
1

Automatic Memory Management
(a.k.a. Garbage Collection)

Lecture 17

2

Lecture Outine

•  Why Automatic Memory Management?

•  Garbage Collection

•  Three Techniques
–  Mark and Sweep
–  Stop and Copy
–  Reference Counting

3

Why Automatic Memory Management?

•  Storage management is still a hard problem in modern
programming
–  Manual allocation and deallocation is difficult…

•  C and C++ programs have many storage bugs
–  forgetting to free unused memory (memory leak)
–  dereferencing a dangling pointer
–  overwriting parts of a data structure by accident
–  and so on...

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

4

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

Assume we have an object of “red” class, and somewhere
in the program there is a reference to some attribute of
the object

5

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

At some point the programmer frees the memory for
the object, but forgets about the reference

6

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

At some point the programmer frees the memory for
the object, but forgets about the reference

7

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

Some time later, the programmer requests memory allocation
and is assigned the same memory, this time for an object of
“blue” class

8

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

The piece of code that holds the pointer thinks it’s still
pointing to an object of type red. If it writes anything using
the pointer, it is writing garbage into the blue object

9

Why Automatic Memory Management?

•  Storage bugs are hard to find
–  Often the last bugs found, and sometimes only found long

after production code has shipped
–  Why? a bug can lead to a visible effect far away in time and

program text from the source

•  How does this happen?

Later (possibly very much later) when information is read out
of the blue object, there will be garbage there, that will
likely cause my program to crash. Not good.

10

Automatic Memory Management History

•  This is an old problem
–  Studied since the 1950s for LISP

•  There are well-known techniques for
completely automatic memory management

•  Only became mainstream in the 1990s with
popularity of Java
–  Prior to that no mainstream language that used

automatic memory managment

11

The Basic Idea

•  When an object is created, unused space is
automatically allocated (by run-time system)
–  In Cool, new objects are created by new X

•  After a while there is no more unused space
–  At which point must reclaim space to allow

allocation of new objects
•  Some space is occupied by objects that will

never be used again
–  Of course this may not be the case, but it’s likely

that it is
–  This space can be freed to be reused later

12

Type Safety and Memory Management

•  Can types prevent errors in programs with
manual allocation and deallocation of memory?
–  some fancy type systems (linear types) were

designed for this purpose but they complicate
programming significantly

•  Currently, if you want type safety then you
must use automatic memory management

13

Automatic Memory Management

•  This is an old problem:
–  studied since the 1950s for LISP

•  There are well-known techniques for
completely automatic memory management

•  Became mainstream with the popularity of
Java

14

The Basic Idea (Cont.)

•  How can we tell whether an object will “never
be used again”?
–  in general, impossible to tell
–  we will use heuristics

•  Observation: a program can use only the
objects that it can find:

•  Ex.
 let x : A ← new A in { x ← y; ... }
–  After x ← y there is no way to access the newly

allocated object (Why?)

15

Garbage

•  An object x is reachable if and only if:
–  a register contains a pointer to x, or
–  another reachable object y contains a pointer to x

•  Thus you can find all reachable objects by
starting from registers and following all the
pointers
–  And the pointers in objects that are pointed to, etc.
–  Note many things can be reachable by multiple paths

•  Any unreachable object can never be used
–  such objects are garbage

16

Reachability is an Approximation

•  Consider the program:
 x ← new A;
 y ← new B
 x ← y;
 if alwaysTrue() then x ← new A else x.foo() fi

•  Just after x ← y, but before if statement

–  assuming y becomes dead …
–  the first object A is unreachable
–  the object B is reachable (through x)
–  thus B is not garbage and is not collected

•  but object B is never going to be used

x

y

A

B

17

Reachability is an Approximation

•  Consider the program:
 x ← new A;
 y ← new B
 x ← y;
 if alwaysTrue() then x ← new A else x.foo() fi

•  Just after x ← y, but before if statement

–  assuming y becomes dead …
•  never used after this use of y

–  the first object A is unreachable
–  the object B is reachable (through x)
–  thus B is not garbage and is not collected

•  but object B is never going to be used
•  Because if assigns new pointer to x, and y is dead

x

y

A

B
assume
garbage
collected
here

18

Reachability is an Approximation

•  Consider the program:
 x ← new A;
 y ← new B
 x ← y;
 if alwaysTrue() then x ← new A else x.foo() fi

•  Thus reachability is an approximation

–  What we’re really interested in is objects that will
not be used again

–  Some objects deemed reachable will actually never
be used again

x

y

A

B

19

Tracing Reachable Values in coolc

•  In coolc, the only register is the accumulator
–  it points to an object
–  and this object may point to other objects, etc.
–  So we have to trace through all of these

•  The stack is more complex
–  each stack frame contains pointers

•  e.g., method parameters
–  each stack frame also contains non-pointers

•  e.g., return address
–  if we know the layout of the frame we can find the pointers in it

•  And of course compiler decides on the layout of the frame, so it does know
the layout

•  It needs to keep track of which frame entries are pointers

20

A Simple Example

•  In coolc we start tracing from acc and SP
–  These are called the roots: in garbage collection

terminology, the registers from which you begin
tracing out all the reachable objects

•  Note B and D are unreachable from acc and stack
–  Thus we can reuse their storage

A B C

Frame 1 Frame 2

D E acc

SP

21

A Simple Example

•  In coolc we start tracing from acc and SP
–  These are called the roots: in garbage collection

terminology, the registers from which you begin
tracing out all the reachable objects

•  Note B and D are unreachable from acc and stack
–  Note also that just because object has a pointer to it,

doesn’t mean it’s reachable (e.g., D). Only pointers to it
could be from unreachable objects

A B C

Frame 1 Frame 2

D E acc

SP

22

Elements of Garbage Collection

•  Every garbage collection scheme has the
following steps
1.  Allocate space as needed for new objects
2.  When space runs out:

a)  Compute what objects might be used again
(generally by tracing objects reachable from a
set of “root” registers)

b) Free the space used by objects not found in (a)

•  Some strategies perform garbage collection
before the space actually runs out

23

Three General Garbage Collection Techniques

•  Mark and sweep

•  Stop and copy

•  Reference counting

24

Mark and Sweep

•  When memory runs out, GC executes two
phases
–  the mark phase: traces reachable objects
–  the sweep phase: collects garbage objects

•  Every object has an extra bit: the mark bit
–  reserved for memory management

•  used only by garbage collector
–  initially the mark bit for each object is set to 0
–  set to 1 for the reachable objects in the mark

phase

25

The Mark Phase

let todo = { all roots }
while todo ≠ ∅ do
 pick v ∈ todo
 todo ← todo - { v }
 if mark(v) = 0 then (* v is unmarked yet *)
 mark(v) ← 1
 let v1,...,vn be the pointers contained in v
 todo ← todo ∪ {v1,...,vn}
 fi
od

“worklist-based” algorithm,
with worklist initially the set
of all the roots

26

The Mark Phase

let todo = { all roots }
while todo ≠ ∅ do
 pick v ∈ todo
 todo ← todo - { v }
 if mark(v) = 0 then (* v is unmarked yet *)
 mark(v) ← 1
 let v1,...,vn be the pointers contained in v
 todo ← todo ∪ {v1,...,vn}
 fi
od

note if v is already marked
we do nothing except drop it
from todo list

27

The Sweep Phase

•  The sweep phase scans the heap looking for
objects with mark bit 0
–  these objects were not visited in the mark phase
–  they are garbage

•  Any such object is added to the free list

•  The objects with a mark bit 1 have their mark
bit reset to 0
–  So they are ready for the next round of garbage

collection

28

The Sweep Phase (Cont.)

(* sizeof(p) is the size of block starting at p *)
p ← bottom of heap
while p < top of heap do
 if mark(p) = 1 then
 mark(p) ← 0
 else
 add block p...(p+sizeof(p)-1) to freelist
 fi
 p ← p + sizeof(p)
od

This is the purpose of the size field in cool objects: so garbage
collector can know size of object during sweep phase

29

Mark and Sweep Example

A B C D F root E

free

0 0 0 0 0 0

A B C D F root E

free

1 0 1 0 0 1
After mark:

A B C D F root E

free

0 0 0 0 0 0

After sweep:

assume only a single root, and free list a linked list of available
space (here, only one object on it at start)

Simple, right?

Well, maybe not…

30

31

Details

•  While conceptually simple, this algorithm has a
number of tricky details
–  typical of GC algorithms

•  A serious problem with the mark phase (also
typical of GC algorithms)
–  it is invoked when we are out of space
–  yet it needs space to construct the todo list
–  the size of the todo list is unbounded so we cannot

reserve space for it a priori
•  and in practice it can be fairly large

32

Mark and Sweep: Details

•  The todo list is used as an auxiliary data
structure to perform the reachability analysis

•  There is a trick that allows the auxiliary data
to be stored in the objects themselves
–  pointer reversal: when a pointer is followed it is

reversed to point to its parent
–  Allows us to track which objects in the heap still

need to be processed without having to use any
extra space

33

Mark and Sweep: Details

•  Similarly, the free list is stored in the free
objects themselves
–  E.g., the first part of a block of memory stores the

size of the block of memory, the second part
stores a pointer to the next block of free space on
the list

size size sihellllllllllze size size sihellllllllllze

34

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

root

35

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

36

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

as we move to
next object, mark
it, then reverse pointer

37

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

38

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

39

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

when no more pointer,
follow reverse pointers
back, restoring original
pointers as we go

40

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

41

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

42

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

now follow other path

43

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

44

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

45

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

46

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

and again reverse pointers
back to root

47

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

48

Pointer Reversal Example

•  So assume we have some objects, and we want
to track reachability, but without keeping a
todo list in a separate data structure

49

Pointer Reversal Example

•  Essentially, what pointer reversal does is help
us maintain the stack for a depth-first search
of the graph
–  Reverse pointers allow us to do the backtracking

50

Evaluation of Mark and Sweep

•  Space for a new object is allocated from the free list
–  have to be sure to pick a block (from the free list) that is

large enough to hold the object that we’re allocating
–  an area of the necessary size is allocated from that block

•  the left-over is put back in the free list

•  Because of this, mark and sweep can fragment the
memory
–  Might end up with lots of little bits of left over memory,

maybe none of which are big enough to actually hold an object
–  So important for mark and sweep to merge free blocks

whenever possible (e.g., if two adjacent blocks end up on free
list)

51

Evaluation of Mark and Sweep

•  Space for a new object is allocated from the free list
–  have to be sure to pick a block (from the free list) that is

large enough to hold the object that we’re allocating
–  an area of the necessary size is allocated from that block

•  the left-over is put back in the free list

•  Advantage (perhaps biggest advantage of mark and

sweep): objects are not moved during GC
–  no need to update the pointers to objects
–  thus it’s actually possible to adapt mark and sweep for

languages like C and C++
•  Can’t move objects in C and C++ because pointer address is part of their

semantics
•  And people have built conservative mark and sweep garbage collectors

for C and C++

52

Another Technique: Stop and Copy

•  In this technique, memory is organized into
two areas
–  old space: used for allocation
–  new space: only used as a reserve for GC

heap pointer

old space new space

•  So first issue: program can only use half the
space
–  Some more sophisticated S & C methods allow

more, but still significant reduction

53

Another Technique: Stop and Copy

•  The way allocation works:
–  heap pointer points to the next free word in the old

space
•  allocation just advances the heap pointer
•  Everything to the left of the heap pointer is already in use

–  pointer progresses through old space as objects
are allocated

•  So one advantage of S & C is a very simple and fast
allocation strategy

heap pointer

old space new space

54

Stop and Copy Garbage Collection

•  GC starts when the old space is full

•  Copies all reachable objects from old space
into new space
–  beauty of this: garbage is left behind
–  after the copy phase the new space uses less space

than the old one before the collection
•  because you left the garbage behind

•  After the copy the roles of the old and new
spaces are reversed and the program resumes

55

Example of Stop and Copy Garbage Collection

A B C D F root E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

Note that when copying, we must also change pointers,
so, e.g., the copy of A points to the copy of C.

56

Implementation of Stop and Copy

•  We need to find all the reachable objects, as for mark
and sweep

•  As we find a reachable object we copy it into the new
space
–  And we have to find and fix ALL pointers pointing to it!
–  It’s not obvious how to do this, because when you find an

object, you can’t see all the pointers that point into that
object!

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

57

Implementation of Stop and Copy

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

A

58

Implementation of Stop and Copy

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

A A

59

Implementation of Stop and Copy

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

A

forwarding ptr

We place a forwarding pointer in a part of the old object
(always same part of the object), along with a mark that
indicates the object has been copied

60

Implementation of Stop and Copy

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

A

forwarding ptr

If later in GC we find a pointer to the old object,
we follow the forwarding pointer, the new address to
update the old pointer

old

61

Implementation of Stop and Copy

•  Idea: As we copy an object we store in the old copy a
forwarding pointer to the new copy
–  when we later reach an object with a forwarding pointer we

know it was already copied

A

forwarding ptr

If later in GC we find a pointer to the old object,
we follow the forwarding pointer, the new address to
update the old pointer

old

62

Implementation of Stop and Copy (Cont.)

•  Just as with mark and sweep we have the issue
of how to implement the traversal without
using extra space
–  Because these GC algorithms only get used in low

memory situations, so you can’t assume memory to
build GC data structures

copied objects
whose pointer
fields were NOT
followed

empty

alloc scan

copied

copied objects
whose pointer
fields were followed

copied and scanned

start

63

Implementation of Stop and Copy (Cont.)

•  Just as with mark and sweep we have the issue
of how to implement the traversal without
using extra space
–  Really need these algorithms to work in small

constant amount of space

copied objects
whose pointer
fields were NOT
followed

empty

alloc scan

copied

copied objects
whose pointer
fields were followed

copied and scanned

start

64

Implementation of Stop and Copy (Cont.)

•  Just as with mark and sweep we have the issue
of how to implement the traversal without
using extra space

•  The following trick solves the problem:
–  partition the new space in three contiguous regions

copied objects
whose pointer
fields were NOT
(yet) followed (not
“scanned”)

empty

alloc scan

copied

copied objects
whose pointer
fields were followed
(“copied and scanned”)

copied and scanned

start

65

Implementation of Stop and Copy (Cont.)

•  Just as with mark and sweep we have the issue
of how to implement the traversal without
using extra space

•  The following trick solves the problem:
–  partition the new space in three contiguous regions

so this middle section is really
the “work list” (these objects
might point to objects that
have not yet been copied)

empty

alloc scan

copied copied and scanned

start

66

Stop and Copy. Step-by-step Example (1)

A B C D F root E new space

•  Before garbage collection

alloc

scan

67

Stop and Copy. Example (Step 2)

A B C D F root E

•  Step 1: Copy the objects (bit-by-bit copy)
pointed to by roots and set forwarding
pointers

A

alloc

scan

Note that the copy of A points to C in the old space

68

Stop and Copy. Example (Step 2)

A B C D F root E

•  Step 1: Copy the objects (bit-by-bit copy)
pointed to by roots and set forwarding
pointers

A

scan

alloc

Note also that we’ve marked A (it’s grayed out)
and left a forwarding pointer (dashed line)

69

Stop and Copy. Example (Step 3)

A B C D F root E

•  Step 2: Follow the pointer in the next
unscanned object (A)
–  copy the pointed-to objects (just C in this case)
–  fix the pointer in A
–  set forwarding pointer

A

scan
alloc

C

How do we know there is more to do? If scan and alloc are
different, there is work to be done (whatever is between them)

70

Stop and Copy. Example (Step 3)

A B C D F root E

•  Step 2: Follow the pointer in the next
unscanned object (A)
–  copy the pointed-to objects (just C in this case)
–  fix the pointer in A
–  set forwarding pointer

A

scan
alloc

C

Note movement of scan and alloc pointers

71

Stop and Copy. Example (Step 4)

A B C D F root E

•  Follow the pointer in the next unscanned
object (C)
–  copy the pointed objects (F in this case)

A

scan
alloc

C F

72

Stop and Copy. Example (Step 5)

A B C D F root E

•  Follow the pointer in the next unscanned
object (F)
–  the pointed object (A) was already copied. Set the

pointer same as the forwarding pointer

A

scan
alloc

C F

That is, instead of copying A again, we just set the pointer from
F to the old location of A to the value of the forwarding pointer of A

73

Stop and Copy. Example (Step 6)

root

•  Since scan caught up with alloc we are done
•  Swap the role of the spaces and resume the

program

A

scan
alloc

C F new space

We now have a complete copy of the old reachability graph
but using less space.

74

The Stop and Copy Algorithm

while scan ≠ alloc do
 let O be the object at scan pointer
 for each pointer p contained in O do
 find O’ that p points to
 if O’ is without a forwarding pointer
 copy O’ to new space (update alloc pointer)
 set 1st word of old O’ to point to the new copy
 mark old object as copied
 change p to point to the new copy of O’
 else
 set p in O equal to the forwarding pointer
 fi
 end for
 increment scan pointer to the next object
od

75

Details of Stop and Copy

•  As with mark and sweep, we must be able to
tell how large an object is when we scan it
–  and we must also know where the pointers are

inside the object

•  We must also copy any objects pointed to by
the stack and update pointers in the stack
–  this can be an expensive operation

76

Evauation of Stop and Copy

•  Stop and copy is generally believed to be the fastest
GC technique

•  Allocation is very cheap
–  just increment the heap pointer

•  Collection is relatively cheap
–  especially if there is a lot of garbage
–  only touch reachable objects

•  But some languages do not allow copying
–  C, C++

77

Why Doesn’t C Allow Copying?

•  Garbage collection relies on being able to find
all reachable objects
–  and it needs to find all pointers in an object

•  In C or C++ it is impossible to identify the
contents of objects in memory with 100%
reliability
–  E.g., a sequence of two memory words might be

•  A list cell (with data and next fields)
•  A binary tree node (with left and right fields)

–  Thus we cannot tell where all the pointers are
•  Effectively this problem is a result of the weakness of the

C, C++ type system

78

Conservative Garbage Collection

•  Insight: it is Ok to be conservative (which allows us to
extend the method to languages like C, C++)
–  if a memory word looks like a pointer it is OK to consider it a

pointer
•  it must be aligned (e.g., address a multiple of 4)
•  it must point to a valid address in the data segment
•  these two requirements rule out most stuff in memory

–  all such pointers are followed and thus we overestimate the
set of reachable objects

–  And recall that in GC, reachability is an approximation and not
exact

–  So we’re going to likely keep around some things that aren’t
necessary, but that’s OK

79

Conservative Garbage Collection

•  Insight: it is Ok to be conservative (which allows us to
extend the method to languages like C, C++)
–  if a memory word looks like a pointer it is OK to consider it a

pointer
•  it must be aligned (e.g., address a multiple of 4)
•  it must point to a valid address in the data segment
•  these two requirements rule out most stuff in memory

•  But with this trick, we cannot move objects because
we cannot update pointers to them
–  we’re not exactly sure whether what we think is a pointer

actually IS a pointer. what if what we think is a pointer is
actually an account number? And we change it! That’s bad

–  So this trick can’t be used with stop and copy. Can only be
used with mark and sweep

80

Reference Counting

•  Rather that wait for memory to be exhausted,
try to collect an object when there are no
more pointers to it

•  Store in each object the number of pointers
to that object
–  this is the reference count
–  Each object has a dedicated field for this count

•  Each assignment operation manipulates the
reference count
–  If the count drops to zero, then object can be

freed

81

Implementation of Reference Counting

•  new returns an object with reference count 1
•  Let rc(x) be the reference count of x

•  Assume x, y point to objects o, p

•  Every assignment x ← y must be changed to:
 rc(p) ← rc(p) + 1
 rc(o) ← rc(o) - 1
 if(rc(o) == 0) then mark o as free
 x ← y

x

y

o

p

check o because
we dropped its
reference count

82

Evaluation of Reference Counting

•  Advantages:
–  easy to implement

•  Modifications to code are clear. Moreover code
generation can simply be modified to generate the
appropriate reference counting code

–  collects garbage incrementally without large pauses
in the execution

•  So for applications where large pauses are problematic
(e.g., real-time apps, interactive apps), reference counting
can really help (it minimizes the length of the longest
pause for GC)

83

Evaluation of Reference Counting

•  Disadvantages:

–  manipulating reference counts at each assignment
is very slow

•  two updates to reference counts, a conditional
(effectively introducing conditional into every assignment
in the program), then the assignment itself

•  Overhead: taking every single assignment in program and
blowing up its cost by about a 4-5 times – this has a very
noticeable effect on the performance of many programs

–  Overhead can be slightly eased by optimizing updates
to the reference counters (e.g., compiler combines two
updates into a single one if they both occur in same
basic block) though tricky to get this right (and
trickier the more overhead you’re trying to save)

84

Evaluation of Reference Counting

•  Disadvantages:

–  cannot directly collect circular structures:

x

1

2

Numbers are reference counts

85

Evaluation of Reference Counting

•  Disadvantages:

–  cannot directly collect circular structures:

x

1

2

Consider now assignment x ß null

86

Evaluation of Reference Counting

•  Disadvantages:

–  cannot directly collect circular structures:

x

1

1

The two objects are unreachable, but GC can’t collect them
because both have reference count of 1

87

Evaluation of Reference Counting

•  Disadvantages:

–  cannot directly collect circular structures:

x

1

1

What GC can’t see is that both of the references are
from unreachable objects!

88

Evaluation of Reference Counting

•  Disadvantages:

–  cannot directly collect circular structures
–  So, how to deal with this?

•  Programmer has to remember this realize that if a
circular structure is going to become unreachable, try to
somehow break the circularity (e.g., by assigning null to
bottom object before assigning null to x) OR

•  Back reference counting with some other GC technique
that CAN collect cycles

–  So in many reference counting GC systems, a system is
set up where every once in a while a mark and sweep
cycle is run to collect all the unreachable circular data
structures

89

Evaluation of Garbage Collection

•  Automatic memory management prevents
serious storage bugs
–  So overall it’s a great thing – prevents some of the

most difficult bugs in programming
–  So when writing in a garbage collected language,

there are whole classes of problems that the
programmer does not have to worry about

•  which is a boost to productivity
–  Basically, if your program is a good fit for GC, then

you’d be crazy not to use that kind of support

90

Evaluation of Garbage Collection

•  But downside is that GC reduces programmer
control
–  e.g., no control of layout of data in memory
–  e.g., not control of when memory is deallocated

•  So no control over how much memory your program is using
–  Really problematic for high-end data processing

and scientific applications
•  Use a lot of data and need to make very efficient use of

memory
•  People in these domains usually still use manual memory

management

91

Evaluation of Garbage Collection

•  Also pauses problematic in real-time applications
–  E.g., embedded systems controlling dangerous

machinery have to have guaranteed response times
–  This being said, there has been much progress in the

last few years on “real-time” garbage collectors
•  Memory leaks possible (even likely)

–  GC prevents you from corrupting your memory, but
really not from hanging onto too much memory (and
possibly affecting the performance of your program
dramatically)

–  Leaks likely because programmer not as aware of how
memory being used

92

Example

•  In Java, suppose variable x in a compiler points
to the AST of a program
–  This is a huge data structure
–  But once intermediate code is generated, compiler no

longer requires AST
–  But AST won’t be collected, because x points to it!
–  What programmer should do (but many don’t) is assign

null to x once the AST is no longer needed
–  It’s very common in production Java programs to have

this kind of memory leak because programmer just
forgot about it

93

Evaluation of Garbage Collection

•  Garbage collection is very important
–  Every programmer should be aware of its benefits and

costs
–  It’s also a very interesting aspect of the implementation

of programming languages

94

Evaluation of Garbage Collection

•  There are much more advanced garbage collection
algorithms than what we have discussed:
–  concurrent: allow the program to run while the collection

is happening
–  generational: do not scan long-lived objects at every

collection
•  Once we’ve seen such an object in a few iterations of GC,

assume it’s going to be around a while and skip it for a few
iterations (they are put in a separate area that is collected less
frequently)

–  real time: bound the length of pauses
–  parallel: several collectors working in parallel

