
1

Intermediate Code & Local Optimizations

Lecture 14

2

Lecture Outline

•  Intermediate code

•  Local optimizations

•  Next time: global optimizations

3

Code Generation Summary

•  We have discussed
–  Runtime organization
–  Simple stack machine code generation
–  Improvements to stack machine code generation

•  Our compiler maps AST to assembly language
–  And does not perform optimizations

4

Optimization

•  Optimization is our last compiler phase

•  Most complexity in modern compilers is in the
optimizer
–  Also by far the largest phase

•  First, we need to discuss intermediate
languages

Intermediate Language

•  A language between the source language and
the target language

•  Provides an intermediate level of abstraction
–  More details than the source
–  Fewer details than the target

Source language
(COOL)

Intermediate language

Target language
(MIPS assembly)

We’ve gone directly from COOL to MIPS assembly, but in many cases,
compilers first go through an intermediate language. This leads to an obvious
question…

Why Do This?

•  That is, why make life more difficult by doing
something in two steps that you could do in a
single step?

•  Because it turns out that in many cases, the
intermediate level of abstraction is really
quite useful.
–  Provides enough detail to allow for things like

optimization
–  But not so low level that optimizations need to be

reimplemented when retargeting compiler
E.g., What kind of detail do you need to express optimizations you
might want to do with register? Ans: More than cool provides.

Why Do This?

•  That is, why make life more difficult by doing
something in two steps that you could do in a
single step?

•  Because it turns out that in many cases, the
intermediate level of abstraction is really
quite useful.
–  Provides enough detail to allow for things like

optimization
–  But not so low level that optimizations need to be

reimplemented when retargeting compiler
But, you don’t want so much detail that you’re getting down to the level
of a particular instruction set on a particular machine.

8

Why Intermediate Languages?

•  When should we perform optimizations?
–  On AST

•  Pro: Machine independent
•  Con: Too high level

–  On assembly language
•  Pro: Exposes optimization opportunities
•  Con: Machine dependent
•  Con: Must reimplement optimizations when retargetting

–  On an intermediate language
•  Pro: Machine independent
•  Pro: Exposes optimization opportunities

In Practice

•  Experience has shown that having an
intermediate language is a good idea
–  Almost all real compilers have an intermediate

language
–  Some compilers translate through an entire series

of intermediate languages between source and
target

•  We’ll consider only one: a sort of high-level
assembly language

9

10

Intermediate Languages

•  Intermediate language = high-level assembly
–  Uses register names, but has an unlimited number

of them
–  Uses control structures like assembly language

•  Explicit jumps and labels
–  Uses opcodes but some are higher level

•  E.g., push translates to several assembly instructions
•  Most opcodes correspond directly to MIPS assembly

opcodes

11

Three-Address Intermediate Code

•  Each instruction is of one of these forms
 x := y op z

 x := op y
–  y and z are registers or constants (immediate values)
–  Common form of intermediate code

•  The expression x + y * z is translated
 t1 := y * z
 t2 := x + t1
–  Each subexpression has a “name”

binary op
unary op

Called “three-address code” since every instruction has at
most three addresses in it

note each instruction
performs only one operation

12

Three-Address Intermediate Code

•  Each instruction is of one of these forms
 x := y op z

 x := op y
–  y and z are registers or constants (immediate values)
–  Common form of intermediate code

•  The expression x + y * z is translated
 t1 := y * z
 t2 := x + t1
–  Each subexpression has a “name”

•  This is a result of only one operation per instruction

binary operation
unary operation

called three-address since each instruction has at most
three addresses in it (2 ops and 1 destination)

13

Generating Intermediate Code

•  Generation of three-address code is similar to
assembly code generation

•  Main difference: use any number of
intermediate language (IL) registers to hold
intermediate results

14

Generating Intermediate Code (Cont.)

•  igen(e, t) function generates code to compute
the value of e and place in register t

•  Example:
igen(e1 + e2, t) =
 igen(e1, t1) (t1 is a fresh register)
 igen(e2, t2) (t2 is a fresh register)
 t := t1 + t2

•  Unlimited number of registers ⇒ simple code
generation
–  Even simpler than generating for stack machine (no

need to move SP on push, etc)

note this is a three-address instruction

15

Intermediate Code Notes

•  You should be able to use intermediate code
–  At the level discussed in lectures
–  Future lectures will use it quite a bit to express

certain kinds of optimizations
–  Should also be able to write simple IC programs and

write algorithms that work on IC
•  You are not expected to know how to generate

intermediate code
–  Because we won’t discuss it
–  But really just a variation on code generation

notions we’ve already discussed in detail.
•  No new ideas

Optimization

•  Optimization is our last compiler phase
–  But recall from first day that it occurs before

code generation
•  We want to improve the program before committing it to

machine code

•  Most complexity in modern compilers is in the
optimizer
–  Also, by far, the most code
–  By far the most complex part of the compiler

16

Optimization

•  When should we perform optimization?
–  On AST?

•  Pro: Machine independent
•  Con: Too high level – lacks details we need to express

optimizations
–  On assembly language?

•  Pro: Exposes optimization opportunity
•  Con: Machine dependent
•  Con: Must reimplement optimization when retargeting

–  On an intermediate language?
•  Pro: Machine independent
•  Pro: Exposes optimization opportunities

17

18

An Intermediate Language

P → S P | ε
S → id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

•  id’s are register names
•  Constants (immediates)

can replace id’s
•  Typical operators: +, -, *

19

Definition. Basic Blocks

•  A basic block is a maximal sequence of
instructions with:
–  no labels (except at the first instruction), and
–  no jumps (except possibly the last instruction)

•  Idea:
–  Cannot jump into a basic block (except at beginning)
–  Cannot jump out of a basic block (except at end)
–  A basic block is a single-entry, single-exit,

straight-line code segment
•  So flow of control within a basic block is completely

predictable

because optimizations typically work
on groups of statements

20

Definition. Basic Blocks

•  A basic block is a maximal sequence of
instructions with:
–  no labels (except at the first instruction), and
–  no jumps (except in the last instruction)

•  Idea:
–  Cannot jump into a basic block (except at beginning)
–  Cannot jump out of a basic block (except at end)
–  A basic block is a single-entry, single-exit,

straight-line code segment
•  Also, can’t jump into middle of a basic block!

because optimizations typically work
on groups of statements

21

Basic Block Example

•  Consider the basic block
1.  L:
2.  t := 2 * x
3.  w := t + x
4.  if w > 0 goto L’

•  (3) executes only after (2)
–  We can change (3) to w := 3 * x
–  Can we eliminate (2) as well?

•  Depends on whether t has any other uses elsewhere in
the program (can’t know just from this block)

22

Definition. Control-Flow Graphs

•  A control-flow graph (CFG) is a directed graph with
–  Basic blocks as nodes
–  An edge from block A to block B if the execution can

pass from the last instruction in A to the first
instruction in B

•  E.g., the last instruction in A is jump LB
•  E.g., execution can fall-through from block A to block B

•  Since control flow within a basic block is simple,
CFG summarizes interesting decision points within
procedure or piece of code
–  Note use of acronym “CFG” is, somewhat ironically,

context dependent

Example of Control-Flow Graphs

•  The body of a method (or
procedure) can always be
represented as a control-
flow graph

•  There is one initial node
(i.e., a start node)

•  All “return” nodes are
terminal
–  No edges out of these blocks

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

24

Optimization Overview

•  Optimization seeks to improve a program’s
resource utilization
–  Execution time (most often)

•  What we focus on in this course
–  Code size
–  Network messages sent, etc.
–  Actually, for any resource you can imagine, there is

likely a compiler out there that spends some effort
optimizing for it

•  Memory usage
•  Disk accesses
•  Power

25

Optimization Overview

•  Optimization seeks to improve a program’s
resource utilization
–  Execution time (most often)

•  What we focus on in this course
–  Code size
–  Network messages sent, etc.

•  Optimization should not alter what the
program computes
–  The answer must still be the same

A Classification of Optimizations

•  For languages like C and Cool there are three
granularities of optimizations
1.  Local optimizations

•  Apply to a basic block in isolation
2.  Global optimizations

•  Apply to a control-flow graph (method body) in isolation
•  Misnamed: global to the CFG (i.e. across the entire

function)
3.  Inter-procedural optimizations

•  Apply across method boundaries

•  Most compilers do (1), many do (2), few do (3)

A Classification of Optimizations

•  For languages like C and Cool there are three
granularities of optimizations
1.  Local optimizations
2.  Global optimizations
3.  Inter-procedural optimizations

•  Most compilers do (1), many do (2), few do (3)
•  Why?

–  (3) is more difficult to implement
–  Most of optimization payoff comes from (1) and (2)

28

Cost of Optimizations

•  In practice, often a conscious decision is made
not to implement the fanciest optimization
known (e.g., in the research literature)
–  There are very many known
–  Reality can be frustrating for compiler researchers

•  Whose great ideas are not always implemented
•  Why?

–  Boils down to software engineering

29

Cost of Optimizations

•  In practice, a conscious decision is made not
to implement the fanciest optimization known
–  There are very many known
–  Reality can be frustrating for compiler researchers

•  Why?
–  Some optimizations are hard to implement
–  Some optimizations are costly in compilation time

•  Can take days!
–  Some optimizations have low benefit
–  Many fancy optimizations are all three!

•  Which explains why not implemented!

•  Goal: Maximum benefit for minimum cost
–  Cost/benefit ratio

30

Local Optimizations

•  The simplest form of optimizations

•  Optimize one basic block
–  No need to analyze the whole procedure body
–  No need to worry about complicated control flow

•  Example: algebraic simplification

31

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Assume x has type int here

32

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Surprisingly, it
might be that these
two statements take
equal time to run.
But having the
constant assignment
allows some other
optimizations

33

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

This will almost
surely be a time
saving change.
Why? Because the
** operator is
typically not a built
in instruction. Thus
need call to library

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!
In fact, on most modern machines, no difference! On

historical machines these were significant optimizations)

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

All of these examples of algebraic simplification:
exploiting properties of the mathematical operators
to replace complex ops with simpler ones

Constant Folding

•  Operations on constants can be computed at
compile time
–  If there is a statement x := y op z
–  And y and z are constants
–  Then y op z can be computed at compile time

•  Example: x := 2 + 2 ⇒ x := 4
•  Example: if 2 < 0 jump L can be deleted

–  In general, if the predicate consists only of
immediate values, the target of the jump can be
precomputed and the conditional eliminated

Constant Folding

•  Operations on constants can be computed at
compile time
–  If there is a statement x := y op z
–  And y and z are constants
–  Then y op z can be computed at compile time

•  Example: x := 2 + 2 ⇒ x := 4
•  Example: if 2 < 0 jump L can be deleted

constant folding is one of the most common and most
important optimizations that compilers perform

Constant Folding

•  Constant folding can be dangerous
–  Although this condition is not common, it is

instructive
•  Cross-compiler: compile on machine X,

generate code to run on machine Y
–  Why? Perhaps Y is weak: low power, limited

memory, etc.
–  Much code for embedded devices compiled this way

Y

Gen. code

X

Compiler

Constant Folding Danger (cont.)

•  Assume X and Y are different architectures
•  And you want to compute a:=1.5 +3.7, which

you fold, on X, to a:=5.2
•  But, if computed directly on Y, differences in

floating point implementation might lead, in
actual execution, to a:=5.19

•  Becomes significant because some algorithms
depend on floating point numbers being
treated consistently
–  E.g., roundoff must be handled same way every time

it’s required
–  This can change results of the program

Constant Folding Danger (cont.)

•  So how do cross-compilers handle this?
–  Represent floating point numbers as strings inside

the compiler
–  Do long form addition, multiplication, etc, directly

on the strings, keeping full precision inside compiler
–  Then in the running code, they produce the literal

full precision floating point number and let Y decide
how it wants to handle rounding

–  This is careful way to do cross-compilation if you’re
worried about this issue

41

Flow of Control Optimizations

•  Eliminate unreachable basic blocks:
–  Code that is unreachable from the initial block

•  E.g., basic blocks that are not the target of any jump or
“fall through” from a conditional

•  Removing unreachable code makes the program

smaller
–  And sometimes also faster

•  Due to memory cache effects (removal of unused code
may increase spatial locality of remaining code)

42

Question:

•  Why would unreachable basic blocks occur?
•  Well, several ways it can occur

–  So this situation is actually quite common
•  Ex: Code that is parameterized and only run in

certain situations (e.g., my debug_print()
function and the calls to it in Project 1)

•  More generally:
 #define DEBUG 0
 if (DEBUG) then {…

43

Question:

•  Why would unreachable basic blocks occur?
•  Another Ex.: libraries

–  Libraries often contain several (sometimes
hundreds of) methods. Your code might only use a
few of them. So the remaining methods can be
removed from the final executable binary

•  Final Ex.: Other optimizations
–  Which can lead to further optimizations
–  Since, as we’ve discussed, the compiler is

automated, this can result in the generation of
blocks of code that might never be reachable

44

Single Assignment Form

•  Some optimizations are simplified if each register
occurs only once on the left-hand side of an
assignment

•  Rewrite intermediate code in single assignment form
(every register is assigned at most once)
x := z + y b := z + y
a := x ⇒ a := b
x := 2 * x x := 2 * b
 (b is a fresh register)
–  More complicated in general, due to loops

45

Common Subexpression Elimination

•  If
–  Basic block is in single assignment form and
–  A definition x := is the first use of x in a block

•  Then
–  When two assignments have the same rhs, they

compute the same value
•  Example:

x := y + z x := y + z
… ⇒ …
w := y + z w := x
(the values of x, y, and z do not change in the … code)

46

Common Subexpression Elimination

•  If
–  Basic block is in single assignment form and
–  A definition x := is the first use of x in a block

•  Then
–  When two assignments have the same rhs, they

compute the same value
•  Example:

x := y + z x := y + z
… ⇒ …
w := y + z w := x
(the values of x, y, and z do not change in the … code)
(because x, y, and z, must already have been defined)

47

Common Subexpression Elimination

•  If
–  Basic block is in single assignment form and
–  A definition x := is the first use of x in a block

•  Then
–  When two assignments have the same rhs, they

compute the same value
•  Example:

x := y + z x := y + z
… ⇒ …
w := y + z w := x
(changing y + z to x saves us from having to recompute

the sum)

48

Common Subexpression Elimination

•  If
–  Basic block is in single assignment form and
–  A definition x := is the first use of x in a block

•  Then
–  When two assignments have the same rhs, they

compute the same value
•  Example:

x := y + z x := y + z
… ⇒ …
w := y + z w := x
(occurs quite often: an important compiler

optimization)

49

Copy Propagation

•  If w := x appears in a block, replace subsequent uses
of w with uses of x
–  Assumes single assignment form

•  Example:
 b := z + y b := z + y
 a := b ⇒ a := b
 x := 2 * a x := 2 * b

•  By itself makes no improvement to code. Only useful
for enabling other optimizations
–  Constant folding
–  Dead code elimination

•  E.g., above, might be able to remove the line a:=b in right column

50

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

51

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 2 * 5 ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

Note when constant is being propagated, it’s
called “constant propagation”, rather than
copy propagation

52

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 10 ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

53

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 10 ⇒ x := 10
y := 10 + 6 y := 16
t := 10 * y t := x << 4

54

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 10 ⇒ x := 10
y := 16 y := 16
t := 10 * 16 t := x << 4

55

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 10 ⇒ x := 10
y := 16 y := 16
t := 10 * 16 t := x << 4

56

Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 10 ⇒ x := 10
y := 16 y := 16
t := 10 * 16 t := 160

Note final constant propagation better than
leaving it as x << 4

57

Copy Propagation and Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
–  Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

58

Applying Local Optimizations

•  Each local optimization does little by itself
–  Some we’ve mentioned don’t, by themselves, make

the program run faster at all (though they don’t
make it run slower)

•  Typically optimizations interact
–  Performing one optimization enables another

•  Optimizing compilers repeat optimizations
until no improvement is possible
–  The optimizer can also be stopped at any point to

limit compilation time

59

Applying Local Optimizations

•  Optimizing compilers repeat optimizations
until no improvement is possible
–  The optimizer can also be stopped at any point to

limit compilation time
•  Basically, the optimizing compiler has a bag of

tricks, which it looks through to see if any
trick can be applied to some part of the
current version of the code.

•  If it finds one, it changes the code, then goes
back and repeats the process on the new
version of the code.

60

A Bigger Example

•  Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

61

An Example

•  Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

62

An Example

•  Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f

63

An Example

•  Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f

64

An Example

•  Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f

65

An Example

•  Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f

66

An Example

•  Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

67

An Example

•  Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

68

An Example

•  Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

69

An Example

•  Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

70

An Example

•  Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

71

An Example

•  Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

72

An Example

•  Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

•  This is the final form

73

An Example

•  Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

•  This is the final form (well, not really)

74

An Example

•  Dead code elimination:
 a := x * x

 f := 2 * a
 g := 6 * f

75

An Example

•  Dead code elimination:
 a := x * x

 f := 2 * a
 g := 6 * f

76

An Example

•  Dead code elimination:
 a := x * x

 f := 2 * a
 g := 12 * a

77

An Example

•  Dead code elimination:
 a := x * x

 g := 12 * a

•  This is the final form (really)

78

An Example

•  Dead code elimination:
 a := x * x

 g := 12 * a

•  This is the final form (really)

–  But to be fair, while some current compilers would
find these last few steps, most would not

79

Peephole Optimizations on Assembly Code

•  These optimizations work on intermediate
code
–  Target independent
–  But they can be applied directly to assembly

language also

•  Peephole optimization is effective for
improving assembly code
–  The “peephole” is a short sequence of (usually

contiguous) instructions
•  It’s some “window” onto the code

–  The optimizer replaces the sequence with another
equivalent one (but faster)

80

Peephole Optimizations on Assembly Code

•  These optimizations work on intermediate
code
–  Target independent
–  But they can be applied directly to assembly

language also

•  Peephole optimization is effective for
improving assembly code
–  The “peephole” is a short sequence of (usually

contiguous) instructions
•  It’s some “window” onto the code

–  The optimizer replaces the sequence with another
equivalent one (but faster) (then rinse and repeat)

81

Peephole Optimizations (Cont.)

•  Write peephole optimizations as replacement rules
 i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs

•  Example:
 move $a $b, move $b $a → move $a $b
–  Works if move $b $a is not the target of a jump

•  Think about it: after first move, $a and $b have the same contents

•  Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j

82

Peephole Optimizations (Cont.)

•  Many (but not all) of the basic block
optimizations can be cast also as peephole
optimizations
–  Example: addiu $a $b 0 → move $a $b
–  Example: move $a $a →
–  These two optimizations together eliminate

addiu $a $a 0

•  As for local optimizations, peephole
optimizations must be applied repeatedly for
maximum effect

83

Local Optimizations: Notes

•  Intermediate code is helpful for many optimizations

•  Many simple optimizations can still be applied on
assembly language

•  “Program optimization” is grossly misnamed
–  Code produced by “optimizers” is not optimal in any

reasonable sense
•  And if it happened to somehow produce an actual “optimal” version of the

program, it would be a complete accident
–  “Program improvement” is a more appropriate term

•  Next time: global optimizations

