
CS 334: Computer SecurityCS 334: Computer Security
1

Block Ciphers

CS 334: Computer SecurityCS 334: Computer Security
2

Recall: Symmetric-Key Encryption
Algorithms

• Both parties share the key needed to encrypt
and decrypt messages, hence both parties are
equal

• Modern symmetric key ciphers (developed from
product ciphers) include DES, Blowfish, IDEA,
LOKI, RC5, Rijndael (AES) and others

CS 334: Computer SecurityCS 334: Computer Security
3

Block Ciphers

• One of the most widely used types of
cryptographic algorithms
– For encrypting data to ensure secrecy
– As a cryptographic checksum to ensure integrity
– For authentication services

• Used because they are comparatively fast, and
we know how to design them

• We’ll look at both DES (Data Encryption
Standard) and AES (Advanced Encryption
Standard)
– Focus on DES in this slideset

CS 334: Computer SecurityCS 334: Computer Security
4

Block vs Stream Ciphers
• Block ciphers process messages in blocks, each

of which is then en/decrypted
– So all bits of block must be available before

processing

• Like a substitution on very big characters
– 64-bits or more

• Stream ciphers process messages a bit or byte
at a time when en/decrypting
– Though technically the only difference here is block

size, there are significant differences in how stream
and block ciphers are designed.

CS 334: Computer SecurityCS 334: Computer Security
5

Claude Shannon

• Wrote some of the pivotal papers on modern
cryptology theory

– C E Shannon, "Communication Theory of Secrecy
Systems", Bell System Technical Journal, Vol 28, Oct
1949, pp 656-715

– C E Shannon, "Prediction and Entropy of printed
English", Bell System Technical Journal, Vol 30, Jan
1951, pp 50-64

CS 334: Computer SecurityCS 334: Computer Security
6

Claude Shannon

• Among other things, he developed the concepts
of:
– Entropy of a message
– Redundancy in a language
– Theories about how much information is needed to

break a cipher
– Defined the concepts of computationally secure vs

unconditionally secure ciphers
– Introduced the idea of substitution-permutation (S-P)

networks, basis of current product ciphers

CS 334: Computer SecurityCS 334: Computer Security
7

Shannon S-P Network

• cipher needs to completely obscure statistical
properties of original message
– E.g., a one-time pad does this

• more practically Shannon suggested combining
elements to obtain:
– diffusion – dissipates statistical structure of plaintext

over bulk of ciphertext
– confusion – makes relationship between ciphertext

and key as complex as possible

• S-P networks designed to provide these

CS 334: Computer SecurityCS 334: Computer Security
8

Shannon S-P Network

• Every block cipher involves a transformation of
a block of plaintext into a block of ciphertext,
where the transformation depends on the key

• Diffusion seeks to make the statistical
relationship between the plaintext and
ciphertext as complex as possible in order to
thwart attempts to deduce the key

• Confusion seeks to make the relationship
between the statistics of the ciphertext and the
value of the encryption key as complex as
possible, again to thwart attempts to discover
the key.

CS 334: Computer SecurityCS 334: Computer Security
9

Shannon S-P Network

• So successful are diffusion and confusion in
capturing the essence of the desired attributes
of a block cipher that they have become the
cornerstone of modern block cipher design

CS 334: Computer SecurityCS 334: Computer Security
10

Block Cipher Requirements

• Must be reasonably efficient

• Must be able to efficiently decrypt ciphertext to
recover plaintext

• Must have a reasonable key length

• First attempt: Arbitrary reversible substitution
– For a large block size this is not practical for implementation and

performance reasons

CS 334: Computer SecurityCS 334: Computer Security
11

Why Not Arbitrary Reversible
Substitution?

• If we’re going from n bit plaintext to n bit
ciphertext:
– There are 2n possible plaintext blocks.

– Each must map to a unique output block, so total of
2n! reversible transformations

• List all n-bit binary (plaintext) strings. First one can go
to any of 2n n-bit binary strings, next to any of 2n-1
output strings, etc.

CS 334: Computer SecurityCS 334: Computer Security
12

Why Not Arbitrary Reversible
Substitution?

• If we’re going from n bit plaintext to n bit
ciphertext:
– So, to specify a specific transformation, essentially

need to provide the list of ciphertext outputs for each
input block.

– How many? Well, 2n inputs, so 2n outputs, each n bits
long implies an effective key size of n(2n) bits.

• For blocks of size 64 (very minimum desirable to thwart
statistical attacks) this amounts to a key of length
64(264) = 270 = 267 bytes ~ 1.47 × 1020 bytes = 147 TB

CS 334: Computer SecurityCS 334: Computer Security
13

Feistel Cipher Structure
• Horst Feistel devised the Feistel cipher

– based on concept of invertible product cipher
– His main contribution was invention of structure that

adapted Shannon’s S-P network into easily inverted
structure.

• Process consists of several rounds. In each
round:
– partitions input block into two halves
– Perform substitution on left half by a round function

based on right half of data and subkey
– then have permutation swapping halves

• implements Shannon’s substitution-
permutation network concept

CS 334: Computer SecurityCS 334: Computer Security
14

CS 334: Computer SecurityCS 334: Computer Security
15

Feistel Cipher Design Principles

• block size
– increasing size improves security, but slows cipher
– 64 bits reasonable tradeoff. Some use 128 bits

• All variants of AES use 128 bit blocks

• key size
– increasing size improves security, makes exhaustive key

searching harder, but may slow cipher
– 64 bit considered inadequate. 128 bit is common size (for

now)
• AES has variants based on key size: AES-128, AES-192, AES-

256

• number of rounds
– increasing number improves security, but slows cipher
– AES-128 (10 rounds), AES-192 (12 rounds), AES-256 (14

rounds), DES (16 rounds)

CS 334: Computer SecurityCS 334: Computer Security
16

Feistel Cipher Design Principles

• subkey generation
– greater complexity can make analysis harder, but slows

cipher

• round function
– greater complexity can make analysis harder, but slows

cipher

• fast software en/decryption & ease of analysis
– are more recent concerns for practical use and testing
– Making algorithms easy to analyze helps determine cipher

effectiveness (DES functionality is not easily analyzed)

CS 334: Computer SecurityCS 334: Computer Security
17

Feistel Cipher Decryption

CS 334: Computer SecurityCS 334: Computer Security
18

Data Encryption Standard (DES)

• was once the most widely used block cipher in
world

• adopted in 1977 by NBS (now NIST)
– as FIPS PUB 46

• encrypts 64-bit data using 56-bit key
• still has widespread use
• At first, considerable controversy over its

security
– Tweaked by NSA?

CS 334: Computer SecurityCS 334: Computer Security
19

DES History

• IBM developed Lucifer cipher
– by team led by Feistel
– used 64-bit data blocks with 128-bit key

• then redeveloped as a commercial cipher with
input from NSA and others

• in 1973 NBS issued request for proposals for a
national cipher standard

• IBM submitted their revised Lucifer which was
eventually accepted as the DES

CS 334: Computer SecurityCS 334: Computer Security
20

DES Design Controversy

• Although DES standard is public was
considerable controversy over design
– in choice of 56-bit key (vs Lucifer 128-bit)
– and because design criteria were classified
– And because some NSA requested changes

incorporated

• Subsequent events and public analysis
show in fact design was appropriate
– Changes made cipher less susceptible to

differential or linear cryptanalysis

CS 334: Computer SecurityCS 334: Computer Security
21

DES Encryption

CS 334: Computer SecurityCS 334: Computer Security
22

Initial Permutation IP

• first step of the data computation
• IP reorders the input data bits

– Permutation specified by tables (See FIPS 46-3)
• even bits to LH half, odd bits to RH half
• quite regular in structure (easy in h/w)

CS 334: Computer SecurityCS 334: Computer Security
23

DES Round Structure

• uses two 32-bit L & R halves
• as for any Feistel cipher can describe as:

Li = Ri–1

Ri = Li–1 xor F(Ri–1, Ki)
• takes 32-bit R half and 48-bit subkey and:

– expands R to 48-bits using perm E
– adds to subkey (XOR)
– passes through 8 S-boxes to get 32-bit result

• Each S-box takes 6 bits as input and produces 4 as
output

– finally permutes this using 32-bit perm P

CS 334: Computer SecurityCS 334: Computer Security
24

CS 334: Computer SecurityCS 334: Computer Security
25

S-boxes

There are four more

CS 334: Computer SecurityCS 334: Computer Security
26

DES Round Structure

CS 334: Computer SecurityCS 334: Computer Security
27

Substitution Boxes S

• have eight S-boxes which map 6 to 4 bits
• each S-box is actually 4 little 4 bit boxes

– outer bits 1 & 6 (row bits) considered 2-bit number
that selects row

– inner bits 2-5 (col bits) considered 4-bit number that
selects column.

– Decimal number in table is converted to binary and
that gives the four output bits

– result is 8 sets of 4 bits, or 32 bits
• row selection depends on both data & key

– feature known as autoclaving (autokeying)

CS 334: Computer SecurityCS 334: Computer Security
28

DES Key Schedule

• forms subkeys used in each round
• consists of:

– initial permutation of the key (PC1) which selects 56-
bits in two 28-bit halves

– 16 stages consisting of:
• selecting 24-bits from each half
• permuting them by PC2 for use in function f,
• rotating each half separately either 1 or 2 places

depending on the key rotation schedule K

CS 334: Computer SecurityCS 334: Computer Security
29

CS 334: Computer SecurityCS 334: Computer Security
30

CS 334: Computer SecurityCS 334: Computer Security
31

DES Decryption

• decrypt must unwind steps of data
computation

• with Feistel design, do encryption steps again
• using subkeys in reverse order (SK16 … SK1)
• note that IP undoes final FP step of encryption
• 1st round with SK16 undoes 16th encrypt

round
• ….
• 16th round with SK1 undoes 1st encrypt round
• then final FP undoes initial encryption IP
• thus recovering original data value

CS 334: Computer SecurityCS 334: Computer Security
32

Avalanche Effect

• Desirable property for an encryption algorithm

• A change of one input or key bit results in
changing approx half output bits

• This makes attempts to “home-in” by guessing
keys impossible

• DES exhibits strong avalanche

CS 334: Computer SecurityCS 334: Computer Security
33

Strength of DES – Key Size

• 56-bit keys have 256 = 7.2 x 1016 values
• brute force search looks hard
• recent advances have shown is possible (as

we’ve seen)
– in 1997: on Internet in a few months
– in 1998: on dedicated h/w (EFF) in a few days
– in 1999: above combined in 22hrs!
– in 2012: 399 seconds on supercomputer

• still must be able to recognize plaintext
• AES has replaced DES as the encryption

standard (but DES still widely used)

CS 334: Computer SecurityCS 334: Computer Security
34

Strength of DES – Timing
Attacks

• attacks actual implementation of cipher
• use knowledge of consequences of

implementation to derive knowledge of
some/all subkey bits

• specifically use fact that calculations can take
varying times depending on the value of the
inputs to it

• particularly problematic on smartcards

CS 334: Computer SecurityCS 334: Computer Security
35

Strength of DES – Analytic Attacks
• now have several analytic attacks on DES
• these utilize some deep structure of the cipher

– by gathering information about encryptions
– can eventually recover some/all of the sub-key bits
– if necessary then exhaustively search for the rest

• generally these are statistical attacks

• include
– differential cryptanalysis
– linear cryptanalysis
– related key attacks

CS 334: Computer SecurityCS 334: Computer Security
36

Triple DES

• A replacement for DES was needed
– theoretical attacks can break it
– demonstrated exhaustive key search attacks

• AES is a new cipher alternative that didn’t exist
at the time

• prior to this alternative was to use multiple
encryption with DES implementations

• Triple-DES was the chosen form

CS 334: Computer SecurityCS 334: Computer Security
37

Why Not Double DES?

• That is, why not just use C=EK1[EK2[P]]?
– Proven that it’s NOT same as C=EK3[P]

• Susceptible to Meet-in-the-Middle Attack
– Described by Diffie & Hellman in 1977
– Based on observation that if C= EK2[EK1[P]], then

X=EK1[P]=DK2[C]

CS 334: Computer SecurityCS 334: Computer Security
38

Meet-in-the-Middle Attack

• Given a known plaintext-ciphertext pair,
proceed as follows:
– Encrypt P for all possible values of K1

• Cost is on order of 256

– Store results in table and sort by value of X
– Decrypt C for all possible values of K2

• During each decryption, check table for match. If find
one, test two keys against another known plaintext-
ciphertext pair

CS 334: Computer SecurityCS 334: Computer Security
39

Meet-in-the-Middle Attack
– For any given plaintext P, there are 264 possible

ciphertexts produced by Double DES.
– But Double DES effectively has 112 bit key, so there are

2112 possible keys.
– On average then, for a given plaintext, the number of

different 112 bit keys that will produce a given
ciphertext is 2112/264=248

– Thus, first (P,C) pair will produce about 248 false alarms
– Second (P,C) pair, however, reduces false alarm rate to

248-64 = 2-16. So for two (P,C) pairs, the probability that
correct key is determined is 1–(1/216).

– Bottom line: a known plaintext attack will succeed
against Double DES with an effort on order of 256, not
much more than the 255 required to crack single DES

CS 334: Computer SecurityCS 334: Computer Security
40

Triple-DES with Two-Keys

• Would think Triple DES must use 3 encryptions
but can use 2 keys with E-D-E sequence
– C = EK1[DK2[EK1[P]]]
– N.b. encrypt & decrypt equivalent in security
– if K1=K2 then can work with single DES

• standardized in ANSI X9.17 & ISO8732
• no current known practical attacks

– Though some indications of potential attack
strategies, so some use Triple DES with three keys

– has been adopted by some Internet applications, eg
PGP, S/MIME

• Three times slower than DES

CS 334: Computer SecurityCS 334: Computer Security

Modes of Operation

41

CS 334: Computer SecurityCS 334: Computer Security
42

Modes of Operation

• block ciphers encrypt fixed size blocks
• eg. DES encrypts 64-bit blocks, with 56-bit key
• need way to use in practice, given usually have

arbitrary amount of information to encrypt
• four were defined for DES in DES Modes of

Operation, FIPS PUB 81, in 1981
• subsequently now have 5 for DES and AES
• have block and stream modes

CS 334: Computer SecurityCS 334: Computer Security
43

Electronic Codebook Book (ECB)

• message is broken into independent blocks which
are encrypted
– Pad last block if necessary to make message length

multiple of 64 bits
• each block is a value which is substituted, like a

codebook, hence name
• each block is encoded independently of the other

blocks
Ci = DESK1 (Pi)

CS 334: Computer SecurityCS 334: Computer Security
44

Electronic Codebook Book (ECB)

CS 334: Computer SecurityCS 334: Computer Security

Problem (Example from Applied
Cryptography. B. Schneier)

• Adversary can modify encrypted messages
without knowing the key or even the algorithm
in manner that fools recipient

• Example: Money transfer between banks
– Assume an agreed standard message format (below)

45

CS 334: Computer SecurityCS 334: Computer Security

Problem (cont.)

• Transfers encrypted using some block cipher in ECB
mode

• Trudy, listens on communication lines between Bank
of Alice and Bank of Bob

• She opens accounts at both banks, and transfers $100
from her account at Bank of Alice to her account at
Bank of Bob. Twice.

• Checks communication records to find two identical
messages (presumably her transfer)

• Inserts copies of her transfer into communication link
at will!
– If clever, done with large amounts and many

banks!

46

CS 334: Computer SecurityCS 334: Computer Security

Solution?: Timestamp

• Bank adds timestamp to messages so they
can’t be replayed:

47

CS 334: Computer SecurityCS 334: Computer Security

Solution?: Timestamp

• Trudy then sends multiple messages, this time
examining blocks 5 through 12

• She replaces blocks 5 - 12 of many transfers
with her ciphertext blocks 5 - 12!
– This one won’t be caught nearly as quickly (since

banks books will still balance at end of day)!

48

CS 334: Computer SecurityCS 334: Computer Security

Graphics Issue with ECB

• Why does this happen (thanks to unknown
colleague at San Jose State)?

49

CS 334: Computer SecurityCS 334: Computer Security
50

Bottom Line:

• repetitions in message may show in ciphertext
– if aligned with message block
– particularly with data such as graphics
– or with messages that change very little, which

become a code-book analysis problem
• weakness due to encrypted message blocks

being independent
• Attacker can reorder cipher blocks in transit

– or perhaps even insert or replace a block
• main use is sending a few blocks of data

– E.g. Transmitting an encryption key

CS 334: Computer SecurityCS 334: Computer Security

ECB: Advantages

• Encryption is not serial, so it can be done on
individual blocks regardless of location in file
– E.g., large data file

• Encryption/Decryption can be parallelized
• bit error in one ciphertext block does not

prevent decryption of other blocks

51

CS 334: Computer SecurityCS 334: Computer Security
52

Cipher Block Chaining (CBC)

• Wanted a method in which repeated blocks of
plaintext (and whole messages) are encrypted
differently each time

• Like ECB, message is broken into blocks, but
these are linked together in the encryption
operation

• each previous cipher blocks is chained with
current plaintext block, hence name

• Encryption: use Initial Vector (IV) to start
process
– Ci = EK(Pi ⨁ Ci-1), C-1 = IV

• Decryption: start from last block of ciphertext
– Pi = DK(Ci) ⨁ Ci-1

• Used for bulk data encryption, authentication

CS 334: Computer SecurityCS 334: Computer Security
53

Cipher Block Chaining (CBC)

CS 334: Computer SecurityCS 334: Computer Security
54

CBC Decryption

Encryption step
Decryption step
(with justification)

CS 334: Computer SecurityCS 334: Computer Security

Graphics with CBC

55

CS 334: Computer SecurityCS 334: Computer Security

Another Graphics Example (thanks
Wikipedia)

56

CS 334: Computer SecurityCS 334: Computer Security
57

Advantages and Limitations of CBC
• Good: each ciphertext block depends on all message

blocks, thus a change in the message affects all
ciphertext blocks after the change as well as the original
block

• need Initial Value (IV) known to sender & receiver
– however if IV is sent in the clear, an attacker can

change bits of the first block, and change IV to
compensate

– hence either IV must be a fixed value or it must be
sent encrypted in ECB mode before rest of message

– Note that randomly chosen IV means attacker cannot
supply known plaintext to underlying cipher even if
they can supply plaintext to CBC

– Weak IV was cause of weakness of WEP

CS 334: Computer SecurityCS 334: Computer Security
58

Counter Mode
• In this mode, a cipher is used to generate a sequence of

pseudorandom blocks that are XORed with the plaintext
blocks

• Assume plaintext P = P1 || P2 || P3 || … || PL

• When I use this, I think of the method as follows:
– Choose key K and initial counter value IV

• IV is the state that prevents the same plaintext
from encrypting to the same ciphertext if it’s
encrypted multiple times with K.

– Create a sequence of pseudorandom blocks as
follows: EK(IV), EK(IV+1), EK(IV+2),…, EK(IV+L)

• Ciphertext is C = (EK(IV)⨁P1) || … || (EK(IV+L) ⨁ PL)
– That is Ci = EK(IV+i) ⨁ Pi

CS 334: Computer SecurityCS 334: Computer Security
59

Counter Mode: Notes

• Ciphertext is C = (EK(IV)⨁P1) || … || (EK(IV+L) ⨁ PL)
• Note that IV is supposed to be pseudorandom. Thus

by choosing a different value each time we encrypt P,
we get different ciphertexts, even if we use the same
key K

• IV needs to be kept secret, otherwise method
becomes deterministic

• Advantages:
– Can be parallelized
– Can encrypt or decrypt a single block without

having to do same to other blocks
• Note that in this formulation, IV needs to be known by

both encrypting and decrypting parties.

CS 334: Computer SecurityCS 334: Computer Security
60

Counter Mode: Alternative Form
• Assume plaintext P = P1 || P2 || P3 || … || PL

• Choose key K and initial counter value IV, where IV is
requires about 3n/4 bits (n is block length)

• Create a sequence of pseudorandom blocks as follows:
EK(IV || <1>), EK(IV || <2>), EK(IV || <3>),…, EK(IV ||
<L>)
– <i> standard notation for “binary rep. of i”
– integers encoded using n/4 bits

• Ciphertext is plaintext XORed with this pseudorandom
sequence of blocks
– That is Ci = EK(IV || <i>) ⨁ Pi

• IV is sent in the clear as part of ciphertext (so
technically it is block 0, though not quite block
length)

CS 334: Computer SecurityCS 334: Computer Security
61

Counter Mode Alternative Form:
Notes

• Ciphertext is plaintext XORed with this pseudorandom
sequence of blocks
– That is Ci = EK(IV || i) ⨁ Pi

• Here clearly IV is not kept secret
• Number of bits used for i limits the number of

blocks that can be in the plaintext (you only
have 2n/4 different counter values)

• Advantage: decryptor does not need to know IV
beforehand

• Important: Note that slight modifications of a
protocol can have significant impact on its use!

CS 334: Computer SecurityCS 334: Computer Security

There are Other Modes...

• See Wiki article on block cipher modes of operation

63

CS 334: Computer SecurityCS 334: Computer Security
64

IV Misuse
• If the same IV is used in counter mode (either version)

with a given key K, this is insecure -- the same
pseudorandom blocks are generated
– So we can XOR two ciphertexts together and end up

with an COR of plaintexts, which we’ve already noted
is insecure

• IV revealed when using CBC is not usually an issue
– Unless the adversary can know the IV in advance!

CS 334: Computer SecurityCS 334: Computer Security
65

Chained CBC Mode
• Sometimes, in order to only have to generate a single IV

when encrypting multiple plaintexts, chained CBC mode
is used.
– Potentially saves bandwidth
– BUT is vulnerable to a chosen-plaintext attack

• An IV is chosen when encrypting the first plaintext. For
subsequent plaintexts, we use the last block of the
previous ciphertext as the IV.

• It may appear that chained CBC mode is secure: after
all, if plaintext P1 is blocks m1 || m2 || m3, and plaintext
P2 is blocks m4 || m5 || m6, then with a given IV, chained
CBC modes of the two plaintexts is the same as regular
CBC mode encryption of P1 || P2.

CS 334: Computer SecurityCS 334: Computer Security
66

Chained CBC Mode

• The difference is that in this case, the attacker can know in
advance the IV used when encrypting P2!

• So, assume the attacker knows that m1 is either m1
0 or

m1
1, and observes the first ciphertext: IV, c1, c2, c3

• Attacker requests encryption of message m4 || m5 || m6
with m4 = IV ⨁ m1

0 ⨁ c3, and observes resulting
ciphertext c4 || c5 || c6

CS 334: Computer SecurityCS 334: Computer Security
67

Chained CBC Mode

• Attacker requests encryption of message m4 || m5 || m6
with m4 = IV ⨁ m1

0 ⨁ c3, and observes resulting
ciphertext c4 || c5 || c6

• Claim: m1 = m1
0 if and only if c1 = c4

– You figure out why

• Another example of how a small and seemingly innocuous
modification to a secure protocol can have significant
security implications!

CS 334: Computer SecurityCS 334: Computer Security
68

Recall: Chosen-ciphertext attacks

• Adversary is able to choose ciphertexts and
receive the corresponding plaintexts

• We now know the material we need to an
example of one of these: Padding-Oracle
Attacks!

• This attack has been shown to work in practice
on various deployed protocols

• Thanks: Introduction to Modern Cryptography
(3rd Edition) by J. Katz and Y. Lindell
– A really nice crypto text/reference, by the way

CS 334: Computer SecurityCS 334: Computer Security
69

Recall: Chosen-ciphertext attacks

• The setting:
– Clients send messages encrypted using CBC-mode to

server
– We assume the attacker can impersonate a client and

send ciphertexts of its choice to the server, which the
server will decrypt

– We assume only that the attacker can tell when
resulting decrypted messages are valid
• So attacker does not need the resulting plaintext

– This is realistic: when receiving ciphertexts that don’t
decrypt correctly, servers do things like send
retransmission requests or terminate the connection,
both observable by the adversary

CS 334: Computer SecurityCS 334: Computer Security
70

OK, So I Lied

• We actually need one more piece of background
info: PKCS #7
– This is a padding scheme standard
– So I lied twice: we don’t always pad with zeros

• PKCS #7
– Assume the block length of our cipher is L
– If length of plaintext is not a multiple of L bytes, we

might have to pad (added padding is called encoded
data)

– Any padding scheme must be such that receiver can
unambiguously distinguish original message from
encoded data

CS 334: Computer SecurityCS 334: Computer Security
71

PKCS #7

• Let b > 0 be the number of bytes that need to
be padded to the original message to make the
total length a multiple of block length L

• Append to message the integer b, represented
as one byte (i.e. two hex digits) exactly b
times.
– Ex. If one byte needed, pad with the byte 0x1
– Ex. If four bytes needed, pad with the four bytes 0x4

0x4 0x4 0x4

CS 334: Computer SecurityCS 334: Computer Security
72

PKCS #7

• b must be an integer between 1 and L inclusive
– can’t have b = 0 (it would lead to ambiguous
padding)
– So if original message length is a multiple of L, then b

= L and the message is padded with a whole block of
bytes that are integer representation (in one byte) of
L

– E.g., if block length is 128, get a whole block of 0x80
bytes

CS 334: Computer SecurityCS 334: Computer Security
73

PKCS #7

• When decrypting, server uses CBC-mode as
usual, then checks the last byte of the resulting
plaintext.
– If the last byte has value b, then verify that the final b

bytes all have value b
• If this check fails, server returns some kind of

“bad padding” error (as mentioned above)
– So server acts as a “padding oracle” – it tells

adversary whether a ciphertext corresponds to a
message that was correctly padded

CS 334: Computer SecurityCS 334: Computer Security
74

Padding-Oracle Attack

• We describe the attack on three block
ciphertext: Let IV, c1, c2 be a ciphertext that
corresponds to a message padded using PKCS
#7 and observed by the attacker, and m1, m2
the underlying plaintext (including encoded
data)

• Recall formula for decrypting data encrypted
using CBC mode: Pi = DK(Ci) ⨁ Ci-1
– So m2 = DK(c2) ⨁ c1

– The second block, m2, ends in b bytes of value
0xb

CS 334: Computer SecurityCS 334: Computer Security
75

Padding-Oracle Attack

• The key issue (pardon the pun): Certain
changes to the ciphertext yield predictable
changes in the encoded data after CBC-
decryption

• So, let c1’ be identical to c1 except for
modification of the final byte, and consider
decrypting the ciphertext IV, c1’, c2
– Result is m1’, m2’ where m2’ = DK(c2) ⨁ c1’
– So m2’ differs from m2 only by modification of

final byte
– Similarly if c1’ differs only from c1 in the ith

byte, same will be true of m2’ and m2

CS 334: Computer SecurityCS 334: Computer Security
76

Padding-Oracle Attack

• More generally, if c1’ = c1 ⨁ 𝚫 for any string
𝚫, then m2’ = m2 ⨁ 𝚫

• Bottom line: adversary has significant control
over final block of encoded data

CS 334: Computer SecurityCS 334: Computer Security
77

Padding-Oracle Attack

• Use this to learn b, the amount of padding
(which also yields length of the original
message):
– Attacker modifies first byte of c1 and sends resulting

IV, c1’, c2 to server
– If this fails, then the server must be checking ALL

bytes of m2 for padding, so therefor b = L.
– Otherwise, b < L, so attack repeats the process, but

this time changing only the second byte of c1

– Left most byte for which decryption fails reveals
exactly left most byte being checked by server, and
thus the value of b

CS 334: Computer SecurityCS 334: Computer Security
78

Padding-Oracle Attack

• With b known, now find bytes, one by one, of
the original message in m2

• We’ll show how to find the final byte, M, of the
original message:
– Attacker knows that m2 ends in M 0xb 0xb … 0xb and

wants to learn M
• For 0 ≤ i < 28, define 𝚫i to be

CS 334: Computer SecurityCS 334: Computer Security
79

Padding-Oracle Attack

• For 0 ≤ i < 28, define 𝚫i to be

• Note that the final b+1 bytes of 𝚫i contain the
integer i (in hex) followed by the value (b+1) ⨁ b

• If the attacker submits the ciphertext IV, c1 ⨁ 𝚫i,
c2, then what happens with CBC-decryption?

CS 334: Computer SecurityCS 334: Computer Security
80

Padding-Oracle Attack
• Note that the final b+1 bytes of 𝚫i contain the

integer i (in hex) followed by the value (b+1) ⨁ b
• If the attacker submits the ciphertext IV, c1 ⨁ 𝚫i,

c2, then what happens with CBC-decryption?
• DK(c2) ⨁ (c1 ⨁ 𝚫i) = (DK(c2) ⨁ c1) ⨁ 𝚫i = m2 ⨁ 𝚫i

• Recall that the last b bytes of m2 are all b, so the
last b bytes of m2 ⨁ 𝚫i are all (b+1) ⨁ b ⨁ b =
b+1

• The byte to the left of all those b+1 values is M ⨁ i
• So, if M ⨁ i = b+1, the padding is legal and the

ciphertext will be accepted. If not, then the server
will return a “bad padding” error

CS 334: Computer SecurityCS 334: Computer Security
81

Padding-Oracle Attack
• So, if M ⨁ i = b+1, the padding is legal and the

ciphertext will be accepted. If not, then the server
will return a “bad padding” error

• Bottom line: the value of i that does not cause a
bad padding error, is the value such that M ⨁ i =
b+1

• So by trying at most 256 values of i, adversary
knows M.

• Question for you: how does the adversary get the
byte to the left of M?

CS 334: Computer SecurityCS 334: Computer Security
82

• Let i0 be the value of i that makes M ⨁ i = b+2
• This time define 𝚫i to be

• Then when doing CBC-decrypt, as before, the right
most b bytes will all be b+2. The byte where M is
located will also be b+2, because you’ll have M ⨁
(b+2) ⨁ M =b+2

• If M’ is the byte to the left of M in m2, then the
value of i that does not generate a padding error is
the one where M’ ⨁ i = b+2

CS 334: Computer SecurityCS 334: Computer Security
83

Padding-Oracle Attack

• So, the question: We have shown how you can
recover the last block of the plaintext message.
Call that mj. How do you now learn block mj-1?
– That is, assuming P = m1 || m2 || … || mj

CS 334: Computer SecurityCS 334: Computer Security
86

Padding-Oracle Attack

• Using this technique, the adversary can recover
the entire plaintext!

• And they did it without every learning the
encryption key K!

