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Register Allocation 

Lecture 16 
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Register Allocation 

•  This is one of the most sophisticated things 
that compiler do to optimize performance 

•  Also illustrates many of the concepts we’ve 
been discussing in global flow analysis 
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Lecture Outline 

•  Register Allocation 
–  Register interference graph 

–  Graph coloring heuristics 

–  Spilling 

•  Memory Hierarchy Management 

•  Cache Management 
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The Register Allocation Problem 

•  Intermediate code uses unlimited temporaries 
–  Simplifies code generation and optimization 

•  E.g., we don’t have to worry about preserving the right 
number of registers in the code 

–  Complicates final translation to assembly code 
•  Because we might be using too many temporaries 

•  Typical intermediate code uses too many 
temporaries   
–  Fairly common problem in practice 
–  Not uncommon for intermediate code to use more 

registers than there are registers on the target 
machine 
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The Register Allocation Problem (Cont.) 

•  The problem: 
Rewrite the intermediate code to use no more 

temporaries than there are machine registers 
•  Method:  

–  Assign multiple temporaries to each register 
•  So need a many-to-one mapping of temporaries to 

registers 
•  Clearly if we are using too many temporaries we will not be 

able to fit them into a single register (so we need some 
kind of a trick, which will almost, but not always work) 

•  And we’ll need a backup plan for when trick doesn’t work 
–  But without changing the program behavior 
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The Register Allocation Problem (Cont.) 

•  The problem: 
Rewrite the intermediate code to use no more 

temporaries than there are machine registers 
•  Method:  

–  Assign multiple temporaries to each register 
•  Given all that, we still want to be able to fit as many 

temporaries into a single register as possible 

–  But without changing the program behavior 
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An Example 

•  Consider the program 
 

a := c + d 
e := a + b 
f := e - 1 

•  Assume a and e dead 
after use 
–  Temporary a can be 

“reused” after read of a 
in e := a + b 

–  Temporary e can be 
reused after read of e in 
f:=e - 1 

•  Can allocate a, e, and f 
all to one register (r1): 
(here c,d, and b assigned 
to r2, r3, and r4) 

r1 := r2 + r3 
r1 := r1 + r4 
r1 := r1 - 1 

•  A dead temporary is not 
needed  
–  A dead temporary can be 

reused 
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An Example 

•  Consider the program 
 

a := c + d 
e := a + b 
f := e - 1 

•  Assume a and e dead 
after use 
–  Temporary a can be 

“reused” after read of a 
in e := a + b 

–  Temporary e can be 
reused after read of e in 
f:=e - 1 

•  Can allocate a, e, and f 
all to one register (r1): 
(here c,d, and b assigned 
to r2, r3, and r4) 

r1 := r2 + r3 
r1 := r1 + r4 
r1 := r1 - 1 

•  A dead temporary is not 
needed  
–  A dead temporary can be 

reused 

many-to-one 
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History 

•  Register allocation is as old as compilers 
–  Register allocation was used in the original 

FORTRAN compiler in the ‘50s 
–  Very crude algorithms 

•  It was quickly noticed that this was a bottleneck in the 
quality of code that a compiler could produce 

•  I.e., Limitations on the ability to perform register 
allocation had a significant effect on the overall quality of 
the code that was generated 

•  A breakthrough came in 1980  
–  Researchers at IBM: Register allocation scheme 

based on graph coloring 
–  Relatively simple, global and works well in practice 
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History 

•  A breakthrough came in 1980  
–  Researchers at IBM: Register allocation scheme 

based on graph coloring 
–  Relatively simple, global and works well in practice 

•  Simple: fairly easy to explain 
•  Global: takes advantage of information from entire control 

flow graph at the same time  
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The Basic Principle 

 
Temporaries t1 and t2 can share the same 

register if at any point in the program at 
most one of t1 or t2 is live . 

 
Equivalently 

 
If t1 and t2 are live at the same time at any 

point in the program, they cannot share a 
register 
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Algorithm: Part I 

•  Compute live variables for each point: 
a := b + c 
d := -a 
e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 

{b} 

{c,e} 

{b} 
{c,f} {c,f} 

{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

Assume that at output of program, only b is live 
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Algorithm: Part I 

•  Compute live variables for each point: 
a := b + c 
d := -a 
e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 

{b} 

{c,e} 

{b} 
{c,f} {c,f} 

{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

Work backwards (recall liveness is a backward analysis) 

{b,c,f} 
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The Register Interference Graph 

•  Construct an undirected graph 
–  A node for each temporary 
–  An edge between t1 and t2 if they are live 

simultaneously at some point in the program 

•  This is the register interference graph (RIG) 
–  Two temporaries can be allocated to the same 

register if there is no edge connecting them in the 
register interference graph 
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Example 

•  For our example: 
a 

f 

e 

d 

c 

b 

•  E.g., b and c cannot be in the same register 
•  E.g., b and d could be in the same register 
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Notes on Register Interference Graphs 

•  Extracts exactly the information needed to 
characterize legal register assignments 
–  Note we haven’t yet discussed how to get the 

register assignment from the register interference 
graph 

•  Gives a global (i.e., over the entire flow graph) 
picture of the register requirements 
–  Helps us make good global decisions about what 

values are important to live in registers  
•  After RIG construction the register allocation 

algorithm is architecture independent 
–  We’ll see only concern is number of registers 



So, How to Use Register Interference 
Graphs  

•  We want to come up with register assignments 
•  One popular method for doing this involves 

using graph colorings 
–  So it behooves us to take a look at these. 

17 
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Definitions 

•  A coloring of a graph is an assignment of 
colors to nodes, such that nodes connected by 
an edge have different colors 

•  A graph is k-colorable if it has a coloring with 
k colors 
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Register Allocation Through Graph Coloring 

•  In our problem, colors = registers 
–  We need to assign colors (registers) to graph nodes 

(temporaries) 

•  Let k = number of machine registers 

•  If the RIG is k-colorable then there is a 
register assignment that uses no more than k 
registers 
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Graph Coloring Example 

•  Consider the example RIG 
a 

f 

e 

d 

c 

b 

•  For this graph there is no coloring with less 
than 4 colors 

•  There are 4-colorings of this graph 
•  Obviously, since it is illustrated here 

r4 

r1 

r2 

r3 

r2 

r3 
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Graph Coloring Example 

•  Consider the example RIG 
a 

f 

e 

d 

c 

b 

•  This is not the only 4-coloring of this graph 
•  And how to assign registers is obvious in this 

case (since we assign them) 

r4 

r1 

r2 

r3 

r2 

r3 
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Example Review 

a := b + c 
d := -a 
e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 
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Example After Register Allocation 

•  Under this coloring the code becomes: 
r2 := r3 + r4 
r3 := -r2 
r2 := r3 + r1 

r1 := 2 * r2 
r3 := r3 + r2 
r2 := r2 - 1 

r3 := r1 + r4 
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Computing Graph Colorings 

 
•  Knowing that graph colorings can help us assign 

temporaries to registers, the question 
becomes how exactly to color graphs 
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Computing Graph Colorings 

•  How do we compute graph colorings? 

•  It isn’t easy: 
1.  This problem is very hard (NP-hard in fact). No 

efficient algorithms are known. 
–  Solution: use heuristics 

2.  A coloring might not exist for a given number of 
registers 
–  Solution: later 
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Graph Coloring Heuristic 

•  Observation: 
–  Pick a node t with fewer than k neighbors in RIG 

•  If none, then graph not k-colorable 
–  Eliminate t and its edges from RIG 
–  If resulting graph is k-colorable,  then so is the 

original graph 
•  Why? 

–  Let c1,…,cn be the colors assigned to the neighbors 
of t in the reduced graph 

–  Since n < k we can pick some color for t that is 
different from those of its neighbors 
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Graph Coloring Heuristic 

•  The following works well in practice: 
–  Pick a node t with fewer than k neighbors 
–  Put t on a stack and remove it from the RIG 
–  Repeat until the graph has one node 

•  Assign colors to nodes on the stack  
–  Start with the last node added 
–  At each step pick a color different from those 

assigned to already colored neighbors 
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Graph Coloring Example (1) 

•  Remove a 

a 

f 

e 

d 

c 

b 

•  Start with the RIG and with k = 4: 

Stack: {}  
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Graph Coloring Example (2) 

•  Remove d 

f 

e 

d 

c 

b 
Stack: {a}  
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Graph Coloring Example (3) 

•  Note: all nodes now have fewer than 4 
neighbors  

f 

e c 

b 
Stack: {d, a}  

•  Remove c 
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Graph Coloring Example (4) 

f 

e 

b 
Stack: {c, d, a}  

•  Remove b 
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Graph Coloring Example (5) 

f 

e 

Stack: {b, c, d, a}  

•  Remove e 
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Graph Coloring Example (6) 

f 
Stack: {e, b, c, d, a}  

•  Remove f 
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Graph Coloring Example (7) 

•  Now start assigning colors to nodes, starting 
with the top of the stack 

Stack: {f, e, b, c, d, a}  
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Graph Coloring Example (8) 

f 
Stack: {e, b, c, d, a}  

r1 
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Graph Coloring Example (9) 

f 

e 

Stack: {b, c, d, a}  

•  e must be in a different register from f 

r1 

r2 
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Graph Coloring Example (10) 

f 

e 

b 
Stack: {c, d, a}  

r1 

r2 

r3 
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Graph Coloring Example (11) 

f 

e c 

b 
Stack: {d, a}  

r1 

r2 

r3 

r4 
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Graph Coloring Example (12) 

•  d can be in the same register as b 

f 

e 

d 

c 

b 
Stack: {a}  

r1 

r2 

r3 

r4 

r3 
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Graph Coloring Example (13) 

b 
a 

e c r4 

f r1 

r2 

r3 

r2 

r3 

d 
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What if the Heuristic Fails? 

•  What happens if the graph coloring heuristic 
fails to find a coloring? 

•  In this case, we can’t hold all values in 
registers 
–  Some values are spilled to memory 

•  Because frankly that’s the only other kind of storage that 
we have! 

•  The term comes from the analogy of a bucket (the 
registers).  When the bucket is full, any other stuff added 
will spill 
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When does the Heuristic Fail? 

•  When we reach a point in our algorithm where 
all remaining nodes have k or more neighbors ? 

•  Example: Try to find a 3-coloring of the RIG: 
a 

f 

e 

d 

c 

b 
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When does the Heuristic Fail? 

•  Remove a and get stuck (as shown below) 

f 

e 

d 

c 

b 
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So what now? 

f 

e 

d 

c 

b 

•  Pick a node as a candidate for spilling 
–  Assume, for now, that f is picked as a candidate 

–  Later: how we choose candidate to spill 
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What if the Heuristic Fails? 

•  Remove f and continue the simplification 
–  Simplification now succeeds: use heuristic 

algorithm removing nodes in order b, d, e, c 
 

e 

d 

c 

b 
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What if the Heuristic Fails? 

•  Eventually we must assign a color to f 

•  We hope that among the 4 neighbors of f we 
use less than 3 colors ⇒ optimistic coloring 
–  Basically, we could get lucky  
 f 

e 

d 

c 

b r3 

r1 r2 

r3 

? 
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What if the Heuristic Fails? 

•  Optimistic coloring: we pick a candidate to spill, 
color the resulting subgraph, and hope that we 
get lucky and can fit candidate into a register 
after all 
–  In which case we can just continue coloring the rest 

of the graph as if nothing had happened 
 f 

e 

d 

c 

b r3 

r1 r2 

r3 

? 
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What if the Heuristic Fails? 

•  So, what happens in our example? 
–  optimistic coloring fails, since f has neighbors that 

are assigned to three different registers 

 

f 

e 

d 

c 

b r3 

r1 r2 

r3 

? 
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Spilling 

•  If optimistic coloring fails, we spill f 
–  Allocate a memory location for f 

•  Typically in the current stack frame  
•  Call this address fa 

•  Then modify the control flow graph: 

•  Before each operation that reads f, insert 
                      f := load fa 
 

•  After each operation that writes f, insert 
                      store f, fa 
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Spilling Example: The original CFG 

a := b + c 
d := -a 
e := d + f 

f := 2 * e 
b := d + e 
e := e - 1 

b := f + c 

reads and writes off 
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Spilling Example 

•  This is the new code after spilling f 
a := b + c 
d := -a 
f := load fa 
e := d + f 

f := 2 * e 
store f, fa 

b := d + e 
e := e - 1 

f := load fa 
b := f + c 



A Problem  

•  This code reuses the register name f 

•  Correct, but suboptimal 
–  Should use distinct register names whenever 

possible 
–  Allows different uses to have different colors 

52 
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Spilling Example 

•  This is the new code after spilling f 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 
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Recomputing Liveness Information 

•  The original liveness information before spilling: 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{b,c,f} 
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Recomputing Liveness Information 

•  The new liveness information after spilling: 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{b,c,f} 
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Recomputing Liveness Information 

•  The new liveness information after spilling: 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{c,d,f1} 

{c,f2} 

{c,f3} 
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Recomputing Liveness Information 

•  The new liveness information after spilling: 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{c,d,f1} 

{c,f2} 

{c,f3} 

Note that f used to be live in many places, but it’s not now 
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Recomputing Liveness Information 

•  The new liveness information after spilling: 
a := b + c 
d := -a 
f1 := load fa 
e := d + f1 

f2 := 2 * e 
store f2, fa 

b := d + e 
e := e - 1 

f3 := load fa 
b := f3 + c 

{b} 

{c,e} 

{b} 
{c,f} 

{c,f} 
{b,c,e,f} 

{c,d,e,f} 

{b,c,f} 
{c,d,f} 
{a,c,f} 

{c,d,f1} 

{c,f2} 

{c,f3} 

Also, we’ve distinguished the different uses of f 
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Recomputing Liveness Information 

•  New liveness information is almost as before 
–  Note f has been split into three temporaries 
–  And we’ve changed the program (added loads and 

stores) 
•  So now we have a different program 

–  And that changes our register allocation problem 
•  We have to recompute the liveness information 
•  We have to rebuild the register interference graph 
•  We have to try again to color the RIG 
•  But we can still use much of the information from before 

–  E.g., for all of the non-spilled temporaries, they are 
still live wherever they were live before 

–  Though info for f has changed fairly dramatically 
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Recomputing Liveness Information 

•  New liveness information is almost as before 
–  Note f has been split into three temporaries 

•  Each fi is live only in a very small area 
–  Between a fi := load fa and the next instruction 
–  Between a store fi, fa and the preceding instr. 

•  Spilling reduces the live range of f 
–  And thus reduces its interferences 
–  Which results in fewer RIG neighbors 
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Recompute RIG After Spilling 

•  Note that some edges of the spilled node are 
removed 

•  In our case f still interferes only with c and d 
•  And the resulting RIG is 3-colorable 

a 

f1 

e 

d 

c 

b 
f3 

f2 



62 

Spilling Notes 

•  Additional spills might be required before a 
coloring is found 

•  The tricky part is deciding what to spill 
–  Any choice is correct (will lead to a correct 

program) 
•  But some choices lead to better code than others 

•  Possible heuristics: 
–  Spill temporaries with most conflicts 
–  Spill temporaries with few definitions and uses 
–  Avoid spilling in inner loops 
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Spilling Notes 

•  Additional spills might be required before a 
coloring is found 

•  Possible heuristics: 
–  Spill temporaries with most conflicts   

•  Reason: This is the one thing you can move into memory 
that will most effect the umber of interferences in the 
RIG 

•  So, possibly, by spilling just this one variable, we’ll remove 
enough edges from the graph that it becomes colorable 
with the number of registers we have 



64 

Spilling Notes 

•  Additional spills might be required before a 
coloring is found 

•  Possible heuristics: 
–  Spill temporaries with few definitions and use  

•  Reason: By spilling these, since they are not used very 
much, the number of loads and stores that will need to be 
added is small, so the additional cost in terms of extra 
instructions is small 
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Spilling Notes 

•  Additional spills might be required before a 
coloring is found 

•  Possible heuristics: 
–  Avoid spilling in inner loops 

•  Pretty much all compilers implement this   
•  Reason: Similar to previous.  Presumably the inner loop is 

iterated quite a bit, so want to avoid adding additional 
loads and stores to that loop 



We’ve talked about managing 
registers. Let’s talk now about 

managing caches. 

66 
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The Memory Hierarchy 

Registers       1 cycle          256-8000 bytes 

Cache             3 cycles            256k-1M 

Main memory   20-100 cycles    512M-64G 

Disk                0.5-5M cycles    80G-2T 

Recall from CS 301: Fast vs slow, expensive vs cheap, big vs small 
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Current Trends 

•  Power usage limits  
–  Size and speed of registers/caches 
–  Speed of processors 

•  But 
–  The cost of a cache miss is very high 
–  Typically requires 2-3 caches to bridge fast processor well 

with large main memory 
•  If you want your program to perform well, it is very 

important to: 
–  Manage registers properly 
–  Manage caches properly 
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Caches 

•  Compilers are very good at managing registers 
–  These days, most would agree that compilers do a 

much better job than a programmer could do 
•  So this job is typically left to compiler 

•  Compilers are not good at managing caches 
–  This problem is still left to programmers 
–  It is still an open question how much a compiler can 

do to improve cache performance 

•  Compilers can, and a few do, perform some 
cache optimizations 
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Cache Optimization 

•  Consider the loop 
for(j := 1; j < 10; j++) 

for(i=1; i<1000000; i++)  
a[i] *= b[i] 

•  This program has terrible cache 
performance   

• Why? Well, consider the order in which the 
values are accessed (and thus placed in cache) 

–  a[1], b[1], a[2], b[2], a[3], b[3],.... 
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Cache Optimization 

•  This program has terrible cache 
performance   

• Why? Well, consider the order in which the 
values are accessed (and thus placed in cache) 

–  a[1], b[1], a[2], b[2], a[3], b[3],.... 
•  Each of these are cache misses because each 

iteration of the loop refers to “new” elements 
– True, some might be in the same cache line, 

but even then, since i is much larger than the 
cache block size, you’ll be constantly swapping 
lines in/out of the cache 

• Which means program runs at memory, rather 
than cache, speed 
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Cache Optimization (Cont.) 

•  Consider the program: 
for(i=1; i<1000000; i++)  
    for(j := 1; j < 10; j++) 

a[i] *= b[i] 
–  Computes the same thing 
–  But with much better cache behavior 

•  Miss on first reference, but hit on the next nine! 
–  Might actually be more than 10x faster  

•  A compiler can perform this optimization 
–  called loop interchange 
–  Though not many compilers do, because in general it is not easy 

to decide whether you can reverse the order of the loops 
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Managing the Memory Hierarchy 

•  Most programs are written as if there are only 
two kinds of memory: main memory and disk 
–  Programmer is responsible for moving data from 

disk to memory (e.g., file I/O) 
–  Hardware is responsible for moving data between 

memory and caches 
–  Compiler is responsible for moving data between 

memory and registers 
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Conclusions 

•  Register allocation is a “must have” in 
compilers: 
–  Because intermediate code uses too many 

temporaries 
–  Because it makes a big difference in performance  

•  Register allocation is more complicated for 
CISC machines 


