
1 

Automatic Memory Management 
(a.k.a. Garbage Collection) 

Lecture 17 
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Lecture Outine 

•  Why Automatic Memory Management? 

•  Garbage Collection 

•  Three Techniques 
–  Mark and Sweep 
–  Stop and Copy 
–  Reference Counting 
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Why Automatic Memory Management? 

•  Storage management is still a hard problem in modern 
programming 
–  Manual allocation and deallocation is difficult… 

•  C and C++ programs have many storage bugs 
–  forgetting to free unused memory (memory leak) 
–  dereferencing a dangling pointer 
–  overwriting parts of a data structure by accident 
–  and so on... 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

Assume we have an object of “red” class, and somewhere  
in the program there is a reference to some attribute of  
the object  
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

At some point the programmer frees the memory for  
the object, but forgets about the reference 
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

At some point the programmer frees the memory for  
the object, but forgets about the reference 
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

Some time later, the programmer requests memory allocation 
and is assigned the same memory, this time for an object of 
“blue” class 
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

The piece of code that holds the pointer thinks it’s still 
pointing to an object of type red.  If it writes anything using  
the pointer, it is writing garbage into the blue object 
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Why Automatic Memory Management? 
 

•  Storage bugs are hard to find 
–  Often the last bugs found, and sometimes only found long 

after production code has shipped 
–  Why? a bug can lead to a visible effect far away in time and 

program text from the source 

•  How does this happen? 

Later (possibly very much later) when information is read out 
of the blue object, there will be garbage there, that will 
likely cause my program to crash.  Not good. 
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Automatic Memory Management History 

•  This is an old problem 
–  Studied since the 1950s for LISP 

•  There are well-known techniques for 
completely automatic memory management 

•  Only became mainstream in the 1990s with 
popularity of Java 
–  Prior to that no mainstream language that used 

automatic memory managment 
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The Basic Idea 

•  When an object is created, unused space is 
automatically allocated (by run-time system) 
–  In Cool, new objects are created by new X 

•  After a while there is no more unused space 
–  At which point must reclaim space to allow 

allocation of new objects 
•  Some space is occupied by objects that will 

never be used again 
–  Of course this may not be the case, but it’s likely 

that it is 
–  This space can be freed to be reused later 
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Type Safety and Memory Management 

•  Can types prevent errors in programs with 
manual allocation and deallocation of memory? 
–   some fancy type systems (linear types) were 

designed for this purpose but they complicate 
programming significantly 

•  Currently, if you want type safety then you 
must use automatic memory management  
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Automatic Memory Management 

•  This is an old problem:  
–  studied since the 1950s for LISP 

•  There are well-known techniques for 
completely automatic memory management 

•  Became mainstream with the popularity of 
Java 
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The Basic Idea (Cont.) 

•  How can we tell whether an object will “never 
be used again”? 
–  in general, impossible to tell 
–  we will use heuristics  

•  Observation: a program can use only the 
objects that it can find: 

•  Ex. 
              let x : A ← new A in { x ← y; ... } 
–  After x ← y there is no way to access the newly 

allocated object (Why?) 
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Garbage 

•  An object x is reachable if and only if: 
–  a register contains a pointer to x, or 
–  another reachable object y contains a pointer to x 

•  Thus you can find all reachable objects by 
starting from registers and following all the 
pointers 
–  And the pointers in objects that are pointed to, etc. 
–  Note many things can be reachable by multiple paths 

•  Any unreachable object can never be used 
–  such objects are garbage 
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Reachability is an Approximation 

•  Consider the program: 
            x ← new A; 
            y ← new B 
            x ← y; 
            if alwaysTrue() then x ← new A else x.foo() fi 

  
•  Just after x ← y, but before if statement 

–  assuming y becomes dead … 
–  the first object A is unreachable 
–  the object B is reachable (through x) 
–  thus B is not garbage and is not collected 

•  but object B is never going to be used 

x 

y 

A 

B 
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Reachability is an Approximation 

•  Consider the program: 
            x ← new A; 
            y ← new B 
            x ← y; 
            if alwaysTrue() then x ← new A else x.foo() fi 

  
•  Just after x ← y, but before if statement 

–  assuming y becomes dead … 
•  never used after this use of y 

–  the first object A is unreachable 
–  the object B is reachable (through x) 
–  thus B is not garbage and is not collected 

•  but object B is never going to be used 
•  Because if assigns new pointer to x, and y is dead 

x 

y 

A 

B 
assume  
garbage 
collected  
here 
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Reachability is an Approximation 

•  Consider the program: 
            x ← new A; 
            y ← new B 
            x ← y; 
            if alwaysTrue() then x ← new A else x.foo() fi 

  
•  Thus reachability is an approximation 

–  What we’re really interested in is objects that will 
not be used again 

–  Some objects deemed reachable will actually never 
be used again 

x 

y 

A 

B 
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Tracing Reachable Values in coolc 

•  In coolc, the only register is the accumulator 
–  it points to an object 
–  and this object may point to other objects, etc. 
–  So we have to trace through all of these 

•  The stack is more complex 
–  each stack frame contains pointers 

•  e.g., method parameters 
–  each stack frame also contains non-pointers 

•  e.g., return address 
–  if we know the layout of the frame we can find the pointers in it 

•  And of course compiler decides on the layout of the frame, so it does know 
the layout 

•  It needs to keep track of which frame entries are pointers 
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A Simple Example 

•  In coolc we start tracing from acc and SP 
–  These are called the roots: in garbage collection 

terminology, the registers from which you begin 
tracing out all the reachable objects 

•  Note B and D are unreachable from acc and stack 
–  Thus we can reuse their storage 

A B C 

Frame 1 Frame 2 

D E acc 

SP 
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A Simple Example 

•  In coolc we start tracing from acc and SP 
–  These are called the roots: in garbage collection 

terminology, the registers from which you begin 
tracing out all the reachable objects 

•  Note B and D are unreachable from acc and stack 
–  Note also that just because object has a pointer to it, 

doesn’t mean it’s reachable (e.g., D).  Only pointers to it 
could be from unreachable objects 

A B C 

Frame 1 Frame 2 

D E acc 

SP 
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Elements of Garbage Collection 

•  Every garbage collection scheme has the 
following steps 
1.  Allocate space as needed for new objects 
2.  When space runs out: 

a)  Compute what objects might be used again 
(generally by tracing objects reachable from a 
set of “root” registers) 

b) Free the space used by objects not found in (a) 

•  Some strategies perform garbage collection 
before the space actually runs out 
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Three General Garbage Collection Techniques 

•  Mark and sweep 

•  Stop and copy 

•  Reference counting 
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Mark and Sweep 

•  When memory runs out, GC executes two 
phases 
–  the mark phase: traces reachable objects 
–  the sweep phase: collects garbage objects 

•  Every object has an extra bit: the mark bit 
–  reserved for memory management 

•  used only by garbage collector 
–  initially the mark bit for each object is set to 0 
–  set to 1 for the reachable objects in the mark 

phase 
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The Mark Phase 

let todo = { all roots } 
while todo ≠ ∅ do 
     pick v ∈ todo 
     todo ← todo - { v } 
     if mark(v) = 0 then      (* v is unmarked yet *) 
         mark(v) ← 1 
         let v1,...,vn be the pointers contained in v 
         todo ← todo ∪ {v1,...,vn} 
    fi 
od 

“worklist-based” algorithm, 
with worklist initially the set 
of all the roots 
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The Mark Phase 

let todo = { all roots } 
while todo ≠ ∅ do 
     pick v ∈ todo 
     todo ← todo - { v } 
     if mark(v) = 0 then      (* v is unmarked yet *) 
         mark(v) ← 1 
         let v1,...,vn be the pointers contained in v 
         todo ← todo ∪ {v1,...,vn} 
    fi 
od 

note if v is already marked 
we do nothing except drop it  
from todo list 
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The Sweep Phase 

•  The sweep phase scans the heap looking for 
objects with mark bit 0 
–  these objects were not visited in the mark phase 
–  they are garbage 

•  Any such object is added to the free list 

•  The objects with a mark bit 1 have their mark 
bit reset to 0 
–  So they are ready for the next round of garbage 

collection 
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The Sweep Phase (Cont.) 

(* sizeof(p) is the size of block starting at p *) 
p ← bottom of heap 
while p < top of heap do 
   if mark(p) = 1 then  
       mark(p) ← 0 
   else 
       add block p...(p+sizeof(p)-1) to freelist 
   fi 
   p ← p + sizeof(p) 
od 

This is the purpose of the size field in cool objects: so garbage 
collector can know size of object during sweep phase 
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Mark and Sweep Example 

A B C D F root E 

free 

0 0 0 0 0 0 

A B C D F root E 

free 

1 0 1 0 0 1 
After mark: 

A B C D F root E 

free 

0 0 0 0 0 0 

After sweep: 

assume only a single root, and free list a linked list of available 
space (here, only one object on it at start) 



Simple, right? 

Well, maybe not… 

30 
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Details 

•  While conceptually simple, this algorithm has a 
number of tricky details 
–  typical of GC algorithms 

•  A serious problem with the mark phase (also 
typical of GC algorithms) 
–  it is invoked when we are out of space 
–  yet it needs space to construct the todo list 
–  the size of the todo list is unbounded so we cannot 

reserve space for it a priori 
•  and in practice it can be fairly large 
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Mark and Sweep: Details 

•  The todo list is used as an auxiliary data 
structure to perform the reachability analysis 

•  There is a trick that allows the auxiliary data 
to be stored in the objects themselves 
–  pointer reversal: when a pointer is followed it is 

reversed to point to its parent 
–  Allows us to track which objects in the heap still 

need to be processed without having to use any 
extra space   
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Mark and Sweep: Details 

•  Similarly, the free list is stored in the free 
objects themselves 
–  E.g., the first part of a block of memory stores the 

size of the block of memory, the second part 
stores a pointer to the next block of free space on 
the list 

size size sihellllllllllze size size sihellllllllllze 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 

root 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 

as we move to 
next object, mark 
it, then reverse pointer 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 

when no more pointer, 
follow reverse pointers 
back, restoring original 
pointers as we go 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 

now follow other path 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 

and again reverse pointers 
back to root 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 
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Pointer Reversal Example 

•  So assume we have some objects, and we want 
to track reachability, but without keeping a 
todo list in a separate data structure 



49 

Pointer Reversal Example 

•  Essentially, what pointer reversal does is help 
us maintain the stack for a depth-first search 
of the graph 
–  Reverse pointers allow us to do the backtracking  
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Evaluation of Mark and Sweep 

•  Space for a new object is allocated from the free list 
–  have to be sure to pick a block (from the free list) that is 

large enough to hold the object that we’re allocating  
–  an area of the necessary size is allocated from that block 

•  the left-over is put back in the free list 

•  Because of this, mark and sweep can fragment the 
memory 
–  Might end up with lots of little bits of left over memory, 

maybe none of which are big enough to actually hold an object 
–  So important for mark and sweep to merge free blocks 

whenever possible (e.g., if two adjacent blocks end up on free 
list) 

 



51 

Evaluation of Mark and Sweep 

•  Space for a new object is allocated from the free list 
–  have to be sure to pick a block (from the free list) that is 

large enough to hold the object that we’re allocating  
–  an area of the necessary size is allocated from that block 

•  the left-over is put back in the free list 

 
•  Advantage (perhaps biggest advantage of mark and 

sweep): objects are not moved during GC 
–  no need to update the pointers to objects 
–  thus it’s actually possible to adapt mark and sweep for 

languages like C and C++ 
•  Can’t move objects in C and  C++ because pointer address is part of their 

semantics 
•  And people have built conservative mark and sweep garbage collectors 

for C and C++ 
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Another Technique: Stop and Copy 

•  In this technique, memory is organized into 
two areas 
–  old space: used for allocation 
–  new space: only used as a reserve for GC  

heap pointer 

old space new space 

•  So first issue: program can only use half the 
space 
–  Some more sophisticated S & C methods allow 

more, but still significant reduction  
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Another Technique: Stop and Copy 

•  The way allocation works: 
–  heap pointer points to the next free word in the old 

space 
•  allocation just advances the heap pointer 
•  Everything to the left of the heap pointer is already in use 

–  pointer progresses through old space as objects 
are allocated 

•  So one advantage of S & C is a very simple and fast 
allocation strategy 

heap pointer 

old space new space 
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Stop and Copy Garbage Collection 

•  GC starts when the old space is full 

•  Copies all reachable objects from old space 
into new space 
–  beauty of this: garbage is left behind 
–  after the copy phase the new space uses less space 

than the old one before the collection 
•  because you left the garbage behind 

•  After the copy the roles of the old and new 
spaces are reversed and the program resumes 
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Example of Stop and Copy Garbage Collection 

A B C D F root E 

Before collection: 

new space 

A C F 

root 

new space 

After collection: 

free 

heap pointer 

Note that when copying, we must also change pointers, 
so, e.g., the copy of A points to the copy of C. 
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Implementation of Stop and Copy 

•  We need to find all the reachable objects, as for mark 
and sweep 

•  As we find a reachable object we copy it into the new 
space 
–  And we have to find and fix ALL pointers pointing to it! 
–  It’s not obvious how to do this, because when you find an 

object, you can’t see all the pointers that point into that 
object! 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 
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Implementation of Stop and Copy 
 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 

A 
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Implementation of Stop and Copy 
 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 

A A 
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Implementation of Stop and Copy 
 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 

A 

forwarding ptr 

We place a forwarding pointer in a part of the old object 
(always same part of the object), along with a mark that  
indicates the object has been copied  
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Implementation of Stop and Copy 
 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 

A 

forwarding ptr 

If later in GC we find a pointer to the old object,  
we follow the forwarding pointer, the new address to 
update the old pointer 

old 
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Implementation of Stop and Copy 
 

•  Idea: As we copy an object we store in the old copy a 
forwarding pointer to the new copy 
–  when we later reach an object with a forwarding pointer we 

know it was already copied 

A 

forwarding ptr 

If later in GC we find a pointer to the old object,  
we follow the forwarding pointer, the new address to 
update the old pointer 

old 
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Implementation of Stop and Copy (Cont.) 

•  Just as with mark and sweep we have the issue 
of how to implement the traversal without 
using extra space 
–  Because these GC algorithms only get used in low 

memory situations, so you can’t assume memory to 
build GC data structures 

copied objects  
whose pointer  
fields were NOT 
followed 

empty 

alloc scan 

copied 

copied objects  
whose pointer 
fields were followed 
 

copied and scanned 

start 
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Implementation of Stop and Copy (Cont.) 

•  Just as with mark and sweep we have the issue 
of how to implement the traversal without 
using extra space 
–  Really need these algorithms to work in small 

constant amount of space 

copied objects  
whose pointer  
fields were NOT  
followed 

empty 

alloc scan 

copied 

copied objects  
whose pointer 
fields were followed 

copied and scanned 

start 
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Implementation of Stop and Copy (Cont.) 

•  Just as with mark and sweep we have the issue 
of how to implement the traversal without 
using extra space 

•  The following trick solves the problem: 
–  partition the new space in three contiguous regions 

copied objects  
whose pointer  
fields were NOT  
(yet) followed (not 
“scanned”) 

empty 

alloc scan 

copied 

copied objects  
whose pointer 
fields were followed 
(“copied and scanned”) 

copied and scanned 

start 
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Implementation of Stop and Copy (Cont.) 

•  Just as with mark and sweep we have the issue 
of how to implement the traversal without 
using extra space 

•  The following trick solves the problem: 
–  partition the new space in three contiguous regions 

so this middle section is really 
the “work list” (these objects 
might point to objects that 
have not yet been copied) 

empty 

alloc scan 

copied copied and scanned 

start 
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Stop and Copy. Step-by-step Example (1) 

A B C D F root E new space 

•  Before garbage collection 

alloc 

scan 
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Stop and Copy. Example (Step 2) 

A B C D F root E 

•  Step 1: Copy the objects (bit-by-bit copy) 
pointed to by roots and set forwarding 
pointers 

A 

alloc 

scan 

Note that the copy of A points to C in the old space 
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Stop and Copy. Example (Step 2) 

A B C D F root E 

•  Step 1: Copy the objects (bit-by-bit copy) 
pointed to by roots and set forwarding 
pointers 

A 

scan 

alloc 

Note also that we’ve marked A (it’s grayed out) 
and left a forwarding pointer (dashed line) 
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Stop and Copy. Example (Step 3) 

A B C D F root E 

•  Step 2: Follow the pointer in the next 
unscanned object (A) 
–  copy the pointed-to objects (just C in this case) 
–  fix the pointer in A  
–  set forwarding pointer 

A 

scan 
alloc 

C 

How do we know there is more to do?  If scan and alloc are 
different, there is work to be done (whatever is between them) 
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Stop and Copy. Example (Step 3) 

A B C D F root E 

•  Step 2: Follow the pointer in the next 
unscanned object (A) 
–  copy the pointed-to objects (just C in this case) 
–  fix the pointer in A  
–  set forwarding pointer 

A 

scan 
alloc 

C 

Note movement of scan and alloc pointers 
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Stop and Copy. Example (Step 4) 

A B C D F root E 

•  Follow the pointer in the next unscanned 
object (C) 
–  copy the pointed objects (F in this case) 

A 

scan 
alloc 

C F 
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Stop and Copy. Example (Step 5) 

A B C D F root E 

•  Follow the pointer in the next unscanned 
object (F) 
–  the pointed object (A) was already copied. Set the 

pointer same as the forwarding pointer 

A 

scan 
alloc 

C F 

That is, instead of copying A again, we just set the pointer from 
F to the old location of A to the value of the forwarding pointer of A 
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Stop and Copy. Example (Step 6) 

root 

•  Since scan caught up with alloc we are done 
•  Swap the role of the spaces and resume the 

program 

A 

scan 
alloc 

C F new space 

We now have a complete copy of the old reachability graph  
but using less space.   
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The Stop and Copy Algorithm 

while scan ≠ alloc do 
     let O be the object at scan pointer 
     for each pointer p contained in O do 
         find O’ that p points to  
         if O’ is without a forwarding pointer 
               copy O’ to new space (update alloc pointer) 
               set 1st word of old O’ to point to the new copy 
               mark old object as copied 
               change p to point to the new copy of O’ 
         else  
               set p in O equal to the forwarding pointer  
         fi 
     end for 
     increment scan pointer to the next object 
od 
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Details of Stop and Copy 

•  As with mark and sweep, we must be able to 
tell how large an object is when we scan it 
–  and we must also know where the pointers are 

inside the object 

•  We must also copy any objects pointed to by 
the stack and update pointers in the stack 
–  this can be an expensive operation 
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Evauation of Stop and Copy 

•  Stop and copy is generally believed to be the fastest 
GC technique 

•  Allocation is very cheap 
–  just increment the heap pointer 

•  Collection is relatively cheap 
–  especially if there is a lot of garbage 
–  only touch reachable objects 

•  But some languages do not allow copying  
–  C, C++ 
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Why Doesn’t C Allow Copying? 

•  Garbage collection relies on being able to find 
all reachable objects 
–  and it needs to find all pointers in an object 

•  In C or C++ it is impossible to identify the 
contents of objects in memory with 100% 
reliability 
–  E.g., a sequence of two memory words might be 

•  A list cell (with data and next fields) 
•  A binary tree node (with left and right fields) 

–  Thus we cannot tell where all the pointers are 
•  Effectively this problem is a result of the weakness of the 

C, C++ type system   
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Conservative Garbage Collection 

•  Insight: it is Ok to be conservative (which allows us to 
extend the method to languages like C, C++) 
–  if a memory word looks like a pointer it is OK to consider it a 

pointer 
•  it must be aligned (e.g., address a multiple of 4) 
•  it must point to a valid address in the data segment 
•  these two requirements rule out most stuff in memory 

–  all such pointers are followed and thus we overestimate the 
set of reachable objects 

–  And recall that in GC, reachability is an approximation and not 
exact  

–  So we’re going to likely keep around some things that aren’t 
necessary, but that’s OK 
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Conservative Garbage Collection 

•  Insight: it is Ok to be conservative (which allows us to 
extend the method to languages like C, C++) 
–  if a memory word looks like a pointer it is OK to consider it a 

pointer 
•  it must be aligned (e.g., address a multiple of 4) 
•  it must point to a valid address in the data segment 
•  these two requirements rule out most stuff in memory 

•  But with this trick, we cannot move objects because 
we cannot update pointers to them 
–  we’re not exactly sure whether what we think is a pointer 

actually IS a pointer.  what if what we think is a pointer is 
actually an account number?  And we change it!  That’s bad 

–  So this trick can’t be used with stop and copy.  Can only be 
used with mark and sweep 
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Reference Counting 

•  Rather that wait for memory to be exhausted, 
try to collect an object when there are no 
more pointers to it 

•  Store in each object the number of pointers 
to that object 
–  this is the reference count 
–  Each object has a dedicated field for this count 

•  Each assignment operation manipulates the 
reference count 
–  If the count drops to zero, then object can be 

freed  
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Implementation of Reference Counting 

•  new returns an object with reference count 1 
•  Let rc(x) be the reference count of x 

•  Assume x, y point to objects o, p 

•  Every assignment x ← y must be changed to: 
  rc(p) ← rc(p) + 1 
  rc(o) ← rc(o) - 1 
  if(rc(o) == 0) then mark o as free 
  x ← y 

x 

y 

o 

p 

check o because 
we dropped its  
reference count 
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Evaluation of Reference Counting 

•  Advantages: 
–  easy to implement 

•  Modifications to code are clear.  Moreover code 
generation can simply be modified to generate the 
appropriate reference counting code 

–  collects garbage incrementally without large pauses 
in the execution 

•  So for applications where large pauses are problematic 
(e.g., real-time apps, interactive apps), reference counting 
can really help (it minimizes the length of the longest 
pause for GC) 
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  manipulating reference counts at each assignment 
is very slow 

•  two updates to reference counts, a conditional 
(effectively introducing conditional into every assignment 
in the program), then the assignment itself 

•  Overhead: taking every single assignment in program and 
blowing up its cost by about a 4-5 times – this has a very 
noticeable effect on the performance of many programs 

–  Overhead can be slightly eased by optimizing updates 
to the reference counters (e.g., compiler combines two 
updates into a single one if they both occur in same 
basic block) though tricky to get this right (and 
trickier the more overhead you’re trying to save) 
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  cannot directly collect circular structures: 

x 

1 

2 

Numbers are reference counts 
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  cannot directly collect circular structures: 

x 

1 

2 

Consider now assignment x ß null  
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  cannot directly collect circular structures: 

x 

1 

1 

The two objects are unreachable, but GC can’t collect them 
because both have reference count of 1  
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  cannot directly collect circular structures: 

x 

1 

1 

What GC can’t see is that both of the references are 
from unreachable objects! 
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Evaluation of Reference Counting 
 
•  Disadvantages: 

–  cannot directly collect circular structures 
–  So, how to deal with this? 

•  Programmer has to remember this realize that if a 
circular structure is going to become unreachable, try to 
somehow break the circularity (e.g., by assigning null to 
bottom object before assigning null to x) OR  

•  Back reference counting with some other GC technique 
that CAN collect cycles 

–  So in many reference counting GC systems, a system is 
set up where every once in a while a mark and sweep 
cycle is run to collect all the unreachable circular data 
structures 
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Evaluation of Garbage Collection 

•  Automatic memory management prevents 
serious storage bugs 
–  So overall it’s a great thing – prevents some of the 

most difficult bugs in programming 
–  So when writing in a garbage collected language, 

there are whole classes of problems that the 
programmer does not have to worry about 

•  which is a boost to productivity 
–  Basically, if your program is a good fit for GC, then 

you’d be crazy not to use that kind of support 
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Evaluation of Garbage Collection 

•  But downside is that GC reduces programmer 
control 
–  e.g., no control of layout of data in memory 
–  e.g., not control of when memory is deallocated 

•  So no control over how much memory your program is using 
–  Really problematic for high-end data processing 

and scientific applications 
•  Use a lot of data and need to make very efficient use of 

memory 
•  People in these domains usually still use manual memory 

management 
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Evaluation of Garbage Collection 

•  Also pauses problematic in real-time applications 
–  E.g., embedded systems controlling dangerous 

machinery have to have guaranteed response times 
–  This being said, there has been much progress in the 

last few years on “real-time” garbage collectors 
•  Memory leaks possible (even likely) 

–  GC prevents you from corrupting your memory, but 
really not from hanging onto too much memory (and 
possibly affecting the performance of your program 
dramatically) 

–  Leaks likely because programmer not as aware of how 
memory being used 



92 

Example 

•  In Java, suppose variable x in a compiler points 
to the AST of a program 
–  This is a huge data structure 
–  But once intermediate code is generated, compiler no 

longer requires AST 
–  But AST won’t be collected, because x points to it! 
–  What programmer should do (but many don’t) is assign 

null to x once the AST is no longer needed 
–  It’s very common in production Java programs to have 

this kind of memory leak because programmer just 
forgot about it 
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Evaluation of Garbage Collection 

•  Garbage collection is very important 
–  Every programmer should be aware of its benefits and 

costs 
–  It’s also a very interesting aspect of the implementation 

of programming languages 
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Evaluation of Garbage Collection 

•  There are much more advanced garbage collection 
algorithms than what we have discussed: 
–  concurrent: allow the program to run while the collection 

is happening 
–  generational: do not scan long-lived objects at every 

collection 
•  Once we’ve seen such an object in a few iterations of GC, 

assume it’s going to be around a while and skip it for a few 
iterations (they are put in a separate area that is collected less 
frequently) 

–  real time: bound the length of pauses 
–  parallel: several collectors working in parallel 


