CS 331 Compilers Fall 2017
Written Assignment 3

Prof. Szajda Due Thursday, November 2, 11:59:59 pm

This assignment asks you to prepare written answers to questions on semantic analysis. Each of
the questions has a short answer. You may discuss this assignment with other students and work
on the problems together. However, your write-up should be your own individual work. Written
assignments can be turned in at the start of lecture. Alternatively, assignments can be turned in
at my office by 11:59:59 PM on the due date.

1. Consider the following class definitions.

class A {

i: Int

o: Object

b: B <- new B

x: SELF_TYPE

f(): SELF_TYPE {x}
}

class B inherits A {
g(b: Bool): Object { (* EXPRESSION *) }
}

Assume that the type checker implements the rules described in the lectures and in the Cool
Reference Manual. For each of the following expressions, occurring in place of (* EXPRESSION *)
in the body of the method g, show the static type inferred by the type checker for the expression.
If the expression causes a type error, give a brief explanation of why the appropriate type checking
rule for the expression cannot be applied.

1]
(0]
=
Hh
[}

X

i

—~
o

~ ~ ~ = Nz
w0
[0]
]
Hh
1]

case o of

o: Int => b;

o: Bool => o;

o: Object => true;
esac



(a) Give a very short Cool program (less than 10 lines) that does not type check under the typing
rules given in the Cool manual, but would actually never exhibit a runtime error.

(b) Explain why this program does not type check and why it does not have a runtime error.

3. After writing many tedious while loops to test your Cool compiler, you are fed up and decide
to add a for loop construct to Cool that looks as follows:

for Id:T <- el aslongas e2 do e3 rof
In this construct, el is the initial value of Id, e2 is a continuation predicate (i.e., the loop executes

as long as e2 holds), and e3 is the body of the loop. Give a sound (and sensible) typing rule for
the for loop construct.



4. The Java programming language includes arrays. The Java language specification states that if
s is an array of elements of class S, and t is an array of elements of class T, then the assignment
s = tis allowed as long as T is a subclass of S. This typing rule for array assignments turns out to
be unsound. (Java works around the fact that this rule is not statically sound by inserting runtime
checks to generate an exception if arrays are used unsafely. For this question, assume there are no
special runtime checks.)

Consider the following Java program, which type checks according to the preceding rule:

class Animal { String name; }
class Dog extends Animal { void bark() { ... } }
class Main {
public static void main(String argl]) {
Dog[] x = new Dogl[5];
Animal[] y = x;
/* Insert code here */

Add code to the main method so that the resulting program is a valid Java program (i.e., it type
checks statically and so it will compile), but the program could result in an operation being applied
to an inappropriate type when executed. Include a brief explanation of how your program exhibits
the problem.



5. Now that you know why Java arrays are problematic, you decide to add an array construct to
Cool with sound typing rules. An array containing objects of type A is declared as being of type
Array[A], and one can create arrays in Cool using the new Array[A] [e] construct, where e is an
expression of type Int, specifying the size of the array. One can access elements in the array using
the construct el[e2] which yields the e2’th element in array el, and one can insert elements into
the array using the notation el[e2] <- e3. Finally, as in Java, an assignment from one array a to
an array b does not make copies of the elements contained in a.

(a) Give a sound subtype relation for arrays in Cool, i.e., state the conditions under which the
subtype relation Array (7)< 7/ is valid.
(b) Give sound typing rules that are as permissive as possible for the following constructs:

(i) new Arrayl[A] [e]
(ii) e1lle2]
(iii) e1[e2] <- e3. Assume the type of the whole expression is the type of el.



