e Let iy be the value of i that makes M @ i = b+2
e This time define A;to be

b+1 JEimes
A; = 0x00---0x00 0xi Ox(b+2)---0x(b+2)

bti@es
@ 0x00---0x00 OxM Oxb---0xb

e Then when doing CBC-decrypt, as before, the right
most b bytes will all be b+2. The byte where M is
located will also be b+2, because you’ll have M @
(b+2) & M =b+2

o If M" is the byte to the left of M in m,, then the

value of i that does not generate a padding error is

the one where M" @ i = b+2
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Padding-Oracle Attack

e S0, the question: We have shown how you can
recover the last block of the plaintext message.
Call that mj. How do you now learn block mj-17?
— Thatis, assuming P =my || my || ... [| my
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Padding-Oracle Attack

e Using this technique, the adversary can recover
the entire plaintext!

e And they did it without every learning the
encryption key Kl
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