
1

Superoptimization

Lecture 20

Montgomery (Modular) Multiplication

•  Fast method for performing modular
multiplication ab mod N

•  Steps:
–  Transform a, b into Montgomery form

•  aR mod N for some R that depends only on N and the
underlying architecture

–  Multiply Montgomery forms to get abR mod N
•  Montgomery multiplication is a fast algorithm for

computing this Montgomery product
–  Transform abR mod N to classic ab mod N to get

product
2

Montgomery (Modular) Multiplication

•  Conversions take time, so using method to do
one modular multiplication is slower than
classic method

•  BUT, when many multiplications are involved,
then the conversion overhead becomes a
negligible piece of the cost

•  When are many multiplications involved?
–  RSA: modular exponentiation
–  Diffie-Hellman key exchange
–  In practice Montgomery multiplication used for

these 3

LLVM

•  Originally: Lower Level Virtual Machine
•  Now collection of compiler technologies

–  Language agnostic tool for dynamic optimization
–  Originally a research project at U Illinois designed

to study dynamic compilation techniques for static
and dynamic languages

–  Now a large part of Apple development systems
–  Also front end (Clang) used by Sony in the PS4

4

Example: Montgomery Multiply from SSH
gcc -O3 (29 LOC)
 .L0:
 movq rsi, r9

movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rdx, r9
imulq rsi, rdx
imulq rsi, rcx
addq rdx, rax
jae .L2
movabsq 0x100000000, rdx
addq rdx, rcx

 .L2:
movq rax, rsi
movq rax, rdx
shrq 32, rsi
salq 32, rdx
addq rsi, rcx
addq r9, rdx
adcq 0, rcx
addq r8, rdx
adcq 0, rcx
addq rdi, rdx
adcq 0, rcx
movq rcx, r8
movq rdx, rdi

llvm -O0 (100 LOC)
L0:
movq rdi, -8(rsp)
movq rsi, -16(rsp)
movl edx, -20(rsp)
movl ecx, -24(rsp)
movq r8, -32(rsp)
movq -16(rsp), rsi
movq rsi, -48(rsp)
movq -48(rsp), rsi
movabsq 0xffffffff, rdi
andq rsi, rdi
movq rdi, -40(rsp)
movq -48(rsp), rsi
shrq 32, rsi
movabsq 0xffffffff, rdi
andq rsi, rdi
movq rdi, -48(rsp)
movq -40(rsp), rsi
movq rsi, -72(rsp)
movq -48(rsp), rsi
movq rsi, -80(rsp)
movl -24(rsp), esi
imulq -72(rsp), rsi
movq rsi, -56(rsp)
movl -20(rsp), esi
imulq -72(rsp), rsi
movq rsi, -72(rsp)
movl -20(rsp), esi
...

LOC is “lines of
code”

Notes

•  O3 is the highest level of optimization
provided by gcc
–  And the slowest

•  Does
–  Instruction scheduling
–  Register allocation
–  And many others …

6

Instruction Scheduling

•  Modern processors are pipelined
–  Some instructions take more than one cycle
–  Have more than one instruction executing at the

same time

•  Bottom line: order of instructions matters

7

load r1, 0(r2)
addi r3, r1, 1
load r4, 0(r5)

load r1, 0(r2)
load r4, 0(r5)
addi r3, r1, 1

Register Allocation

•  Assign registers to variables
–  Such that variables that are live simultaneously are

in different registers

•  Observation
–  Register allocation is sensitive to the live range of

variables

8

Instruction Scheduling vs. Register Allocation

•  Register allocation can add dependencies
between instructions
–  Limits instruction scheduling

•  Instruction scheduling can increase the live
range of variables
–  Limits register allocation

•  Which should be done first?

9

The Phase Ordering Problem

•  Each optimization is a phase

•  The phase ordering problem is selecting a best
order for the optimizations to execute

•  But there is no single best order for every
application
–  Optimizations can interfere with one another

10

Phase Ordering

•  Optimizing compilers have a lot of phases

•  Each solves a problem in isolation

•  But the solutions don’t always compose well
–  Phases are ordered heuristically
–  Implies some optimizations are missed

11

Individual Phases are Limited, Too

•  Phases try to capture the most important and
easiest cases
–  Ignore the rest

•  Common subexpression elimination
–  How complicated can two equivalent expressions be

and still be recognized as equivalent?

Reprise

So how good is the code produced by gcc –O3?

13

STOKE

•  Stochastic Superoptimizer and Program
Sythesizer
–  Uses random search to “explore” the very large

space of all possible program transformations
–  Repeatedly uses random sequences of millions of

transformations
•  Kind of reminiscent in some ways of genetic algorithms

–  Produces “novel and non-obvious code sequences”
•  Code generally outperforms any other compiler, and often

faster than the best hand-coded optimizations

14

Example: Montgomery Multiply from SSH
gcc -O3 (29 LOC)
 .L0:
 movq rsi, r9

movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rdx, r9
imulq rsi, rdx
imulq rsi, rcx
addq rdx, rax
jae .L2
movabsq 0x100000000, rdx
addq rdx, rcx

 .L2:
movq rax, rsi
movq rax, rdx
shrq 32, rsi
salq 32, rdx
addq rsi, rcx
addq r9, rdx
adcq 0, rcx
addq r8, rdx
adcq 0, rcx
addq rdi, rdx
adcq 0, rcx
movq rcx, r8
movq rdx, rdi

llvm -O0 (100 LOC)
L0:
movq rdi, -8(rsp)
movq rsi, -16(rsp)
movl edx, -20(rsp)
movl ecx, -24(rsp)
movq r8, -32(rsp)
movq -16(rsp), rsi
movq rsi, -48(rsp)
movq -48(rsp), rsi
movabsq 0xffffffff, rdi
andq rsi, rdi
movq rdi, -40(rsp)
movq -48(rsp), rsi
shrq 32, rsi
movabsq 0xffffffff, rdi
andq rsi, rdi
movq rdi, -48(rsp)
movq -40(rsp), rsi
movq rsi, -72(rsp)
movq -48(rsp), rsi
movq rsi, -80(rsp)
movl -24(rsp), esi
imulq -72(rsp), rsi
movq rsi, -56(rsp)
movl -20(rsp), esi
imulq -72(rsp), rsi
movq rsi, -72(rsp)
movl -20(rsp), esi
...

STOKE (11 LOC)
.L0:
shlq 32, rcx
movl edx, edx
xorq rdx, rcx
movq rcx, rax
mulq rsi
addq r8, rdi
adcq 9, rdx
addq rdi, rax
adcq 0, rdx
movq rdx, r8
movq rax, rdi

A Picture

•  Traditional Compilers: Consistently good, but not
optimal

llvm -O0

llvm -O3
Region of
equivalent
programs

As in, all programs in the
blue circle are equivalent

Another Picture

llvm -O0

gcc -O3 STOKE

llvm -O3

What Happened?

•  Compilers are complex systems
–  Must find ways to decompose the problem

•  Standard design
–  Identify optimization subproblems that are

tractable (phases)
–  Try to cover all aspects with some phase

Why Do We Care?

•  There are many systems where code
performance matters
–  Compute-bound
–  Repeatedly executed

•  Scientific computing
•  Graphics
•  Low-latency server code
•  Encryption/decryption
•  … 19

Montgomery Multiply, Revisited

•  SSH does not use llvm or gcc for the
Montgomery Multipy kernel

•  SSH ships with a hand-written assembly MM
kernel

•  Which is slightly worse than the code
produced by STOKE …

20

Another View

•  Optimization is a search problem
–  Start with an initial program
–  Through a sequence of transformations find a

better code

•  So compilers solve a search problem
–  But don’t do any search!

21

Superoptimization

•  A family of techniques that perform
optimization by searching over programs

•  Why the awful name?
–  Because the term “optimization” was already taken
–  And we want to do better than “optimizing”

22

History

llvm -O0

gcc -O3 STOKE
llvm -O3

Bruteforce Enumeration

•  Enumerate all programs, one at a time
–  Usually in order of increasing length

•  [Massalin ‘87]
–  10’s of register instructions
–  could enumerate programs of length ~15

•  [Bansal ‘06][Bansal ‘08]
–  Full x86 instruction set
–  Could enumerate programs of length ~3

24

Downsides

•  Most enumerated programs are worthless
–  Not correct implementations of the program

•  Enumeration is slow …

25

History

llvm -O0

gcc -O3 STOKE
llvm -O3

Equality Preserving Rules

•  Expert-written rules for traversing the space
of correct implementations
–  [Joshi ‘02][Tate ‘09]

•  Problem
–  Someone has to write down all the possible

equivalences of interest

27

History

•  Program Synthesis: Write constraints, produce one
correct implementation [gulwani 11][solar-lezama 06][liang 10]

llvm -O0

gcc -O3 STOKE
llvm -O3

synthesis

Step Back

•  What if we were going to start over?

•  What would a search-based optimizer look
like?

29

Stochastic Superoptimization

llvm -O0

gcc -O3 STOKE
llvm -O3

Randomized Search, Part I

•  Begin at a random code
–  Somewhere in program space

•  Make random moves
–  Looking for regions of correct implementation of

the function of interest
–  The target

31

llvm -O0

gcc -O3 STOKE
llvm -O3

Stochastic Superoptimization

Randomized Search, Part II

•  Run optimization threads for each correct
program found

•  Try to find more correct programs that run
faster
–  Again by making randomized moves

33

•  Result: A superoptimization technique that scales beyond all
previous approaches to interesting real world kernels

llvm -O0

gcc -O3 STOKE
llvm -O3

Stochastic Superoptimization

What Do We Need?

•  Search procedure
–  Program space too large for brute force enumeration

•  Random search
–  Guaranteed not to get stuck
–  Might not find a nearby great program

•  Hill climbing
–  Guaranteed to find the best program in the vicinity
–  Likely to get stuck in local minima

MCMC

•  A compromise
–  Markov Chain Monte Carlo sampling
–  The only known tractable solution method for high

dimensional irregular search spaces
–  [andrieu 03][chenney 00]

•  Best of both worlds
–  An intelligent hill climbing method
–  Sometimes takes random steps out of local minima

MCMC Sampling Algorithm

 1. Select an initial program

2. Repeat (billions of times)
i.  Propose a random modification and evaluate cost
ii.  If (cost decreased)
 { accept }
i.  If (cost increased)

 { with some probability accept anyway }

Technical Details

•  Ergodicity
–  Random transformations should be sufficient to cover

entire search space.

•  Symmetry
–  Probability of transformation equals probability of

undoing it

•  Throughput
–  Runtime cost to propose and evaluate should be

minimal

Theoretical Properties

•  Limiting behavior
–  Guaranteed in the limit to examine every point in the

space at least once
–  Will spend the most time in and around the best

points in the space

Transformations

•  Simple
–  No expert knowledge

•  Balance between “coarse” and “fine” moves
–  Experience with MCMC suggests successful

applications need both

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...

opcode
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
subl edx, edx
imulq r9, rax
...

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...

opcode
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
subl edx, edx
imulq r9, rax
...

operand
...
movl ecx, ecx
shrq 32, rcx
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

Transformations

•  original
•  ...
•  movl ecx, ecx
•  shrq 32, rsi
•  andl 0xffffffff, r9d
•  movq rcx, rax
•  movl edx, edx
•  imulq r9, rax
•  ...

insert
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
imulq rsi, rdx
... ^
delete
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

instruction
...
movl ecx, ecx
shrq 32, rsi
salq 16, rcx
movq rcx, rax
movl edx, edx
imulq r9, rax
...

opcode
...
movl ecx, ecx
shrq 32, rsi
andl 0xffffffff, r9d
movq rcx, rax
subl edx, edx
imulq r9, rax
...

operand
...
movl ecx, ecx
shrq 32, rcx
andl 0xffffffff, r9d
movq rcx, rax
movl edx, edx
imulq r9, rax
...

swap
...
movl ecx, ecx
movl edx, edx
andl 0xffffffff, r9d
movq rcx, rax
shrq 32, rsi
imulq r9, rax
...

The Secret Sauce: The Cost Function

•  Measures the quality of a rewrite with respect
to the target

•  Synthesis: cost(r; t) = eq(r; t)
•  Optimization: cost(r; t) = eq(r; t) + perf(r; t)

•  Lower cost codes should be better codes
–  Better cost functions -> better results

Engineering Constraints

•  The cost function needs to be inexpensive
–  Because we will be evaluating it billions of times

•  Idea: Use test cases
–  Compare output of target and rewrite on small set

of test inputs
–  Typically 16

49

Cost Function, Version One

•  Hamming Distance
–  Of output of target and rewrite of test cases
–  # of bits where they disagree
–  Provides useful notion of partial correctness

1111 0000 0000 0000

1111110010000010

ax bx cx dx

T

R

3

Cost Function, Version Two

•  Reward the right answer in the wrong place
•  For each output value of the target, Hamming distance

to closest matching output of the rewrite

1111 0000 0000 0000

1111110010000010

ax bx cx dx

T

R

3 + 0 0 + 12 + 13 + 1min ()

1

Correctness and Optimization

•  Measuring correctness
–  Hamming distance on outputs
–  Plus: Fast!
–  Minus: Matching a few test cases doesn’t guarantee

rewrite is correct

•  Next: Performance

52

Performance Metric

•  Latency Approximation
–  Approximate the runtime of a program by summing

the average latencies of its instructions

•  Positive
–  Fast!

•  Negative
–  Gross oversimplification
–  Ignores almost all the interesting architectural

details of a modern CISC machine

Doing It Right

•  Both the correctness and performance
metrics are fast to compute
–  But both are also approximations

•  Want to guarantee
–  We get a correct program
–  We get the fastest program we find

•  Observation
–  These checks can be more expensive if we don’t do

them for every rewrite

Formal Correctness

•  Prove formally that target = rewrite
–  For all inputs
–  Can be done using a theorem prover

•  Encode target and rewrite as logical formulas
–  Compare the formulas for equality
–  Equal formulas => Equal programs
–  If formulas are not equal, theorem prover produces a

counterexample input

Theorem Prover Example

•  Target negates register %eax
•  Rewrite fills %eax with ones
•  Why?

–  Maybe we only have a single testcase with %eax equal
to zero

Target:
neg %eax

Rewrite:
movq 0xffffffff, %eax

Theorem Prover Example

•  Define variables for the bits of the machine state after
every instruction executes

•  Write formulae describing the effects produced by
every instruction

Target:
neg %eax

Rewrite:
movq 0xffffffff, %eax

eaxo[31] = ~eaxi[31] &
eaxo[30] = ~eaxi[30] &
... &
eaxo[0] = ~eaxi[0]

eax’o[31] = 1 &
eax’o[30] = 1 &
... &
eax’o[0] = 1

Counterexample

•  A theorem prover will discover these codes are
different

•  And produce an example input proving they are
different

Target:
neg %eax

Rewrite:
movq 0xffffffff, %eax

eaxi = 0xffffffff
eaxo = 0x00000000

eax’i = 0xffffffff
eax’o = 0xffffffff

Theorem Prover Example

•  If theorem prover succeeds, the two
programs are guaranteed to be equivalent

•  If the theorem prover fails, it produces a
counterexample input
–  Can be added to the test suite and the search

procedure repeated

Performance Guarantee

•  Assemble and run rewrite on inputs
–  And measure the results
–  But this is too expensive to do all the time

•  Idea: Preserve the top-n most performant
results
–  rerank based on actual runtime behavior

Benchmarks

•  Synthesis Kernels: 25 loop-free kernels taken
from A Hacker’s Delight [gulwani 11]

•  Real World: OpenSSL 128-bit integer
multiplication montgomery multiplication kernel

•  Vector Intrinsics: BLAS Level 1 SAXPY

•  Heap Modifying: Linked List Traversal [bansal 06]

Benchmarks

•  Experiments: Target codes compiled using llvm -O0,
STOKE matches or outperforms gcc and icc with full
optimizations

Speedup

Runtime

Limitations

•  All of these experiments are on loop-free
kernels
–  But extending the approach to loops is possible

•  All of these experiments are on fixed point
values
–  Need to extend to floating point as well

63

Conclusions

•  Search-based techniques can generate much
better code!

•  Very different basis from current optimizing
compilers
–  Perform real search
–  Alow experimentation with incorrect but fast code

64

Thanks!

65

