
CS 331 Compilers Fall 2017

Programming Project 4: COOL Code Generation

Prof. Szajda Due Tuesday, December 5, 11:59:59 pm

NOTE: There will be no extensions whatsoever given for this project! So, begin it
when you get it!

1 Introduction

In this assignment, you will implement a code generator for Cool. When successfully completed,
you will have a fully functional Cool compiler!

The code generator makes use of the AST constructed in PA2 and static analysis performed in PA3.
Your code generator should produce MIPS assembly code that faithfully implements any correct
Cool program. There is no error recovery in code generation – all erroneous Cool programs have
been detected by the front-end phases of the compiler.

As with the static analysis assignment, this assignment has considerable room for design decisions.
Your program is correct if the code it generates works correctly; how you achieve that goal is up
to you. I will suggest certain conventions that should make your life easier, but you do not have
to take my advice. As always, explain and justify your design decisions in the README file. This
assignment is about twice the amount of the code of the previous programming assignment, though
they share much of the same infrastructure. Start early!

Critical to getting a correct code generator is a thorough understanding of both the expected
behavior of Cool constructs and the interface between the runtime system and the generated code.
The expected behavior of Cool programs is defined by the operational semantics for Cool given in
Section 13 of the Cool Reference Manual. Recall that this is only a specification of the meaning of
the language constructs - not how to implement them. The interface between the runtime system
and the generated code is given in The Cool Runtime System. See that document for a detailed
discussion of the requirements of the runtime system on the generated code. There is a lot of
information in this handout and the aforementioned documents, and you need to know most of it
to write a correct code generator. Please read thoroughly. As with the previous projects, you must
work in pairs.

2 Files and Directories

To get started, create a directory where you want to do the assignment and execute the following
command in that directory.

make -f /usr/class/cs143/assignments/PA5J/Makefile

(As usual, notice the “J” in the path name, and that the numbering is different than our project
numbering).

Also as usual, there are several files used in the assignment that are symbolically linked to your
directory or are included from /usr/class/cs143/include/PA4J. Do not modify these files. Al-

1



most all of these files have have been described in previous assignments. See the instructions in the
README file.

This is a list of the files that you may want to modify. (You should already be familiar with most of
the other files from previous assignments.) See the README file for details about these additional
files.

• CgenClassTable.java and CgenNode.java

These files provide an implementation of the inheritance graph for the code generator. You
will need to complete CgenClassTable in order to build your code generator. You can use
the provided code or replace it with your own inheritance graph from PA4.

• StringSymbol.java, IntSymbol.java, and BoolConst.java

These files provide support for Cool constants. You will need to complete the method for
generating constant definitions.

• cool-tree.java

This file contains the definitions for the AST nodes. You will need to add code generation
routines (code(PrintStream)) for Cool expressions in this file. The code generator is invoked
by calling method cgen(PrintStream) of class program. You may add new methods, but do
not modify the existing declarations.

• TreeConstants.java

As before, this file defines some useful symbol constants. Feel free to add your own as you
see fit.

• CgenSupport.java

This file contains general support code for the code generator. You will find a number of
handy functions here including ones for emitting MIPS instructions. Add to the file as you
see fit, but don’t change anything that’s already there.

• example.cl

This file should contain a test program of your own design. Test as many features of the code
generator as you can.

• README This file will contain the write-up for your assignment. It is critical that you explain
design decisions, how your code is structured, and why you believe your design is a good one
(i.e., why it leads to a correct and robust program). It is part of the assignment to explain
things in text as well as to comment your code.

3 Design

Before continuing, you should read The Cool Runtime System to familiarize yourself with the
requirements the runtime system imposes on your code generator.

In considering your design, at a high-level, your code generator will need to perform the following
tasks:

1. Determine and emit code for global constants, such as prototype objects.

2



2. Determine and emit code for global tables, such as the classnameTab, the classobjTab, and
the dispatch tables.

3. Determine and emit code for the initialization method of each class.

4. Determine and emit code for each method definition.

There are many possible ways to write the code generator. One reasonable strategy is to perform
code generation in two passes. The first pass decides the object layout for each class, particularly
the offset at which each attribute is stored in an object. Using this information, the second pass
recursively walks each feature and generates stack machine code for each expression.

There are a number of things you must keep in mind while designing your code generator:

• Your code generator must work correctly with the Cool runtime system, which is explained
in the Cool Runtime System manual.

• You should have a clear picture of the runtime semantics of Cool programs. The semantics are
described informally in the first part of the Cool Reference Manual, and a precise description
of how Cool programs should behave is given in Section 13 of the manual.

• You should understand the MIPS instruction set. An overview of MIPS operations is given
in the spim documentation, which is on the class web page.

• You should decide what invariants your generated code will observe and expect (i.e., what
registers will be saved, which might be overwritten, etc). You may also find it useful to refer
to information on code generation in the lecture notes.

You do not need to generate the same code as coolc. coolc includes a very simple register
allocator and other small changes that are not required for this assignment. The only requirement
is to generate code that runs correctly with the runtime system.

3.1 Runtime Error Checking

The end of the Cool manual lists six errors that will terminate the program. Of these, your
generated code should catch the first three - dispatch on void, case on void, and missing branch
- and print a suitable error message before aborting. You may allow SPIM to catch division by
zero. Catching the last two errors - substring out of range and heap overflow - is the responsibility
of the runtime system in trap.handler. See Figure 4 of the Cool Runtime System manual for a
listing of functions that display error messages for you.

3.2 Garbage Collection

To receive full credit for this assignment, your code generator must work correctly with the
generational garbage collector in the Cool runtime system. The skeleton contains a method,
CgenClassTable.codeSelectGc(), that generate code that sets GC options from command line
flags. The command-line flags that affect garbage collection are -g, -t, and -T. Garbage collection
is disabled by default; the flag -g enables it. When enabled, the garbage collector not only reclaims
memory, but also verifies that “-1” separates all objects in the heap, thus checking that the program

3



(or the collector!) has not accidentally overwritten the end of an object. The -t and -T flags are
used for additional testing. With -t the collector performs collections very frequently (on every
allocation). The garbage collector does not directly use -T; in coolc the -T option causes extra
code to be generated that performs more runtime validity checks. You are free to use (or not use)
-T for whatever you wish.

For your implementation, the simplest way to start is to not use the collector at all (this is the
default). When you decide to use the collector, be sure to carefully review the garbage collec-
tion interface described in the Cool Runtime System manual. Ensuring that your code generator
correctly works with the garbage collector in all circumstances is not trivial.

4 Testing and Debugging

You will need a working scanner, parser, and semantic analyzer to test your code generator. You
may use either your own components or the components from coolc. By default, the coolc

components are used. To change that, replace the lexer, parser, and/or semant executable (which
are symbolic links in your project directory) with your own scanner/parser/semantic analyzer. Even
if you use your own components, it is wise to test your code generator with the coolc scanner,
parser, and semantic analyzer at least once because we will grade your project using coolcs version
of the other phases.

You will run your code generator using mycoolc, a shell script that “glues” together the code
generator with the rest of the compiler phases. Note that mycoolc takes a -c flag for debugging
the code generator; using this flag merely causes cgen_debug (a static field of class Flags) to be
set. Adding the actual code to produce useful debugging information is up to you. See the project
README for details.

4.1 Coolaid

The Cool Runtime System manual mentions Coolaid, which is a tool used to verify some properties
of the MIPS assembly code produced by a Cool code generator. In order to do this, Coolaid imposes
additional restrictions on the assembly code beyond those required by the runtime system. Coolaid
is not supported by me and is not necessary for the project, so any Coolaid-specific restrictions
listed in the Cool Runtime System manual may be safely ignored. Even without using Coolaid,
however, you may find these additional restrictions helpful when deciding how to structure your
assembly code.

4.2 Spim and XSpim

The executables spim and xspim are simulators for MIPS architecture on which you can run
your generated code. The program xspim works like spim in that it lets you run MIPS assembly
programs. However, it has many features that allow you to examine the virtual machine’s state,
including the memory locations, registers, data segment, and code segment of the program. You
can also set breakpoints and single step your program. The documentation for spim/xspim is on
the course web page.

Warning. One thing that makes debugging with spim difficult is that spim is an interpreter for
assembly code and not a true assembler. If your code or data definitions refer to undefined labels,

4



the error shows up only if the executing code actually refers to such a label. Moreover, an error
is reported only for undefined labels that appear in the code section of your program. If you have
constant data definitions that refer to undefined labels, spim won’t tell you anything. It will just
assume the value 0 for such undefined labels.

5 Final Submission

Submission method is as usual.

Make sure to complete the following items before submitting to avoid any penalties.

• Include your write-up in README.

• Include your test cases that test your code generator in example.cl.

• Make sure all your code for the code generator is in cool-tree.java, CgenClassTable.java,
CgenNode.java, CgenSupport.java, BoolConst.java, IntSymbol.java, StringSymbol.java,
TreeConstants.java, and additional .java files you may have added.

5


