
1

Register Allocation

Lecture 16

2

Register Allocation

•  This is one of the most sophisticated things
that compiler do to optimize performance

•  Also illustrates many of the concepts we’ve
been discussing in global flow analysis

3

Lecture Outline

•  Register Allocation
–  Register interference graph

–  Graph coloring heuristics

–  Spilling

•  Memory Hierarchy Management

•  Cache Management

4

The Register Allocation Problem

•  Intermediate code uses unlimited temporaries
–  Simplifies code generation and optimization

•  E.g., we don’t have to worry about preserving the right
number of registers in the code

–  Complicates final translation to assembly code
•  Because we might be using too many temporaries

•  Typical intermediate code uses too many
temporaries
–  Fairly common problem in practice
–  Not uncommon for intermediate code to use more

registers than there are registers on the target
machine

5

The Register Allocation Problem (Cont.)

•  The problem:
Rewrite the intermediate code to use no more

temporaries than there are machine registers
•  Method:

–  Assign multiple temporaries to each register
•  So need a many-to-one mapping of temporaries to

registers
•  Clearly if we are using too many temporaries we will not be

able to fit them into a single register (so we need some
kind of a trick, which will almost, but not always work)

•  And we’ll need a backup plan for when trick doesn’t work
–  But without changing the program behavior

6

The Register Allocation Problem (Cont.)

•  The problem:
Rewrite the intermediate code to use no more

temporaries than there are machine registers
•  Method:

–  Assign multiple temporaries to each register
•  Given all that, we still want to be able to fit as many

temporaries into a single register as possible

–  But without changing the program behavior

7

An Example

•  Consider the program

a := c + d
e := a + b
f := e - 1

•  Assume a and e dead
after use
–  Temporary a can be

“reused” after read of a
in e := a + b

–  Temporary e can be
reused after read of e in
f:=e - 1

•  Can allocate a, e, and f
all to one register (r1):
(here c,d, and b assigned
to r2, r3, and r4)

r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

•  A dead temporary is not
needed
–  A dead temporary can be

reused

8

An Example

•  Consider the program

a := c + d
e := a + b
f := e - 1

•  Assume a and e dead
after use
–  Temporary a can be

“reused” after read of a
in e := a + b

–  Temporary e can be
reused after read of e in
f:=e - 1

•  Can allocate a, e, and f
all to one register (r1):
(here c,d, and b assigned
to r2, r3, and r4)

r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

•  A dead temporary is not
needed
–  A dead temporary can be

reused

many-to-one

9

History

•  Register allocation is as old as compilers
–  Register allocation was used in the original

FORTRAN compiler in the ‘50s
–  Very crude algorithms

•  It was quickly noticed that this was a bottleneck in the
quality of code that a compiler could produce

•  I.e., Limitations on the ability to perform register
allocation had a significant effect on the overall quality of
the code that was generated

•  A breakthrough came in 1980
–  Researchers at IBM: Register allocation scheme

based on graph coloring
–  Relatively simple, global and works well in practice

10

History

•  A breakthrough came in 1980
–  Researchers at IBM: Register allocation scheme

based on graph coloring
–  Relatively simple, global and works well in practice

•  Simple: fairly easy to explain
•  Global: takes advantage of information from entire control

flow graph at the same time

11

The Basic Principle

Temporaries t1 and t2 can share the same

register if at any point in the program at
most one of t1 or t2 is live .

Equivalently

If t1 and t2 are live at the same time at any

point in the program, they cannot share a
register

12

Algorithm: Part I

•  Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}
{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

Assume that at output of program, only b is live

13

Algorithm: Part I

•  Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}
{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

Work backwards (recall liveness is a backward analysis)

{b,c,f}

14

The Register Interference Graph

•  Construct an undirected graph
–  A node for each temporary
–  An edge between t1 and t2 if they are live

simultaneously at some point in the program

•  This is the register interference graph (RIG)
–  Two temporaries can be allocated to the same

register if there is no edge connecting them in the
register interference graph

15

Example

•  For our example:
a

f

e

d

c

b

•  E.g., b and c cannot be in the same register
•  E.g., b and d could be in the same register

16

Notes on Register Interference Graphs

•  Extracts exactly the information needed to
characterize legal register assignments
–  Note we haven’t yet discussed how to get the

register assignment from the register interference
graph

•  Gives a global (i.e., over the entire flow graph)
picture of the register requirements
–  Helps us make good global decisions about what

values are important to live in registers
•  After RIG construction the register allocation

algorithm is architecture independent
–  We’ll see only concern is number of registers

So, How to Use Register Interference
Graphs

•  We want to come up with register assignments
•  One popular method for doing this involves

using graph colorings
–  So it behooves us to take a look at these.

17

18

Definitions

•  A coloring of a graph is an assignment of
colors to nodes, such that nodes connected by
an edge have different colors

•  A graph is k-colorable if it has a coloring with
k colors

19

Register Allocation Through Graph Coloring

•  In our problem, colors = registers
–  We need to assign colors (registers) to graph nodes

(temporaries)

•  Let k = number of machine registers

•  If the RIG is k-colorable then there is a
register assignment that uses no more than k
registers

20

Graph Coloring Example

•  Consider the example RIG
a

f

e

d

c

b

•  For this graph there is no coloring with less
than 4 colors

•  There are 4-colorings of this graph
•  Obviously, since it is illustrated here

r4

r1

r2

r3

r2

r3

21

Graph Coloring Example

•  Consider the example RIG
a

f

e

d

c

b

•  This is not the only 4-coloring of this graph
•  And how to assign registers is obvious in this

case (since we assign them)

r4

r1

r2

r3

r2

r3

22

Example Review

a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

23

Example After Register Allocation

•  Under this coloring the code becomes:
r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2
r3 := r3 + r2
r2 := r2 - 1

r3 := r1 + r4

24

Computing Graph Colorings

•  Knowing that graph colorings can help us assign

temporaries to registers, the question
becomes how exactly to color graphs

25

Computing Graph Colorings

•  How do we compute graph colorings?

•  It isn’t easy:
1.  This problem is very hard (NP-hard in fact). No

efficient algorithms are known.
–  Solution: use heuristics

2.  A coloring might not exist for a given number of
registers
–  Solution: later

26

Graph Coloring Heuristic

•  Observation:
–  Pick a node t with fewer than k neighbors in RIG

•  If none, then graph not k-colorable
–  Eliminate t and its edges from RIG
–  If resulting graph is k-colorable, then so is the

original graph
•  Why?

–  Let c1,…,cn be the colors assigned to the neighbors
of t in the reduced graph

–  Since n < k we can pick some color for t that is
different from those of its neighbors

27

Graph Coloring Heuristic

•  The following works well in practice:
–  Pick a node t with fewer than k neighbors
–  Put t on a stack and remove it from the RIG
–  Repeat until the graph has one node

•  Assign colors to nodes on the stack
–  Start with the last node added
–  At each step pick a color different from those

assigned to already colored neighbors

28

Graph Coloring Example (1)

•  Remove a

a

f

e

d

c

b

•  Start with the RIG and with k = 4:

Stack: {}

29

Graph Coloring Example (2)

•  Remove d

f

e

d

c

b
Stack: {a}

30

Graph Coloring Example (3)

•  Note: all nodes now have fewer than 4
neighbors

f

e c

b
Stack: {d, a}

•  Remove c

31

Graph Coloring Example (4)

f

e

b
Stack: {c, d, a}

•  Remove b

32

Graph Coloring Example (5)

f

e

Stack: {b, c, d, a}

•  Remove e

33

Graph Coloring Example (6)

f
Stack: {e, b, c, d, a}

•  Remove f

34

Graph Coloring Example (7)

•  Now start assigning colors to nodes, starting
with the top of the stack

Stack: {f, e, b, c, d, a}

35

Graph Coloring Example (8)

f
Stack: {e, b, c, d, a}

r1

36

Graph Coloring Example (9)

f

e

Stack: {b, c, d, a}

•  e must be in a different register from f

r1

r2

37

Graph Coloring Example (10)

f

e

b
Stack: {c, d, a}

r1

r2

r3

38

Graph Coloring Example (11)

f

e c

b
Stack: {d, a}

r1

r2

r3

r4

39

Graph Coloring Example (12)

•  d can be in the same register as b

f

e

d

c

b
Stack: {a}

r1

r2

r3

r4

r3

40

Graph Coloring Example (13)

b
a

e c r4

f r1

r2

r3

r2

r3

d

41

What if the Heuristic Fails?

•  What happens if the graph coloring heuristic
fails to find a coloring?

•  In this case, we can’t hold all values in
registers
–  Some values are spilled to memory

•  Because frankly that’s the only other kind of storage that
we have!

•  The term comes from the analogy of a bucket (the
registers). When the bucket is full, any other stuff added
will spill

42

When does the Heuristic Fail?

•  When we reach a point in our algorithm where
all remaining nodes have k or more neighbors ?

•  Example: Try to find a 3-coloring of the RIG:
a

f

e

d

c

b

43

When does the Heuristic Fail?

•  Remove a and get stuck (as shown below)

f

e

d

c

b

44

So what now?

f

e

d

c

b

•  Pick a node as a candidate for spilling
–  Assume, for now, that f is picked as a candidate

–  Later: how we choose candidate to spill

45

What if the Heuristic Fails?

•  Remove f and continue the simplification
–  Simplification now succeeds: use heuristic

algorithm removing nodes in order b, d, e, c

e

d

c

b

46

What if the Heuristic Fails?

•  Eventually we must assign a color to f

•  We hope that among the 4 neighbors of f we
use less than 3 colors ⇒ optimistic coloring
–  Basically, we could get lucky
 f

e

d

c

b r3

r1 r2

r3

?

47

What if the Heuristic Fails?

•  Optimistic coloring: we pick a candidate to spill,
color the resulting subgraph, and hope that we
get lucky and can fit candidate into a register
after all
–  In which case we can just continue coloring the rest

of the graph as if nothing had happened
 f

e

d

c

b r3

r1 r2

r3

?

48

What if the Heuristic Fails?

•  So, what happens in our example?
–  optimistic coloring fails, since f has neighbors that

are assigned to three different registers

f

e

d

c

b r3

r1 r2

r3

?

49

Spilling

•  If optimistic coloring fails, we spill f
–  Allocate a memory location for f

•  Typically in the current stack frame
•  Call this address fa

•  Then modify the control flow graph:

•  Before each operation that reads f, insert
 f := load fa

•  After each operation that writes f, insert
 store f, fa

50

Spilling Example: The original CFG

a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

reads and writes off

51

Spilling Example

•  This is the new code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

A Problem

•  This code reuses the register name f

•  Correct, but suboptimal
–  Should use distinct register names whenever

possible
–  Allows different uses to have different colors

52

53

Spilling Example

•  This is the new code after spilling f
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

54

Recomputing Liveness Information

•  The original liveness information before spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{b,c,f}

55

Recomputing Liveness Information

•  The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{b,c,f}

56

Recomputing Liveness Information

•  The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f1}

{c,f2}

{c,f3}

57

Recomputing Liveness Information

•  The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f1}

{c,f2}

{c,f3}

Note that f used to be live in many places, but it’s not now

58

Recomputing Liveness Information

•  The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f1}

{c,f2}

{c,f3}

Also, we’ve distinguished the different uses of f

59

Recomputing Liveness Information

•  New liveness information is almost as before
–  Note f has been split into three temporaries
–  And we’ve changed the program (added loads and

stores)
•  So now we have a different program

–  And that changes our register allocation problem
•  We have to recompute the liveness information
•  We have to rebuild the register interference graph
•  We have to try again to color the RIG
•  But we can still use much of the information from before

–  E.g., for all of the non-spilled temporaries, they are
still live wherever they were live before

–  Though info for f has changed fairly dramatically

60

Recomputing Liveness Information

•  New liveness information is almost as before
–  Note f has been split into three temporaries

•  Each fi is live only in a very small area
–  Between a fi := load fa and the next instruction
–  Between a store fi, fa and the preceding instr.

•  Spilling reduces the live range of f
–  And thus reduces its interferences
–  Which results in fewer RIG neighbors

61

Recompute RIG After Spilling

•  Note that some edges of the spilled node are
removed

•  In our case f still interferes only with c and d
•  And the resulting RIG is 3-colorable

a

f1

e

d

c

b
f3

f2

62

Spilling Notes

•  Additional spills might be required before a
coloring is found

•  The tricky part is deciding what to spill
–  Any choice is correct (will lead to a correct

program)
•  But some choices lead to better code than others

•  Possible heuristics:
–  Spill temporaries with most conflicts
–  Spill temporaries with few definitions and uses
–  Avoid spilling in inner loops

63

Spilling Notes

•  Additional spills might be required before a
coloring is found

•  Possible heuristics:
–  Spill temporaries with most conflicts

•  Reason: This is the one thing you can move into memory
that will most effect the umber of interferences in the
RIG

•  So, possibly, by spilling just this one variable, we’ll remove
enough edges from the graph that it becomes colorable
with the number of registers we have

64

Spilling Notes

•  Additional spills might be required before a
coloring is found

•  Possible heuristics:
–  Spill temporaries with few definitions and use

•  Reason: By spilling these, since they are not used very
much, the number of loads and stores that will need to be
added is small, so the additional cost in terms of extra
instructions is small

65

Spilling Notes

•  Additional spills might be required before a
coloring is found

•  Possible heuristics:
–  Avoid spilling in inner loops

•  Pretty much all compilers implement this
•  Reason: Similar to previous. Presumably the inner loop is

iterated quite a bit, so want to avoid adding additional
loads and stores to that loop

We’ve talked about managing
registers. Let’s talk now about

managing caches.

66

67

The Memory Hierarchy

Registers 1 cycle 256-8000 bytes

Cache 3 cycles 256k-1M

Main memory 20-100 cycles 512M-64G

Disk 0.5-5M cycles 80G-2T

Recall from CS 301: Fast vs slow, expensive vs cheap, big vs small

68

Current Trends

•  Power usage limits
–  Size and speed of registers/caches
–  Speed of processors

•  But
–  The cost of a cache miss is very high
–  Typically requires 2-3 caches to bridge fast processor well

with large main memory
•  If you want your program to perform well, it is very

important to:
–  Manage registers properly
–  Manage caches properly

69

Caches

•  Compilers are very good at managing registers
–  These days, most would agree that compilers do a

much better job than a programmer could do
•  So this job is typically left to compiler

•  Compilers are not good at managing caches
–  This problem is still left to programmers
–  It is still an open question how much a compiler can

do to improve cache performance

•  Compilers can, and a few do, perform some
cache optimizations

70

Cache Optimization

•  Consider the loop
for(j := 1; j < 10; j++)

for(i=1; i<1000000; i++)
a[i] *= b[i]

•  This program has terrible cache
performance

• Why? Well, consider the order in which the
values are accessed (and thus placed in cache)

–  a[1], b[1], a[2], b[2], a[3], b[3],....

71

Cache Optimization

•  This program has terrible cache
performance

• Why? Well, consider the order in which the
values are accessed (and thus placed in cache)

–  a[1], b[1], a[2], b[2], a[3], b[3],....
•  Each of these are cache misses because each

iteration of the loop refers to “new” elements
– True, some might be in the same cache line,

but even then, since i is much larger than the
cache block size, you’ll be constantly swapping
lines in/out of the cache

• Which means program runs at memory, rather
than cache, speed

72

Cache Optimization (Cont.)

•  Consider the program:
for(i=1; i<1000000; i++)
 for(j := 1; j < 10; j++)

a[i] *= b[i]
–  Computes the same thing
–  But with much better cache behavior

•  Miss on first reference, but hit on the next nine!
–  Might actually be more than 10x faster

•  A compiler can perform this optimization
–  called loop interchange
–  Though not many compilers do, because in general it is not easy

to decide whether you can reverse the order of the loops

73

Managing the Memory Hierarchy

•  Most programs are written as if there are only
two kinds of memory: main memory and disk
–  Programmer is responsible for moving data from

disk to memory (e.g., file I/O)
–  Hardware is responsible for moving data between

memory and caches
–  Compiler is responsible for moving data between

memory and registers

74

Conclusions

•  Register allocation is a “must have” in
compilers:
–  Because intermediate code uses too many

temporaries
–  Because it makes a big difference in performance

•  Register allocation is more complicated for
CISC machines

