
1

Global Optimization

Lecture 15

2

Lecture Outline

•  Global dataflow analysis

•  Global constant propagation

•  Liveness analysis

3

Local Optimization

Recall the simple basic-block optimizations
–  Constant propagation
–  Dead code elimination

X := 3

Y := Z * W

Q := X + Y

X := 3

Y := Z * W

Q := 3 + Y

Y := Z * W

Q := 3 + Y

4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

 X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

 X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

6

Global Optimization

These optimizations can sometimes be extended
to an entire control-flow graph

 X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

7

Correctness

•  How do we know it is OK to globally propagate
constants?

•  There are situations where it is incorrect:
X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

8

Correctness (Cont.)

To replace a use of x by a constant k we must
know that:

On every path to the use of x, the last

assignment to x is x := k **

9

Example 1 Revisited

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

10

Example 2 Revisited

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

11

Discussion

•  The correctness condition is not trivial to
check

•  “All paths” includes paths around loops and
through branches of conditionals

•  Checking the condition requires global
dataflow analysis
–  An analysis of the entire control-flow graph

12

Global Analysis

Global optimization tasks share several traits:
–  The optimization depends on knowing a property X

at a particular point in program execution
•  E.g., is X, at a particular point in the program, guaranteed

to be a constant (this is a local property)
–  Proving X at any point requires knowledge of the

entire program (a global property)
•  E.g., all paths leading to X

–  In general, this is a very difficult and expensive
problem to solve. What saves us…

13

Global Analysis

Global optimization tasks share several traits:
–  The optimization depends on knowing a property X

at a particular point in program execution
•  E.g., is X, at a particular point in the program, guaranteed

to be a constant (this is a local property)
–  Proving X at any point requires knowledge of the

entire program (a global property)
•  E.g., all paths leading to X

–  …It is always OK to be conservative. If the
optimization requires X to be true, then want to
know X is definitely true

–  But it’s always safe to say “don’t know”
•  Because in worst case, you just don’t do the optimization

14

Global Analysis

So, having approximate techniques, that is
techniques that don’t always give the correct
answers to the questions we want to ask, is
OK, as long as we are always right when we say
that the property holds, and otherwise we just
say that we don’t know whether the property
holds or not.

15

Global Analysis (Cont.)

•  Global dataflow analysis is a standard
technique for solving problems with these
characteristics

•  Global constant propagation is one example of
an optimization that requires global dataflow
analysis

•  In what follows, we’ll be looking at global
constant propagation, and another dataflow
analysis, in more detail

16

Recall: Global Constant Propagation

To replace a use of x by a constant k we must
know that:

On every path to the use of x, the last
assignment to x is x := k (which we’ll call

property **)

17

Global Constant Propagation

•  Global constant propagation can be performed
at any point where property ** holds

•  Consider the case of computing property **
for a single variable X at all program points
–  Note it’s easy to extend this to the case of all

program variables
•  One simple, but inefficient way is to simply use any single

variable algorithm repeatedly, once for each variable in
the method body

18

Global Constant Propagation (Cont.)

•  To make the problem precise, we associate one
of the following values with X at every
program point

value interpretation

Bot (“bottom”) This statement
never executes

c X = constant c

T (pronounced “top”) X is not a constant

19

Example

X = T
X = 3

X = 3

X = 3
X = 4

X = T

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = T

note that program
points are in
between statements

E.g., X = 3 after
assignment but
before predicate

20

Using the Information

•  Given global constant information, it is easy to
perform the optimization
–  Simply inspect the x = ? associated with a

statement using x
–  If x is constant at that point replace that use of x

by the constant

•  But how do we compute the properties x = ?
–  That is, how, in a systematic fashion and on an

arbitrary control flow graph, do we compute these
properties for every program point

21

The Idea (Data flow analysis basic principle)

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements
(put another way, we build up global information

only by looking at local information)

22

Explanation

•  The idea is to “push” or “transfer”
information from one statement to the next

•  For each statement s, we compute information
about the value of x immediately before and
after s

C(x,s,in) = value of x before s
C(x,s,out) = value of x after s

23

Transfer Functions

•  Define a transfer function that transfers
information one statement to another

•  In the following rules, let statement s have
immediate predecessor statements p1,…,pn
–  Note that though there are possibly multiple

predecessors here, each leads to statement s in
one step

24

Rule 1

if C(pi, x, out) = T for any i, then C(s, x, in) = T

 s

X = T

X = T

X = ? X = ? X = ?
p1

p2 p3 p4

25

Rule 2

C(pi, x, out) = c & C(pj, x, out) = d & d ≠ c then

C(s, x, in) = T

 s

X = d

X = T

X = ? X = ? X = c
p1

p2 p3 p4

26

Rule 3

if C(pi, x, out) = c or Bot for all i,

then C(s, x, in) = c
This of course makes sense because Bot means that the statement

is never reached

 s

X = c

X = c

X = c X = Bot X = c
p1

p2 p3 p4

27

Rule 4

if C(pi, x, out) = Bot for all i,

then C(s, x, in) = Bot

 s

X = Bot

X = Bot

X = Bot X = Bot X = Bot
p1

p2 p3 p4

28

The Other Half

•  Rules 1-4 relate the out of one statement to
the in of the next statement

•  Now we need rules relating the in of a
statement to the out of the same statement

29

Rule 5

 C(s, x, out) = Bot if C(s, x, in) = Bot

s
X = Bot

X = Bot

30

Rule 6

 C(x := c, x, out) = c if c is a constant

(note that Rule 5 has precedence over Rule 6: if X is Bot before the
statement, then it’s Bot after the statement, even though there
is an assignment. In general, if we can assign Bot to something,

we do.)

x := c
X = ?

X = c

31

Rule 7

 C(x := f(…), x, out) = T

(once again, Rule 5 takes precedence if it applies)

x := f(…)
X = ?

X = T

This rule handles
every assignment
other than a
constant assignment

32

Rule 8

 C(y := …, x, out) = C(y := …, x, in) if x ≠ y

y := . . .
X = a

X = a

33

An Algorithm

1.  For every entry s to the program, set
C(s, x, in) = T

2.  Set C(s, x, in) = C(s, x, out) = Bot everywhere
else

 E.g., we assume (at first) that none of the other
 statements are ever executed

3.  Repeat until all points satisfy 1-8:
Pick s not satisfying any of Rules 1-8 and update using

the appropriate rule
(look for places in the CFG where information is inconsistent

according to the rules, and update)

34

Example

X = T
X = Bot

X = Bot

X = Bot
X = Bot

X = Bot

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = Bot

X = Bot

X = Bot

35

Example

X = T
X = Bot

X = Bot

X = Bot
X = Bot

X = Bot

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = Bot

X = Bot

X = Bot

Only place where
there is an
inconsistency:
X is T, then
assigned 3, X
should be 3.

36

Example

X = T
X = 3

X = Bot

X = Bot
X = Bot

X = Bot

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = Bot

X = Bot

X = Bot

Only place where
there is an
inconsistency:
X is T, then
assigned 3, X
should be 3.

37

Example

X = T
X = 3

X = Bot

X = Bot
X = Bot

X = Bot

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = Bot

X = Bot

X = Bot

But now this
is inconsistent:
X is 3, but then
unreachable

38

Example

X = T
X = 3

X = 3

X = Bot
X = Bot

X = Bot

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = Bot

X = Bot

X = Bot

39

Example

X = T
X = 3

X = 3

X = 3
X = 4

X = T

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = T

At this point,
all the
information is
consistent with
the rules

More Control Flow Analysis: Analysis of Loops

•  This is probably the most interesting part of
control flow analysis!

•  But first, lets take another look at that Bot
thing
–  Because the need for it is intimately tied to the

analysis of loops

40

41

The Value Bot

•  To understand why we need Bot, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3
What is
the value
for X here?

42

The Value Bot

•  To understand why we need Bot, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3
Consider the
predecessors.
What are
they?

43

Discussion

•  Consider the statement Y := 0
•  To compute whether X is constant at this

point, we need to know whether X is constant
at the two predecessors
–  X := 3
–  A := 2 * X

•  Note other statements don’t involve X

•  But info for A := 2 * X depends on its
predecessors, including Y := 0!
–  So how do we get information about the

predecessors of Y:= 0 when they depend on
themselves?

44

A Standard Solution…

•  Used in many areas of math when you have
recursive or recurrence relations

•  Because of cycles, all points must have values
at all times

•  Intuitively, assigning some initial value allows
the analysis to break cycles
–  I.e., Break the cycle be starting with some initial

guess (which here, turns out to be Bot)
•  The initial value Bot means “So far as we

know, control never reaches this point”

45

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = Bot

X = Bot

X = Bot

X = Bot

X = Bot

X = Bot

X = Bot

46

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = Bot

X = Bot
X = Bot

Remember
what Bot means:
this is never
executed.

47

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = Bot

X = Bot
X = Bot

.If it’s never
executed, then
we can assign 3
here

48

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = Bot

X = Bot

X = 3

49

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = Bot

X = 3

X = 3

50

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
 X = 3

X = 3

X = 3

X = 3

X = 3

X = 3

X = 3

Note at this point we need to check that everything
is OK (no inconsistencies). And it turns out it is OK.

51

Orderings

•  In the last few slides we talked about a kind of
abstract computation, using elements like Bot,
the constants, and T
–  And in fact, things like Bot, the constants, and T

are called abstract values, to distinguish them from
the concrete values (the actual run-time values that
a program computes with)

–  And in fact these things are in general more
abstract, since, for example, they can stand for
sets of possible concrete values

•  T in particular can stand for any possible run-time value!

52

Orderings

•  In the last few slides we talked about a kind of
abstract computation, using elements like Bot,
the constants, and T

•  We now start to generalize those ideas a bit

•  The first step towards that generalization is
to talk about orderings of those values

53

Orderings

•  We can simplify the presentation of the
analysis by ordering the abstract values

Bot < constants < T

•  Drawing a picture with “lower” values drawn
lower, we get

Bot

T

-1 0 1

Edges between values where there is a relationship

54

Orderings

•  We can simplify the presentation of the
analysis by ordering the abstract values

Bot < constants < T

•  Drawing a picture with “lower” values drawn
lower, we get

Bot

T

-1 0 1

Bot less than all constants, Top greater than all constants

55

Orderings

•  We can simplify the presentation of the
analysis by ordering the abstract values

Bot < constants < T

•  Drawing a picture with “lower” values drawn
lower, we get

Bot

T

-1 0 1

Note in this ordering, constants are NOT comparable to each other

56

Orderings (Cont.)

•  T is the greatest value, Bot is the least
–  All constants are in between and incomparable

•  Let lub be the least-upper bound in this
ordering
–  E.g., lub(Bot, 1) = 1
–  E.g., lub(1,2) = T

•  Rules 1-4 can be written using lub:
C(s, x, in) = lub { C(p, x, out) | p is a predecessor of s }

57

Termination

•  Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

•  The use of lub, however, explains why the
algorithm terminates
–  Values start as Bot and rules stipulate they can

only increase
–  Bot can change to a constant, and a constant to T
–  Thus, C(s, x, _) can change at most twice

58

Termination (Cont.)

Thus the constant propagation algorithm is
linear in program size

Number of steps =
Number of C(….) value computed * 2 =
Number of program statements * 4

 (because there is an in and out for each
program statement)

Liveness Analysis

We consider now another form of
global analysis: liveness analysis

59

60

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

61

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

62

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

Let’s be a little more careful in what we mean by
saying X is not used…

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

63

Live and Dead

•  The first value of x is
dead (never used)
–  Value 3 is overwritten

before it is ever used for
anything

•  The second value of x is
live (i.e., value may be
used by some subsequent
instruction)
–  In this particular example,

it’s actually guaranteed to
be used

•  Liveness is an important
concept

X := 3

X := 4

 Y := X

64

Liveness (Summary)

A variable x is live at statement s if

–  There exists a statement s’ that uses x
•  E.g., an assignment to x

–  There is a path from s to s’

–  That path has no intervening assignment to x

65

Global Dead Code Elimination

•  A assignment statement x := … is dead code if
x is dead after the assignment

•  Dead statements can be deleted from the
program

•  But we need liveness information first . . .

66

So once again…

•  We need global information about the control
flow graph, in this case the property
describing whether X will be used in the
future, and we want to make that information
local to a specific point in the program so that
we can make a local optimization decision.

•  And just like with constant propagation, we
are going to define an algorithm for
performing liveness analysis.

•  We’ll use a framework similar to what we did
with constant propagation…

67

Computing Liveness

•  We can express liveness in terms of
information transferred between adjacent
statements, just as in copy propagation

•  Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

68

Liveness Rule 1

L(p, x, out) = ∨ { L(s, x, in) | s a successor of p }

(put another way, the value of x is live right
after p if the value of x is used on some path

originating at p

p

X = true

X = true

X = ? X = ? X = ?

So the question:
immediately
after p, is X live?

69

Liveness Rule 2

 L(s, x, in) = true if s refers to x (i.e., reads x)

on the rhs

…:= f(x)
X = true

X = ?

70

Liveness Rule 3

 L(x := e, x, in) = false if e does not refer to x
(why? well we are overwriting the value of x in

the statement, so whatever value x had prior
to the statement is dead)

x := e
X = false

X = ?

71

Liveness Rule 4

 L(s, x, in) = L(s, x, out) if s does not refer to x

s
X = a

X = a

72

Algorithm

1.  Let L(…) = false initially at all program points

2.  Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update

using the appropriate rule

73

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

false

false

false

false

74

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

false

false

false

Inconsistency
here, since X is
read in next
statement, so it
can’t be dead.

false

75

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

false

false

Inconsistency
here, since X is
read in next
statement, so it
can’t be dead.

false

76

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

false

false

But notice that
changing that
false to true
means that X
can’t be dead
prior to the read
of X here.

false

77

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

false

false

But notice that
changing that
false to true
means that X
can’t be dead
prior to the read
of X here.

true

78

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

false

false

And changing this
false to true
means that X
can’t be dead at
these two!

true

79

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

true

true

And changing this
false to true
means that X
can’t be dead at
these two!

true

80

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

true

true

What about at
this point (entry
into control flow
graph)? Well,
whatever value X
had before is
killed by the
assignment, so… true

81

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

true

true

What about at
this point (entry
into control flow
graph)? Well,
whatever value X
had before is
killed by the
assignment, so… true

false

82

Liveness Analysis Example

X := 0

if (X == 10)

X = X + 1

(X is dead)

false

true

true

true

And at this point
we have correct
liveness
information at all
program points in
this example

true

false

83

Termination

•  A value can change from false to true, but not
the other way around

•  Each value can change only once, so
termination is guaranteed

•  Once the analysis is computed, it is simple to
eliminate dead code

84

Termination

•  A value can change from false to true, but not
the other way around
–  Regarding orderings, note that we only have two

values, and the only ordering is false < true
–  So everything starts at the lowest possible element

of the ordering and can only go up
•  Each value can change only once, so

termination is guaranteed

•  Once the analysis is computed, it is simple to

eliminate dead code

85

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:

information is pushed from inputs to outputs

Liveness is a backwards analysis: information is

pushed from outputs back towards inputs

86

Analysis

•  There are many other global flow analyses

•  Most can be classified as either forward or
backward

•  Most also follow the methodology of local
rules relating information between adjacent
program points

