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Intermediate Code & Local Optimizations 

Lecture 14 
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Lecture Outline 

•  Intermediate code 

•  Local optimizations 

•  Next time: global optimizations 
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Code Generation Summary 

•  We have discussed 
–  Runtime organization 
–  Simple stack machine code generation 
–  Improvements to stack machine code generation 

•  Our compiler maps AST to assembly language 
–  And does not perform optimizations 
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Optimization 

•  Optimization is our last compiler phase 

•  Most complexity in modern compilers is in the 
optimizer 
–  Also by far the largest phase 

•  First, we need to discuss intermediate 
languages 



Intermediate Language 

•  A language between the source language and 
the target language 

•  Provides an intermediate level of abstraction 
–  More details than the source 
–  Fewer details than the target 

Source language 
(COOL) 

Intermediate language 

Target language 
(MIPS assembly) 

We’ve gone directly from COOL to MIPS assembly, but in many cases, 
compilers first go through an intermediate language. This leads to an obvious 
question… 



Why Do This? 

•  That is, why make life more difficult by doing 
something in two steps that you could do in a 
single step? 

•  Because it turns out that in many cases, the 
intermediate level of abstraction is really 
quite useful.  
–  Provides enough detail to allow for things like 

optimization 
–  But not so low level that optimizations need to be 

reimplemented when retargeting compiler 
E.g., What kind of detail do you need to express optimizations you 
might want to do with register? Ans: More than cool provides. 



Why Do This? 

•  That is, why make life more difficult by doing 
something in two steps that you could do in a 
single step? 

•  Because it turns out that in many cases, the 
intermediate level of abstraction is really 
quite useful.  
–  Provides enough detail to allow for things like 

optimization 
–  But not so low level that optimizations need to be 

reimplemented when retargeting compiler 
But, you don’t want so much detail that you’re getting down to the level 
of a particular instruction set on a particular machine.  
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Why Intermediate Languages? 

•  When should we perform optimizations? 
–  On AST 

•  Pro: Machine independent 
•  Con: Too high level 

–  On assembly language 
•  Pro: Exposes optimization opportunities 
•  Con: Machine dependent 
•  Con: Must reimplement optimizations when retargetting 

–  On an intermediate language 
•  Pro: Machine independent 
•  Pro: Exposes optimization opportunities  



In Practice   

•  Experience has shown that having an 
intermediate language is a good idea  
–  Almost all real compilers have an intermediate 

language 
–  Some compilers translate through an entire series 

of intermediate languages between source and 
target 

•  We’ll consider only one: a sort of high-level 
assembly language 
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Intermediate Languages 

•  Intermediate language = high-level assembly  
–  Uses register names, but has an unlimited number 

of them 
–  Uses control structures like assembly language 

•  Explicit jumps and labels 
–  Uses opcodes but some are higher level 

•  E.g., push translates to several assembly instructions 
•  Most opcodes correspond directly to MIPS assembly 

opcodes 
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Three-Address Intermediate Code 

•  Each instruction is of one of these forms 
                         x := y op z 

    x := op y 
–  y and z are registers or constants (immediate values) 
–  Common form of intermediate code 

•  The expression x + y * z is translated 
                     t1 := y * z 
                     t2 := x + t1 
–  Each subexpression has a “name” 

binary op 
unary op 

Called “three-address code” since every instruction has at 
most three addresses in it 

note each instruction  
performs only one operation  
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Three-Address Intermediate Code 

•  Each instruction is of one of these forms 
                         x := y op z 

    x := op y 
–  y and z are registers or constants (immediate values) 
–  Common form of intermediate code 

•  The expression x + y * z is translated 
                     t1 := y * z 
                     t2 := x + t1 
–  Each subexpression has a “name” 

•  This is a result of only one operation per instruction 

binary operation 
unary operation 

called three-address since each instruction has at most 
three addresses in it (2 ops and 1 destination)  
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Generating Intermediate Code 

•  Generation of three-address code is similar to 
assembly code generation 

•  Main difference: use any number of 
intermediate language (IL) registers to hold 
intermediate results 
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Generating Intermediate Code (Cont.) 

•  igen(e, t) function generates code to compute 
the value of e and place in register t 

•  Example: 
igen(e1 + e2, t) =  
      igen(e1, t1)             (t1 is a fresh register) 
      igen(e2, t2)            (t2 is a fresh register) 
      t := t1 + t2 

•  Unlimited number of registers ⇒ simple code 
generation 
–  Even simpler than generating for stack machine (no 

need to move SP on push, etc) 

note this is a three-address instruction 
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Intermediate Code Notes 

•  You should be able to use intermediate code 
–  At the level discussed in lectures 
–  Future lectures will use it quite a bit to express 

certain kinds of optimizations 
–  Should also be able to write simple IC programs and 

write algorithms that work on IC 
•  You are not expected to know how to generate 

intermediate code 
–  Because we won’t discuss it 
–  But really just a variation on code generation 

notions we’ve already discussed in detail.  
•  No new ideas  



Optimization 

•  Optimization is our last compiler phase 
–  But recall from first day that it occurs before 

code generation 
•  We want to improve the program before committing it to 

machine code 

•  Most complexity in modern compilers is in the 
optimizer 
–  Also, by far, the most code 
–  By far the most complex part of the compiler  
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Optimization 

•  When should we perform optimization? 
–  On AST? 

•  Pro: Machine independent 
•  Con: Too high level – lacks details we need to express 

optimizations 
–  On assembly language? 

•  Pro: Exposes optimization opportunity 
•  Con: Machine dependent 
•  Con: Must reimplement optimization when retargeting 

–  On an intermediate language? 
•  Pro: Machine independent 
•  Pro: Exposes optimization opportunities 
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An Intermediate Language 

P → S P | ε 
S → id := id op id 
     | id := op id 
     | id := id 
     | push id 
     | id := pop 
     | if id relop id goto L 
     | L: 
     | jump L 

•  id’s are register names 
•  Constants (immediates) 

can replace id’s 
•  Typical operators: +, -, * 
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Definition. Basic Blocks  

•  A basic block is a maximal sequence of 
instructions with:  
–  no labels (except at the first instruction), and  
–  no jumps (except possibly the last instruction) 

•  Idea:  
–  Cannot jump into a basic block (except at beginning) 
–  Cannot jump out of a basic block (except at end) 
–  A basic block is a single-entry, single-exit, 

straight-line code segment 
•  So flow of control within a basic block is completely 

predictable 

because optimizations typically work 
on groups of statements 
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Definition. Basic Blocks  

•  A basic block is a maximal sequence of 
instructions with:  
–  no labels (except at the first instruction), and  
–  no jumps (except in the last instruction) 

•  Idea:  
–  Cannot jump into a basic block (except at beginning) 
–  Cannot jump out of a basic block (except at end) 
–  A basic block is a single-entry, single-exit, 

straight-line code segment 
•  Also, can’t jump into middle of a basic block!  

because optimizations typically work 
on groups of statements 
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Basic Block Example 

•  Consider the basic block 
1.  L:  
2.     t := 2 * x 
3.     w := t + x 
4.     if w > 0 goto L’ 

•  (3) executes only after (2)  
–  We can change (3) to w := 3 * x 
–  Can we eliminate (2) as well? 

•  Depends on whether t has any other uses elsewhere in 
the program (can’t know just from this block) 
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Definition. Control-Flow Graphs 

•  A control-flow graph (CFG) is a directed graph with 
–  Basic blocks as nodes 
–  An edge from block A to block B if the execution can 

pass from the last instruction in A to the first 
instruction in B 

•  E.g., the last instruction in A is jump LB  
•  E.g., execution can fall-through from block A to block B 

•  Since control flow within a basic block is simple, 
CFG summarizes interesting decision points within 
procedure or piece of code 
–  Note use of acronym “CFG” is, somewhat ironically, 

context dependent 



Example of Control-Flow Graphs 

•  The body of a method (or 
procedure) can always be 
represented as a control-
flow graph 

•  There is one initial node 
(i.e., a start node) 

•  All “return” nodes are 
terminal 
–  No edges out of these blocks 

x := 1 
i := 1 

L: 
  x := x * x 
  i := i + 1 
  if i < 10 goto L 
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Optimization Overview 

•  Optimization seeks to improve a program’s 
resource utilization 
–  Execution time (most often) 

•  What we focus on in this course 
–  Code size 
–  Network messages sent, etc. 
–  Actually, for any resource you can imagine, there is 

likely a compiler out there that spends some effort 
optimizing for it 

•  Memory usage 
•  Disk accesses 
•  Power 
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Optimization Overview 

•  Optimization seeks to improve a program’s 
resource utilization 
–  Execution time (most often) 

•  What we focus on in this course 
–  Code size 
–  Network messages sent, etc. 

•  Optimization should not alter what the 
program computes 
–  The answer must still be the same  



A Classification of Optimizations 

•  For languages like C and Cool there are three 
granularities of optimizations 
1.  Local optimizations 

•  Apply to a basic block in isolation 
2.  Global optimizations 

•  Apply to a control-flow graph (method body) in isolation 
•  Misnamed: global to the CFG (i.e. across the entire 

function) 
3.  Inter-procedural optimizations 

•  Apply across method boundaries 

•  Most compilers do (1), many do (2), few do (3) 



A Classification of Optimizations 

•  For languages like C and Cool there are three 
granularities of optimizations 
1.  Local optimizations 
2.  Global optimizations 
3.  Inter-procedural optimizations 

 

•  Most compilers do (1), many do (2), few do (3) 
•  Why?  

–  (3) is more difficult to implement 
–  Most of optimization payoff comes from (1) and (2) 
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Cost of Optimizations 

•  In practice, often a conscious decision is made 
not to implement the fanciest optimization 
known (e.g., in the research literature) 
–  There are very many known 
–  Reality can be frustrating for compiler researchers 

•  Whose great ideas are not always implemented 
•  Why?  

–  Boils down to software engineering 
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Cost of Optimizations 

•  In practice, a conscious decision is made not 
to implement the fanciest optimization known 
–  There are very many known 
–  Reality can be frustrating for compiler researchers 

•  Why?  
–  Some optimizations are hard to implement 
–  Some optimizations are costly in compilation time 

•  Can take days! 
–  Some optimizations have low benefit 
–  Many fancy optimizations are all three! 

•  Which explains why not implemented! 

•  Goal: Maximum benefit for minimum cost 
–  Cost/benefit ratio 
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Local Optimizations 

•  The simplest form of optimizations 

•  Optimize one basic block 
–  No need to analyze the whole procedure body 
–  No need to worry about complicated control flow 
  

•  Example: algebraic simplification 
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Algebraic Simplification 

•  Some statements can be deleted  
x := x + 0 
x := x * 1 

•  Some statements can be simplified 
       x := x * 0          ⇒   x := 0 
       y := y ** 2        ⇒   y := y * y 
       x := x * 8          ⇒   x := x << 3 
       x := x * 15         ⇒  t := x << 4; x := t - x 

(on some machines << is faster than *; but not on all!) 

Assume x has type int here 



32 

Algebraic Simplification 

•  Some statements can be deleted  
x := x + 0 
x := x * 1 

•  Some statements can be simplified 
       x := x * 0          ⇒   x := 0 
       y := y ** 2        ⇒   y := y * y 
       x := x * 8          ⇒   x := x << 3 
       x := x * 15         ⇒  t := x << 4; x := t - x 

(on some machines << is faster than *; but not on all!) 

Surprisingly, it 
might be that these 
two statements take 
equal time to run.  
But having the 
constant assignment 
allows some other  
optimizations 
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Algebraic Simplification 

•  Some statements can be deleted  
x := x + 0 
x := x * 1 

•  Some statements can be simplified 
       x := x * 0          ⇒   x := 0 
       y := y ** 2        ⇒   y := y * y 
       x := x * 8          ⇒   x := x << 3 
       x := x * 15         ⇒  t := x << 4; x := t - x 

(on some machines << is faster than *; but not on all!) 

This will almost 
surely be a time 
saving change.  
Why? Because the 
** operator is 
typically not a built 
in instruction.  Thus 
need call to library 



Algebraic Simplification 

•  Some statements can be deleted  
x := x + 0 
x := x * 1 

•  Some statements can be simplified 
       x := x * 0          ⇒   x := 0 
       y := y ** 2        ⇒   y := y * y 
       x := x * 8          ⇒   x := x << 3 
       x := x * 15         ⇒  t := x << 4; x := t - x 

(on some machines << is faster than *; but not on all! 
In fact, on most modern machines, no difference! On 

historical machines these were significant optimizations) 



Algebraic Simplification 

•  Some statements can be deleted  
x := x + 0 
x := x * 1 

•  Some statements can be simplified 
       x := x * 0          ⇒   x := 0 
       y := y ** 2        ⇒   y := y * y 
       x := x * 8          ⇒   x := x << 3 
       x := x * 15         ⇒  t := x << 4; x := t - x 

All of these examples of algebraic simplification: 
exploiting properties of the mathematical operators 
to replace complex ops with simpler ones 



Constant Folding 

•  Operations on constants can be computed at 
compile time 
–  If there is a statement x := y op z 
–  And y and z are constants 
–  Then y op z can be computed at compile time 

•  Example: x := 2 + 2  ⇒ x := 4 
•  Example: if 2 < 0 jump L can be deleted 

–  In general, if the predicate consists only of 
immediate values, the target of the jump can be 
precomputed and the conditional eliminated 



Constant Folding 

•  Operations on constants can be computed at 
compile time 
–  If there is a statement x := y op z 
–  And y and z are constants 
–  Then y op z can be computed at compile time 

•  Example: x := 2 + 2  ⇒ x := 4 
•  Example: if 2 < 0 jump L can be deleted 

constant folding is one of the most common and most 
important optimizations that compilers perform 



Constant Folding 

•  Constant folding can be dangerous 
–  Although this condition is not common, it is 

instructive 
•  Cross-compiler: compile on machine X, 

generate code to run on machine Y 
–  Why? Perhaps Y is weak: low power, limited 

memory, etc.  
–  Much code for embedded devices compiled this way 

Y 

Gen. code 

X 

Compiler 



Constant Folding Danger (cont.) 

•  Assume X and Y are different architectures 
•  And you want to compute a:=1.5 +3.7, which 

you fold, on X, to a:=5.2 
•  But, if computed directly on Y, differences in 

floating point implementation might lead, in 
actual execution, to a:=5.19 

•  Becomes significant because some algorithms 
depend on floating point numbers being 
treated consistently 
–  E.g., roundoff must be handled same way every time 

it’s required  
–  This can change results of the program 



Constant Folding Danger (cont.) 

•  So how do cross-compilers handle this? 
–  Represent floating point numbers as strings inside 

the compiler 
–  Do long form addition, multiplication, etc, directly 

on the strings, keeping full precision inside compiler 
–  Then in the running code, they produce the literal 

full precision floating point number and let Y decide 
how it wants to handle rounding 

–  This is careful way to do cross-compilation if you’re 
worried about this issue  
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Flow of Control Optimizations 

•  Eliminate unreachable basic blocks: 
–  Code that is unreachable from the initial block 

•  E.g., basic blocks that are not the target of any jump or 
“fall through” from a conditional 

 
•  Removing unreachable code makes the program 

smaller 
–  And sometimes also faster 

•  Due to memory cache effects (removal of unused code 
may increase spatial locality of remaining code) 
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Question: 

 
•  Why would unreachable basic blocks occur? 
•  Well, several ways it can occur 

–  So this situation is actually quite common 
•  Ex: Code that is parameterized and only run in 

certain situations (e.g., my debug_print() 
function and the calls to it in Project 1) 

•  More generally: 
 #define DEBUG 0 
 if (DEBUG) then {… 
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Question: 

 
•  Why would unreachable basic blocks occur? 
•  Another Ex.: libraries 

–  Libraries often contain several (sometimes 
hundreds of) methods.  Your code might only use a 
few of them.  So the remaining methods can be 
removed from the final executable binary 

•  Final Ex.: Other optimizations 
–  Which can lead to further optimizations 
–  Since, as we’ve discussed, the compiler is 

automated, this can result in the generation of 
blocks of code that might never be reachable 
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Single Assignment Form 

•  Some optimizations are simplified if each register 
occurs only once on the left-hand side of an 
assignment 

•  Rewrite intermediate code in single assignment form 
(every register is assigned at most once) 
x := z + y                       b := z + y 
a := x               ⇒           a := b 
x := 2 * x                       x := 2 * b 
             (b is a fresh register) 
–  More complicated in general, due to loops 
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Common Subexpression Elimination 

•  If 
–  Basic block is in single assignment form and 
–  A definition x := is the first use of x in a block 

•  Then 
–  When two assignments have the same rhs, they 

compute the same value 
•  Example: 

x := y + z                              x := y + z 
…                             ⇒         … 
w := y + z                             w := x 
(the values of x, y, and z do not change in the … code) 
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Common Subexpression Elimination 

•  If 
–  Basic block is in single assignment form and 
–  A definition x := is the first use of x in a block 

•  Then 
–  When two assignments have the same rhs, they 

compute the same value 
•  Example: 

x := y + z                              x := y + z 
…                             ⇒         … 
w := y + z                             w := x 
(the values of x, y, and z do not change in the … code) 
(because x, y, and z, must already have been defined) 
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Common Subexpression Elimination 

•  If 
–  Basic block is in single assignment form and 
–  A definition x := is the first use of x in a block 

•  Then 
–  When two assignments have the same rhs, they 

compute the same value 
•  Example: 

x := y + z                              x := y + z 
…                             ⇒         … 
w := y + z                             w := x 
(changing y + z to x saves us from having to recompute 

the sum) 
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Common Subexpression Elimination 

•  If 
–  Basic block is in single assignment form and 
–  A definition x := is the first use of x in a block 

•  Then 
–  When two assignments have the same rhs, they 

compute the same value 
•  Example: 

x := y + z                              x := y + z 
…                             ⇒         … 
w := y + z                             w := x 
(occurs quite often: an important compiler 

optimization) 
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Copy Propagation 

•  If w := x appears in a block, replace subsequent uses 
of w with uses of x 
–  Assumes single assignment form 

•  Example: 
      b := z + y                           b := z + y 
      a := b                   ⇒          a := b 
      x := 2 * a                           x := 2 * b 
 

•  By itself makes no improvement to code.  Only useful 
for enabling other optimizations 
–  Constant folding 
–  Dead code elimination 

•  E.g., above, might be able to remove the line a:=b in right column 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 2 * a         ⇒              x := 10 
y := x + 6                           y := 16 
t := x * y                           t := x << 4 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 2 * 5         ⇒              x := 10 
y := x + 6                           y := 16 
t := x * y                           t := x << 4 

Note when constant is being propagated, it’s 
called “constant propagation”, rather than  
copy propagation 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 10             ⇒              x := 10 
y := x + 6                           y := 16 
t := x * y                           t := x << 4 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 10             ⇒              x := 10 
y := 10 + 6                         y := 16 
t := 10 * y                         t := x << 4 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 10             ⇒              x := 10 
y := 16                               y := 16 
t := 10 * 16                        t := x << 4 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 10             ⇒              x := 10 
y := 16                               y := 16 
t := 10 * 16                        t := x << 4 
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Copy Propagation and Constant Folding 

•  Example: 
a := 5                                a := 5 
x := 10             ⇒              x := 10 
y := 16                               y := 16 
t := 10 * 16                        t := 160 

Note final constant propagation better than 
leaving it as x << 4 
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Copy Propagation and Dead Code Elimination 

If  
w := rhs appears in a basic block 
w does not appear anywhere else in the program 

Then  
the statement w := rhs is dead and can be eliminated 
–  Dead = does not contribute to the program’s result 

Example:  (a is not used anywhere else) 
x := z + y             b := z + y                  b := z + y 
a := x          ⇒     a := b              ⇒       x := 2 * b 
x := 2 * a            x := 2 * b 
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Applying Local Optimizations 

•  Each local optimization does little by itself 
–  Some we’ve mentioned don’t, by themselves, make 

the program run faster at all (though they don’t 
make it run slower) 

•  Typically optimizations interact 
–  Performing one optimization enables another 

•  Optimizing compilers repeat optimizations 
until no improvement is possible 
–  The optimizer can also be stopped at any point to 

limit compilation time 
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Applying Local Optimizations 

•  Optimizing compilers repeat optimizations 
until no improvement is possible 
–  The optimizer can also be stopped at any point to 

limit compilation time 
•  Basically, the optimizing compiler has a bag of 

tricks, which it looks through to see if any 
trick can be applied to some part of the 
current version of the code.   

•  If it finds one, it changes the code, then goes 
back and repeats the process on the new 
version of the code. 
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A Bigger Example 

•  Initial code: 
                a := x ** 2  
                b := 3 
                c := x 
                d := c * c 
                e := b * 2  
                f := a + d 
                g := e * f 
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An Example 

•  Algebraic optimization: 
                a := x ** 2  
                b := 3 
                c := x 
                d := c * c 
                e := b * 2  
                f := a + d 
                g := e * f 
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An Example 

•  Algebraic optimization: 
                a := x * x  
                b := 3 
                c := x 
                d := c * c 
                e := b << 1  
                f := a + d 
                g := e * f 
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An Example 

•  Copy propagation: 
                a := x * x  
                b := 3 
                c := x 
                d := c * c 
                e := b << 1  
                f := a + d 
                g := e * f 
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An Example 

•  Copy propagation: 
                a := x * x  
                b := 3 
                c := x 
                d := x * x 
                e := 3 << 1  
                f := a + d 
                g := e * f 
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An Example 

•  Constant folding: 
                a := x * x  
                b := 3 
                c := x 
                d := x * x 
                e := 3 << 1  
                f := a + d 
                g := e * f 
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An Example 

•  Constant folding: 
                a := x * x  
                b := 3 
                c := x 
                d := x * x 
                e := 6  
                f := a + d 
                g := e * f 
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An Example 

•  Common subexpression elimination: 
                a := x * x  
                b := 3 
                c := x 
                d := x * x 
                e := 6  
                f := a + d 
                g := e * f 
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An Example 

•  Common subexpression elimination: 
                a := x * x  
                b := 3 
                c := x 
                d := a 
                e := 6  
                f := a + d 
                g := e * f 
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An Example 

•  Copy propagation: 
                a := x * x  
                b := 3 
                c := x 
                d := a 
                e := 6  
                f := a + d 
                g := e * f 



70 

An Example 

•  Copy propagation: 
                a := x * x  
                b := 3 
                c := x 
                d := a 
                e := 6  
                f := a + a 
                g := 6 * f 
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An Example 

•  Dead code elimination: 
                a := x * x  
                b := 3 
                c := x 
                d := a 
                e := 6  
                f := a + a 
                g := 6 * f 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                f := a + a 
                g := 6 * f 

•  This is the final form 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                f := a + a 
                g := 6 * f 

•  This is the final form (well, not really) 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                f := 2 * a 
                g := 6 * f 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                f := 2 * a 
                g := 6 * f 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                f := 2 * a 
                g := 12 * a 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                                 
                g := 12 * a 

•  This is the final form (really) 
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An Example 

•  Dead code elimination: 
                a := x * x  
                
 
 
  
                                 
                g := 12 * a 

•  This is the final form (really) 

–  But to be fair, while some current compilers would 
find these last few steps, most would not 
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Peephole Optimizations on Assembly Code 

•  These optimizations work on intermediate 
code 
–  Target independent 
–  But they can be applied directly to assembly 

language also 

•  Peephole optimization is effective for 
improving assembly code 
–  The “peephole” is a short sequence of (usually 

contiguous) instructions 
•  It’s some “window” onto the code 

–  The optimizer replaces the sequence with another 
equivalent one (but faster) 
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Peephole Optimizations on Assembly Code 

•  These optimizations work on intermediate 
code 
–  Target independent 
–  But they can be applied directly to assembly 

language also 

•  Peephole optimization is effective for 
improving assembly code 
–  The “peephole” is a short sequence of (usually 

contiguous) instructions 
•  It’s some “window” onto the code 

–  The optimizer replaces the sequence with another 
equivalent one (but faster) (then rinse and repeat) 
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Peephole Optimizations (Cont.) 

•  Write peephole optimizations as replacement rules 
                     i1, …, in → j1, …, jm 

where the rhs is the improved version of the lhs 
 

•  Example: 
       move $a $b, move $b $a → move $a $b 
–  Works if move $b $a is not the target of a jump 

•  Think about it: after first move, $a and $b have the same contents 

•  Another example 
addiu $a $a i, addiu $a $a j → addiu $a $a i+j  
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Peephole Optimizations (Cont.) 

•  Many (but not all) of the basic block 
optimizations can be cast also as peephole 
optimizations 
–  Example: addiu $a $b 0  → move $a $b 
–  Example: move $a $a       →  
–  These two optimizations together eliminate      

addiu $a $a 0 

•  As for local optimizations, peephole 
optimizations must be applied repeatedly for 
maximum effect 
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Local Optimizations: Notes 

•  Intermediate code is helpful for many optimizations 

•  Many simple optimizations can still be applied on 
assembly language 

•  “Program optimization” is grossly misnamed 
–  Code produced by “optimizers” is not optimal in any 

reasonable sense 
•  And if it happened to somehow produce an actual “optimal” version of the 

program, it would be a complete accident 
–  “Program improvement” is a more appropriate term 

•  Next time: global optimizations 


