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Global Optimization 

Lecture 15 
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Lecture Outline 

•  Global dataflow analysis 

•  Global constant propagation 

•  Liveness analysis 
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Local Optimization 

Recall the simple basic-block optimizations 
–  Constant propagation 
–  Dead code elimination 

X := 3 

Y := Z * W 

Q := X + Y 

X := 3 

Y := Z * W 

Q := 3 + Y 

Y := Z * W 

Q := 3 + Y 
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Global Optimization 

These optimizations can be extended to an 
entire control-flow graph 

 X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 
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Global Optimization 

These optimizations can be extended to an 
entire control-flow graph 

 X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 
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Global Optimization 

These optimizations can sometimes be extended 
to an entire control-flow graph 

 X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * 3 
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Correctness 

•  How do we know it is OK to globally propagate 
constants? 

•  There are situations where it is incorrect: 
X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 
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Correctness (Cont.) 

To replace a use of x by a constant k we must 
know that: 

 
On every path to the use of x, the last 

assignment to x is x := k    ** 
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Example 1 Revisited 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 
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Example 2 Revisited 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 
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Discussion 

•  The correctness condition is not trivial to 
check 

•  “All paths” includes paths around loops and 
through branches of conditionals 

•  Checking the condition requires global 
dataflow analysis 
–  An analysis of the entire control-flow graph 
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Global Analysis 

Global optimization tasks share several traits: 
–  The optimization depends on knowing a property X 

at a particular point in program execution 
•  E.g., is X, at a particular point in the program, guaranteed 

to be a constant (this is a local property) 
–  Proving X at any point requires knowledge of the 

entire program (a global property) 
•  E.g., all paths leading to X 

–  In general, this is a very difficult and expensive 
problem to solve.  What saves us… 
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Global Analysis 

Global optimization tasks share several traits: 
–  The optimization depends on knowing a property X 

at a particular point in program execution 
•  E.g., is X, at a particular point in the program, guaranteed 

to be a constant (this is a local property) 
–  Proving X at any point requires knowledge of the 

entire program (a global property) 
•  E.g., all paths leading to X 

–  …It is always OK to be conservative.  If the 
optimization requires X to be true, then want to 
know X is definitely true 

–  But it’s always safe to say “don’t know” 
•  Because in worst case, you just don’t do the optimization 
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Global Analysis 

So, having approximate techniques, that is 
techniques that don’t always give the correct 
answers to the questions we want to ask, is 
OK, as long as we are always right when we say 
that the property holds, and otherwise we just 
say that we don’t know whether the property 
holds or not.    
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Global Analysis (Cont.) 

•  Global dataflow analysis is a standard 
technique for solving problems with these 
characteristics 

•  Global constant propagation is one example of 
an optimization that requires global dataflow 
analysis 

•  In what follows, we’ll be looking at global 
constant propagation, and another dataflow 
analysis, in more detail 
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Recall: Global Constant Propagation 

To replace a use of x by a constant k we must 
know that: 

 
On every path to the use of x, the last 
assignment to x is x := k    (which we’ll call 

property **) 
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Global Constant Propagation 

•  Global constant propagation can be performed 
at any point where property ** holds 

•  Consider the case of computing property ** 
for a single variable X at all program points 
–  Note it’s easy to extend this to the case of all 

program variables 
•  One simple, but inefficient way is to simply use any single 

variable algorithm repeatedly, once for each variable in 
the method body 
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Global Constant Propagation (Cont.) 

•  To make the problem precise, we associate one 
of the following values with X at every 
program point 

value interpretation 

Bot (“bottom”) This statement 
never executes 

c X = constant c 

T (pronounced “top”) X is not a constant 
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Example 

X = T  
X = 3 

X = 3 

X = 3 
X = 4 

X = T 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = 3 

X = 3 

X = T 

note that program 
points are in 
between statements 
 
E.g., X = 3 after  
assignment but  
before predicate 
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Using the Information 

•  Given global constant information, it is easy to 
perform the optimization 
–  Simply inspect the x = ? associated with a 

statement using x 
–  If x is constant at that point replace that use of x 

by the constant 

•  But how do we compute the properties x = ? 
–  That is, how, in a systematic fashion and on an 

arbitrary control flow graph, do we compute these 
properties for every program point 
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The Idea (Data flow analysis basic principle) 

 
 

The analysis of a complicated program can be 
expressed as a combination of simple rules 
relating the change in information between 

adjacent statements 
(put another way, we build up global information 

only by looking at local information) 
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Explanation 

•  The idea is to “push” or “transfer” 
information from one statement to the next 

•  For each statement s, we compute information 
about the value of x immediately before and 
after s 

C(x,s,in) = value of x before s 
C(x,s,out) = value of x after s 
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Transfer Functions 

•  Define a transfer function that transfers 
information one statement to another 

•  In the following rules, let statement s have 
immediate predecessor statements p1,…,pn 
–  Note that though there are possibly multiple 

predecessors here, each leads to statement s in 
one step 
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Rule 1 

 
if C(pi, x, out) = T for any i, then C(s, x, in) = T 

        s 

X = T 

X = T 

X = ? X = ? X = ? 
p1 

p2 p3 p4 
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Rule 2 

 
C(pi, x, out) = c  & C(pj, x, out) = d  &  d ≠ c  then 

C(s, x, in) = T 

        s 

X = d 

X = T 

X = ? X = ? X = c 
p1 

p2 p3 p4 
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Rule 3 

 
if C(pi, x, out) = c  or Bot  for all i, 

then C(s, x, in) = c 
This of course makes sense because Bot means that the statement 

is never reached 

        s 

X = c 

X = c 

X = c X = Bot  X = c 
p1 

p2 p3 p4 
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Rule 4 

 
if C(pi, x, out) = Bot  for all i, 

then C(s, x, in) = Bot 

        s 

X = Bot 

X = Bot 

X = Bot X = Bot  X = Bot 
p1 

p2 p3 p4 
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The Other Half 

•  Rules 1-4 relate the out  of one statement to 
the in of the next statement 

•  Now we need rules relating the in of a 
statement to the out of the same statement 
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Rule 5 

 
 C(s, x, out) = Bot  if C(s, x, in) = Bot 

s 
X = Bot 

X = Bot 
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Rule 6 

 
 C(x := c, x, out) = c  if c is a constant 

(note that Rule 5 has precedence over Rule 6: if X is Bot before the 
statement, then it’s Bot after the statement, even though there 
is an assignment.  In general, if we can assign Bot to something, 

we do.) 

x := c 
X = ? 

X = c 
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Rule 7 

 
 C(x := f(…), x, out) = T 

 
(once again, Rule 5 takes precedence if it applies) 

x := f(…) 
X = ? 

X = T 

This rule handles 
every assignment 
other than a  
constant assignment  
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Rule 8 

 
 C(y := …, x, out) = C(y := …, x, in)  if x ≠ y 

y := . . . 
X = a 

X = a 
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An Algorithm 

1.  For every entry s to the program,  set       
C(s, x, in) = T 

2.  Set C(s, x, in) = C(s, x, out) = Bot everywhere 
else 

 E.g., we assume (at first) that none of the other 
 statements are ever executed 

3.  Repeat until all points satisfy 1-8: 
Pick s not satisfying any of Rules 1-8 and update using 

the appropriate rule 
(look for places in the CFG where information is inconsistent 

according to the rules, and update)  
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Example 

X = T  
X = Bot 

X = Bot 

X = Bot 
X = Bot 

X = Bot 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = Bot 

X = Bot 

X = Bot 



35 

Example 

X = T  
X = Bot 

X = Bot 

X = Bot 
X = Bot 

X = Bot 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = Bot 

X = Bot 

X = Bot 

Only place where 
there is an  
inconsistency: 
X is T, then 
assigned 3, X 
should be 3.  
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Example 

X = T  
X = 3 

X = Bot 

X = Bot 
X = Bot 

X = Bot 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = Bot 

X = Bot 

X = Bot 

Only place where 
there is an  
inconsistency: 
X is T, then 
assigned 3, X 
should be 3.  
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Example 

X = T  
X = 3 

X = Bot 

X = Bot 
X = Bot 

X = Bot 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = Bot 

X = Bot 

X = Bot 

But now this 
is inconsistent: 
X is 3, but then 
unreachable 
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Example 

X = T  
X = 3 

X = 3 

X = Bot 
X = Bot 

X = Bot 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = Bot 

X = Bot 

X = Bot 
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Example 

X = T  
X = 3 

X = 3 

X = 3 
X = 4 

X = T 

X := 3 

B > 0 

Y := Z + W 

X := 4 

Y := 0 

A := 2 * X 

X = 3 

X = 3 

X = T 

At this point, 
all the 
information is  
consistent with 
the rules 



More Control Flow Analysis: Analysis of Loops 

•  This is probably the most interesting part of 
control flow analysis! 

•  But first, lets take another look at that Bot 
thing 
–  Because the need for it is intimately tied to the 

analysis of loops 

40 
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The Value Bot 

•  To understand why we need Bot, look at a loop 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 
What is  
the value  
for X here? 
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The Value Bot 

•  To understand why we need Bot, look at a loop 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 
Consider the 
predecessors. 
What are  
they? 
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Discussion 

•  Consider the statement Y := 0 
•  To compute whether X is constant at this 

point, we need to know whether X is constant 
at the two predecessors 
–  X := 3 
–  A := 2 * X 

•  Note other statements don’t involve X 

•  But info for A := 2 * X depends on its 
predecessors, including Y := 0! 
–  So how do we get information about the 

predecessors of Y:= 0 when they depend on 
themselves? 
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A Standard Solution… 

•  Used in many areas of math when you have 
recursive or recurrence relations 

•  Because of cycles, all points must have values 
at all times 

•  Intuitively, assigning some initial value allows 
the analysis to break cycles 
–  I.e., Break the cycle be starting with some initial 

guess (which here, turns out to be Bot) 
•  The initial value Bot means “So far as we 

know, control never reaches this point” 
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = Bot 

X = Bot 

X = Bot 

X = Bot 

X = Bot 

X = Bot 

X = Bot 
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 

X = Bot 

X = Bot 
X = Bot 

Remember 
what Bot means: 
this is never  
executed.  
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 

X = Bot 

X = Bot 
X = Bot 

.If it’s never 
executed, then 
we can assign 3 
here 
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 

X = Bot 

X = Bot 

X = 3 
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
X = 3 

X = 3 

X = 3 

X = 3 

X = Bot 

X = 3 

X = 3 
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Example 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 

A < B 

X = T 
 X = 3 

X = 3 

X = 3 

X = 3 

X = 3 

X = 3 

X = 3 

Note at this point we need to check that everything 
is OK (no inconsistencies).  And it turns out it is OK. 
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Orderings 

•  In the last few slides we talked about a kind of 
abstract computation, using elements like Bot, 
the constants, and T 
–  And in fact, things like Bot, the constants, and T 

are called abstract values, to distinguish them from 
the concrete values (the actual run-time values that 
a program computes with) 

–  And in fact these things are in general more 
abstract, since, for example, they can stand for 
sets of possible concrete values 

•  T in particular can stand for any possible run-time value! 
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Orderings 

•  In the last few slides we talked about a kind of 
abstract computation, using elements like Bot, 
the constants, and T 

•  We now start to generalize those ideas a bit 

•  The first step towards that generalization is 
to talk about orderings of those values 
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Orderings 

•  We can simplify the presentation of the 
analysis by ordering the abstract values 

Bot < constants < T 
 

•  Drawing a picture with “lower” values drawn 
lower, we get 

Bot 

T 

-1 0 1 

Edges between values where there is a relationship 
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Orderings 

•  We can simplify the presentation of the 
analysis by ordering the abstract values 

Bot < constants < T 
 

•  Drawing a picture with “lower” values drawn 
lower, we get 

Bot 

T 

-1 0 1 

Bot less than all constants, Top greater than all constants 
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Orderings 

•  We can simplify the presentation of the 
analysis by ordering the abstract values 

Bot < constants < T 
 

•  Drawing a picture with “lower” values drawn 
lower, we get 

Bot 

T 

-1 0 1 

Note in this ordering, constants are NOT comparable to each other 
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Orderings (Cont.) 

•  T is the greatest value, Bot is the least 
–  All constants are in between and incomparable 

•  Let lub be the least-upper bound in this 
ordering 
–  E.g., lub(Bot, 1) = 1 
–  E.g., lub(1,2) = T 

•  Rules 1-4 can be written using lub: 
C(s, x, in) = lub { C(p, x, out) | p is a predecessor of s } 
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Termination 

•  Simply saying “repeat until nothing changes” 
doesn’t guarantee that eventually nothing 
changes 

•  The use of lub, however, explains why the 
algorithm terminates 
–  Values start as Bot and rules stipulate they can 

only increase 
–  Bot can change to a constant, and a constant to T 
–  Thus, C(s, x, _) can change at most twice 
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Termination (Cont.) 

Thus the constant propagation algorithm is 
linear in program size 

 
Number of steps =  
Number of C(….) value computed * 2 = 
Number of program statements * 4 

 (because there is an in and out for each 
program statement) 



Liveness Analysis 

We consider now another form of 
global analysis: liveness analysis 

59 
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Liveness Analysis 

Once constants have been globally propagated, 
we would like to eliminate dead code 

After constant propagation, X := 3 is dead 
(assuming X not used elsewhere) 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * X 
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Liveness Analysis 

Once constants have been globally propagated, 
we would like to eliminate dead code 

After constant propagation, X := 3 is dead 
(assuming X not used elsewhere) 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * 3 
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Liveness Analysis 

Once constants have been globally propagated, 
we would like to eliminate dead code 

After constant propagation, X := 3 is dead 
(assuming X not used elsewhere) 

Let’s be a little more careful in what we mean by 
saying X is not used… 

X := 3 

B > 0 

Y := Z + W Y := 0 

A := 2 * 3 
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Live and Dead 

•  The first value of x is 
dead (never used) 
–  Value 3 is overwritten 

before it is ever used for 
anything 

•  The second value of x is 
live (i.e., value may be 
used by some subsequent 
instruction) 
–  In this particular example, 

it’s actually guaranteed to 
be used 

•  Liveness is an important 
concept 

X := 3 

X := 4 

  Y := X 
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Liveness (Summary) 

 
A variable x is live at statement s if 

–  There exists a statement s’ that uses x 
•  E.g., an assignment to x 

–  There is a path from s to s’ 

–  That path has no intervening assignment to x 
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Global Dead Code Elimination 

•  A assignment statement x := … is dead code if 
x is dead after the assignment 

•  Dead statements can be deleted from the 
program 

•  But we need liveness information first . . . 
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So once again… 

•  We need global information about the control 
flow graph, in this case the property 
describing whether X will be used in the 
future, and we want to make that information 
local to a specific point in the program so that 
we can make a local optimization decision. 

•  And just like with constant propagation, we 
are going to define an algorithm for 
performing liveness analysis.  

•  We’ll use a framework similar to what we did 
with constant propagation…  
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Computing Liveness 

•  We can express liveness in terms of 
information transferred between adjacent 
statements, just as in copy propagation 

•  Liveness is simpler than constant propagation, 
since it is a boolean property (true or false) 
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Liveness Rule 1 

 
L(p, x, out) =  ∨ { L(s, x, in) | s a successor of p } 

(put another way, the value of x is live right 
after p if the value of x is used on some path 

originating at p  

p 

X = true 

X = true 

X = ? X = ? X = ? 

So the question: 
immediately 
after p, is X live?   
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Liveness Rule 2 

 
 L(s, x, in) = true  if s refers to x (i.e., reads x) 

on the rhs 

…:= f(x) 
X = true 

X = ? 
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Liveness Rule 3 

 
 L(x := e, x, in) = false  if e does not refer to x 
(why? well we are overwriting the value of x in 

the statement, so whatever value x had prior 
to the statement is dead) 

x := e 
X = false 

X = ? 
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Liveness Rule 4 

 
 L(s, x, in) = L(s, x, out) if s does not refer to x 

s 
X = a 

X = a 
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Algorithm 

1.  Let L(…) = false initially at all program points 

2.  Repeat until all statements s satisfy rules 1-4 
Pick s where one of 1-4 does not hold and update 

using the appropriate rule 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

false 

false 

false 

false 



74 

Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

false 

false 

false 

Inconsistency 
here, since X is 
read in next 
statement, so it 
can’t be dead.   

false 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

false 

false 

Inconsistency 
here, since X is 
read in next 
statement, so it 
can’t be dead.   

false 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

false 

false 

But notice that 
changing that 
false to true 
means that X 
can’t be dead 
prior to the read 
of X here.   

false 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

false 

false 

But notice that 
changing that 
false to true 
means that X 
can’t be dead 
prior to the read 
of X here.   

true 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

false 

false 

And changing this 
false to true 
means that X 
can’t be dead at 
these two! 

true 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

true 

true 

And changing this 
false to true 
means that X 
can’t be dead at 
these two! 

true 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

true 

true 

What about at 
this point (entry 
into control flow 
graph)? Well, 
whatever value X 
had before is 
killed by the 
assignment, so… true 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

true 

true 

What about at 
this point (entry 
into control flow 
graph)? Well, 
whatever value X 
had before is 
killed by the 
assignment, so… true 

false 
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Liveness Analysis Example 

X := 0 

if (X == 10) 

X = X + 1 

(X is dead) 

false 

true 

true 

true 

And at this point 
we have correct 
liveness 
information at all 
program points in 
this example 

true 

false 
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Termination 

•  A value can change from false to true, but not 
the other way around 

•  Each value can change only once, so 
termination is guaranteed 

•  Once the analysis is computed, it is simple to 
eliminate dead code 
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Termination 

•  A value can change from false to true, but not 
the other way around 
–  Regarding orderings, note that we only have two 

values, and the only ordering is false < true 
–  So everything starts at the lowest possible element 

of the ordering and can only go up 
•  Each value can change only once, so 

termination is guaranteed 
 
•  Once the analysis is computed, it is simple to 

eliminate dead code 
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Forward vs. Backward Analysis 

We’ve seen two kinds of analysis: 
 
Constant propagation is a forwards analysis: 

information is pushed from inputs to outputs 
 
Liveness is a backwards analysis: information is 

pushed from outputs back towards inputs 
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Analysis 

•  There are many other global flow analyses 

•  Most can be classified as either forward or 
backward 

•  Most also follow the methodology of local 
rules relating information between adjacent 
program points 


