
1

Language Based Security

Lecture 19

2

Lecture Outline

•  Beyond compilers
–  Looking at other issues in programming language

design and tools

•  C
–  Arrays
–  Exploiting buffer overruns
–  Detecting buffer overruns

Platitudes

•  Language design has influence on
–  Safety
–  Efficienty
–  Security

Recall: Platitude: A flat, dull, or trite remark,
especially one uttered as if it were fresh or profound

3

C Design Principles

•  Small language
•  Maximum efficiency
•  Safety less important

•  Designed for the world in 1972
–  Weak machines
–  Trusted networks

4

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

5

1 0 2 99

100 * sizeof(char)

C Array Operations

char buf1[100], buf2[100];

Write:

 buf1[0] = ‘a’;

Read:

 return buf2[0];

6

What’s Wrong with this Picture?

int i = 0;
for (i = 0; buf1[i] != ‘\0’; i++) {
 buf2[i] = buf1[i];
}
buf2[i] = ‘\0’

7

Indexing Out of Bounds

The following are all legal C and may generate no
run-time errors

char buffer[100];

buffer[-1] = ‘a’;
buffer[100] = ‘a’;
buffer[100000] = ‘a’;

8

Why?

•  Why does C allow out of bounds array
references?

–  Proving at compile-time that all array references
are in bounds is very difficult (impossible in C)

–  Checking at run-time that all array references are
in bounds is expensive

9

Code Generation for Arrays

buf[i] = 1; /* buf1 has type int[] */

r1 = load &buf1;
r2 = load i;
r3 = r2 * 4;
r4 = r1 + r3;
store r4, 1

(note this last is NOT a MIPS instruction)

10

Discussion

•  5 instructions worst case
•  Often &buf1 and i already in registers

–  Saves 2 instructions
•  Many machines have indirect load/stores

–  store r1[r3], 1
–  Saves 1 instruction

•  Best case 2 instructions
–  Offset calculation and memory operation

11

Code Generation for Arrays with Bounds
Checks

buf[i] = 1; /* buf1 has type int[] */

r1 = load &buf1;
r2 = load i;
r3 = r2 * 4;
if r3 < 0 then error;
r5 = load limit of buf1;
if r3 >= r5 then error;
r4 = r1 + r3;
store r4, 1
 12

Discussion

•  Lower bounds check can often be removed
–  Easy to prove statically that index is positive

•  Upper bounds check hard to remove
–  Leaves a conditional in instruction stream

•  In C, array limits not stored with array
–  Knowing the array limit for a given reference is

non-trivial

13

C vs. Java

•  C array reference typica case
–  Offset calculation
–  Memory operation (load or store)

•  Java array reference typical case
–  Offset calculation
–  Memory operation (load or store)
–  Array bounds check
–  Type compatibility check (for stores)

14

Buffer Overruns

•  A buffer overrun writes past the end of an
array

•  Buffer usually refers to a C array of char
–  But can be any array

•  So who’s afraid of a buffer overrun?
–  Can damage data structures
–  Cause a core dump
–  What else?

15

Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

16

1 0 2 99

100 * sizeof(char)

An Overrun Vulnerability

void foo(char buf1[]) {
 char buf2[100];
 int i = 0;
 for (i = 0; buf1[i] != ‘\0’; i++) {
 buff2[i] = buf1[i];
 }
 buf2[i] = ‘\0’;
}

17

An Interesting Idea

char buf[104] = { ‘ ‘,…, ‘ ‘, magic 4 chars }
foo(buf); (**)

18

Foo entry
1 0 2 99

100 * sizeof(char)

return address

(**)

Foo exit
1 0 2 99

100 * sizeof(char)

return address

magic 4 chars

Discussion

•  So we can make foo jump wherever we like.

•  How is this possible?

•  Unanticipated interaction of two features:
–  Unchecked array operations
–  Stack-allocated arrays

•  Knowledge of frame layout allows prediction of where
array and return address are stored

–  Note the “magic cast” from chars to an int address
19

The Rest of the Story

•  We can make foo jump anywhere.
•  But where is a useful place to jump?

•  Idea: Put our own code in the buffer and jump
there!

20

The Plan

char buf[104] = { 104 magic chars }
foo(buf);

21

Foo exit
1 0 2 99

100 * sizeof(char)

return address

“exec /bin/sh”

Details

•  “exec /bin/sh”
–  Easy to write in assembly code
–  Make all jumps relative

•  Be careful not to have null bytes in the code
(why?)

22

More Details

•  Overwrite return address with start of
buffer
–  Harder
–  Need to guess where buffer in called routine starts

(trail & error)
–  Pad front of buffer with NOPs

•  Guess need not be exact; just land somewhere in NOPs

23

And More Details

•  Overwrite return address
–  Don’t need to know exactly where return address

is
–  Just pad end of buffer with multiple copies of new

return address X

char buf[104] =
 “NOPS … exec /bin/sh XXXXXXXXXXXXX”
foo(buf)

24

The State of C Programming

•  Buffer overruns are common
–  Programmers must do their own bounds checking
–  Easy to forget or be off-by-one or more
–  Programs still apeear to work correctly

•  In C wrt to buffer overruns
–  Easy to do the wrong thing
–  Hard to do the right thing

25

The State of Hacking

•  Buffer overruns are the attack of choice (sort
of)
–  40-50% of new vulnerabilities are buffer overrun

exploits (though this figure varies)

•  Highly automated toolkits available to exploit
known buffer overruns
–  Google search for “buffer overruns” yields tens of

thousands of hits!

26

The Sad Reality

•  Even well-known buffer overruns are still
widely exploited
–  Hard to get people to upgrade millions of vulnerable

machines
•  And upgrading can sometimes create new vulnerabilities!

•  We assume that there are many more unknown
buffer overrun vulnerabilities
–  At least unknown to the good guys

27

Static Analysis to Detect Buffer Overruns

•  Detecting buffer overruns before distributing
code would be better

•  Idea: Build a tool similar to a type checker to
detect buffer overruns

•  Alex Aiken with David Wagner, Jeff Foster,
and Eric Brewer
–  “A First Step Toward Automated Detection of

Buffer Overrun Vulnerabilities”, NDSS 2000
28

Focus on Strings

•  Most important buffer overrun exploits are
through string buffers
–  Reading an untrusted string from the network,

keyboard, etc.

•  Focus the tool only on arrays of characters

29

Idea 1: Strings as an Abstact Data Type

•  A problem: Pointer operations & array
dereferences are very difficult to analyze
statically
–  Where does *a point?
–  What does buf[j] refer to?

•  Idea: Model effect of string library functions
directly
–  Hard code effect of strcpy, strcat, etc.

30

Idea 2: The Abstraction

•  Model buffers as pairs of integer ranges
–  Size allocated size of the buffer in bytes
–  Length number of bytes actually in use

•  Use integer ranges [x,y] = { x, x+1, … , y – 1, y }
–  Size & length cannot be computed exactly

31

The Strategy

•  For each program expression, write
constraints capturing the alloc and len of its
string subexpressions

•  Solve the constraints for the entire program

•  Check for each string variable s
len(s) <

32

