Operational Semantics of Cool

Lecture 13
Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules
Motivation

• We must specify for every Cool expression what happens when it is evaluated
 − This is the “meaning” of an expression
 − Somehow give rules to specify what kind of computation a particular expression does

• The definition of a programming language:
 − For lexical analysis ⇒ tokens
 − For syntactic analysis ⇒ grammar
 − For semantic analysis ⇒ formal type rules
 − For code generation and optimization
 ⇒ evaluation rules (these guide code gen and opt.)
Evaluation Rules So Far

• We have specified evaluation rules indirectly
 - The compilation of Cool to a stack machine
 - The evaluation rules of the stack machine

• This is a complete description
 - You could take the generated assembly code, run it on the machine, and see what the program does. This would be a valid description of the behavior of the program
 - Why isn’t it good enough?
 • I.e., why isn’t it good enough to just have a code generator describe what is supposed to happen?
Motivation

• This may be difficult to appreciate without having written a few compilers.
• In a nutshell, people, through hard experience, have learned that...
Assembly Language Description of Semantics

- Assembly-language descriptions of language implementations have a lot of irrelevant detail -- there is a lot of unnecessary stuff you have to say when using such a complete executable description of a program
 - Whether to use a stack machine or not
 - Which way the stack grows
 - How integers are represented
 - The particular instruction set of the architecture
- None of these are intrinsic to any particular programming language
Assembly Language Description of Semantics

• Assembly-language descriptions of language implementations have a lot of irrelevant detail -- there is a lot of unnecessary stuff you have to say when using such a complete executable description of a program
 - Whether to use a stack machine or not
 - Which way the stack grows
 - How integers are represented
 - The particular instruction set of the architecture
• Moreover, these are ONE way to describe the language, but we don’t want it to be the only way
Assembly Language Description of Semantics

- We need a complete description
 - But not an overly restrictive specification
 - I.e., we want a description that allows a variety of implementations
- When people have not done this (tried to find a relatively high-level way to describe the behavior of the language) they have invariably ended up having to run the program on a reference implementation
So What?

• Reference implementation not completely correct themselves
 - They have bugs
 - There are artifacts of the particular way in which it was implemented.
 • These artifacts, because there is no better way of defining some behavior, become an unintended part of the language! A part that you may not want!
 - You don’t really want aspects of your language to be defined based on accidents that occurred because of the way the language was implemented for the first time
Programming Language Semantics

• Many ways to specify semantics
 - All equally powerful
 - Some more suitable to various tasks than others

• We’ll use *operational semantics*
 - Describes program evaluation via execution rules on an abstract machine
 • Think of a very high-level kind of code generation
 - Most useful for specifying implementations
 - This is what we use for Cool
Other Kinds of Semantics

• **Denotational semantics**
 - Program’s meaning is a mathematical function
 • Program text is mapped to a mathematical function that goes from inputs to outputs
 - Elegant, but introduces complications we don’t really need to consider for purposes of defining an implementation
 • Need to define a suitable space of functions
Other Kinds of Semantics

• **Axiomatic semantics**
 - Program behavior described via logical formulae
 • If execution begins in state satisfying X, then it ends in state satisfying Y
 • X and Y are formulas in some logic
 - Foundation of many program verification systems
Introduction to Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference (as we used in type checking)
 - With some twists
Inference Rules

• Recall the typing judgment

 \[\text{Context} \vdash e : C \]

 In the given context, expression e has type C

• We use something similar for evaluation

 \[\text{Context} \vdash e : v \]

 In the given context, expr. e evaluates to value v

 (Context is different: evaluation context as opposed to type context)
Example Operational Semantics Rule

• Example:

\[
\begin{align*}
\text{Context} & \vdash e_1 : 5 \\
\text{Context} & \vdash e_2 : 7 \\
\text{Context} & \vdash e_1 + e_2 : 12
\end{align*}
\]

• Suppose that within the given Context (same for all three expressions) and using our rules (which I have not yet disclosed), we could show the hypotheses to be true. Then certainly the conclusion would be true.
Example Operational Semantics Rule

- Example:

 \[
 \text{Context} \vdash e_1 : 5 \\
 \text{Context} \vdash e_2 : 7 \\
 \text{Context} \vdash e_1 + e_2 : 12
 \]

- What is the context giving?
 - Well, consider what it did with type checking: gave information about the free variables
 - Here, it needs to give information about the values of the free variables that appear in the subexpressions
Example Operational Semantics Rule

• Example:

\[
\begin{align*}
\text{Context} & \vdash e_1 : 5 \\
\text{Context} & \vdash e_2 : 7 \\
\text{Context} & \vdash e_1 + e_2 : 12
\end{align*}
\]

• The result of evaluating an expression can depend on the result of evaluating its subexpressions

• The rules specify everything that is needed to evaluate an expression
Contexts are Needed for Variables

- Consider the evaluation of \(y \leftarrow x + 1 \)
 - We need to keep track of values of variables
 - We need to allow variables to change their values during evaluation

- We track variables and their values with:
 - An environment: tells us where in memory a variable is stored
 - Technically a mapping from variables to memory locations
 - A store: tells us what is in memory
 - Technically a mapping from memory locations to values

Note this use of term is not the same as in type checking
Variable Environments (and Related Notation)

• A variable environment maps variable names to locations
 - Keeps track of which variables are in scope
 - Tells in where those variables are
 - It is a list of variable:location pairs

• Example:
 \[E = [a : l_1, b : l_2] \]

• \(E(a) \) looks up variable \(a \) in environment \(E \)
 - Here, variable \(a \) is at location \(l_1 \)
 - Here, variable \(b \) is at location \(l_2 \)
Variable Environments (and Related Notation)

- **A variable environment maps variable names to locations**
 - Keeps track of which variables are in scope
 - Tells in where those variables are
 - It is a list of variable:location pairs

- **Example:**
 \[E = [a : l_1, b : l_2] \]

- **E(a) looks up variable a in environment E**
 - E keeps track of the variables that are in scope, so the only variables that E mentions are those that are in scope in the expressions being evaluated
Stores

• A store maps memory locations to values
• Example:
 \[S = [l_1 \rightarrow 5, l_2 \rightarrow 7] \]

• \(S(l_1) \) is the contents of a location \(l_1 \) in store \(S \)

• \(S' = S[12/l_1] \) defines a new store \(S' \) such that
 \[S'(l_1) = 12 \quad \text{and} \quad S'(l) = S(l) \text{ if } l \neq l_1 \]

arrow is used so that stores look a little different from environments. helps prevent confusing the two

the replace or update operation
Cool Values

• Cool values are objects
 - Which are, of course, generally a bit more complicated than integers
 - All objects are instances of some class
• \(X(a_1 = l_1, \ldots, a_n = l_n) \) is a Cool object where
 - \(X \) is the class of the object
 - \(a_i \) are the attributes (including inherited ones)
 - \(l_i \) is the location where the value of \(a_i \) is stored
• This is a complete description of the object, since once we know where the variables are located, we can use \textit{store} to look up values
Cool Values (Cont.)

- Special cases (classes without attributes) and special ways of writing them
 - `Int(5)` the integer 5
 - `Bool(true)` the boolean true
 - `String(4, "Cool")` the string “Cool” of length 4

- There is a special value `void` of type `Object`
 - No operations can be performed on it
 - Except for the test `isvoid`
 - Can’t dispatch to `void` – gives a run-time error
 - Concrete implementations might use NULL here
Operational Rules of Cool

- The *evaluation judgment* is
 \[\text{so, } E, S \models e : v, S' \]

 read:
 - Given *so* the current value of *self*
 - And *E* the current variable environment
 - And *S* the current store
 - If the evaluation of *e* terminates then
 - The return value is *v*
 - And the new store is *S'*
 - Since *e* might have assignments in it that update the memory
Notes

• “Result” of evaluation is a value and a new store
 - New store models the side-effects

• Some things don’t change
 - E - The variable environment
 - so - The current self object
 • These make sense: we can’t update the self object in COOL, nor do we have access, in any form, to relocations of variables stored. So these are invariant under evaluation
 - The operational semantics allows for non-terminating evaluations
 • but judgement only holds if the evaluation of e terminates
Notes

• “Result” of evaluation is a **value** and a new **store**
 - New store models the side-effects

• Some things don’t change
 - **E** - The variable environment
 - **so** - The current **self** object
 • Note: attributes of **self** object might change! It is location and layout of attributes that do not change
 - The operational semantics allows for non-terminating evaluations
 • but judgement only holds if the evaluation of **e** terminates
Operational Semantics for Base Values

so, E, S |- true : Bool(true), S

so, E, S |- false : Bool(false), S

i is an integer literal
so, E, S |- i : Int(i), S

s is a string literal
n is the length of s
so, E, S |- s : String(n,s), S

• No side effects in these cases (the store does not change)
Operational Semantics of Variable References

\[E(id) = l_{id} \]
\[S(l_{id}) = v \]

so, \(E, S \vdash id : v, S \)

- Note the double lookup of variables
 - First from name to location
 - Then from location to value

- The store does not change
Operational Semantics for Self

• A special case:

\[
\text{so, } E, S \models \text{self : so, } S
\]
Operational Semantics of Assignment

so, $E, S \vdash e : v, S_1$
$E(id) = l_{id}$
$S_2 = S_1[v/l_{id}]$

so, $E, S \vdash id \leftarrow e : v, S_2$

• Three step process
 - Evaluate the right hand side
 ⇒ a value v and new store S_1
 - Fetch the location of the assigned variable
 - The result is the value v and an updated store

note two parts: identifier being evaluated and an expression that gives the new value
Operational Semantics of Addition

\[
\begin{align*}
\text{so, } & E, S \vdash e_1 : v_1, S_1 \\
\text{so, } & E, S_1 \vdash e_2 : v_2, S_2 \\
\hline
\text{so, } & E, S \vdash e_1 + e_2 : v_1 + v_2, S_2
\end{align*}
\]

• Note the stores tell the order in which you have to evaluate the expressions:
 - Because \(e_1 \) is evaluated in the same store as the overall expression, \(e_1 \) must be evaluated first
 - Because \(e_2 \) is evaluated in the store produced by evaluating \(e_1 \), \(e_2 \) must be evaluated after \(e_1 \)
 - Finally, because the overall value ends with store \(S_2 \), \(e_2 \) must be the last thing evaluated
Operational Semantics of Conditionals

\[
\text{so, } E, S \vdash e_1 : \text{Bool}(\text{true}), S_1 \\
\text{so, } E, S_1 \vdash e_2 : v, S_2 \\
\underline{\text{so, } E, S \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \text{ fi} : v, S_2}
\]

- The “threading” of the store enforces an evaluation sequence
 - \(e_1 \) must be evaluated first to produce \(S_1 \)
 - Then \(e_2 \) can be evaluated

- The result of evaluating \(e_1 \) is a \text{Bool}. Why?
Operational Semantics of Sequences

- Again the threading of the store expresses the required evaluation sequence
- Only the last value is used
- But all the side-effects are collected

\[
\begin{align*}
\text{so, } E, S & \vdash e_1 : v_1, S_1 \\
\text{so, } E, S_1 & \vdash e_2 : v_2, S_2 \\
& \vdots \\
\text{so, } E, S_{n-1} & \vdash e_n : v_n, S_n \\
\hline
\text{so, } E, S & \vdash \{ e_1; \ldots; e_n \} : v_n, S_n
\end{align*}
\]
Example

- Consider the expression \{ X \leftarrow 7 + 5; 4; \}

so, \([x: l], [l \leftarrow 0] \models \{ x \leftarrow 7 + 5; 4; \}\)
Example

• Consider the expression \{ X \leftarrow 7 + 5; 4; \}

so, \[x: l], [l \leftarrow 0] \models x : 7 + 5 \quad \text{so, } [x: l], [] \models 4

so, \[x: l], [l \leftarrow 0] \models \{ x \leftarrow 7 + 5; 4; \}
Example

• Consider the expression \{ \textit{X} \leftarrow 7 + 5; 4; \}

so, \([x:l], [l \leftarrow 0] \vdash 7 : \text{Int}(7), [l \leftarrow 0]
so, \([x:l], [l \leftarrow 0] \vdash 5 : \text{Int}(5), [l \leftarrow 0]
so, \([x:l], [l \leftarrow 0] \vdash 7 + 5 : \text{Int}(12), [l \leftarrow 0]
[l \leftarrow 0](12/l) = [l \leftarrow 12]
so, \([x:l], [l \leftarrow 12] \vdash x \leftarrow 7 + 5 : \text{Int}(12), [l \leftarrow 12]
so, \([x:l], [l \leftarrow 12] \vdash 4 : \text{Int}(4), [l \leftarrow 12]

so, \([x: l], [l \leftarrow 0] \vdash \{ x \leftarrow 7 + 5; 4; \} : \text{Int}(4), [l \leftarrow 12]
Operational Semantics of \textbf{while} (I)

\[
\text{so, } E, S \vdash e_1 : \text{Bool}(\text{false}), S_1 \\
\text{so, } E, S \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool : void, } S_1
\]

Note the resulting store is whatever resulted from evaluating the predicate

- \textbf{If } \(e_1\) \textbf{ evaluates to } \textbf{false} \textbf{ the loop terminates}
 - With the side-effects from the evaluation of \(e_1\)
 - And with result value \textbf{void}

- \textbf{Type checking ensures } \(e_1\) \textbf{ evaluates to a } \textbf{Bool}
Operational Semantics of `while` (II)

- Note the sequencing \((S \rightarrow S_1 \rightarrow S_2 \rightarrow S_3)\)
- Note how looping is expressed
 - Evaluation of "while ..." is expressed in terms of the evaluation of itself in another state
- The result of evaluating \(e_2\) is discarded
 - Only the side-effect is preserved
Operational Semantics of \textit{let} Expressions (I)

\[
\begin{align*}
\text{so, } E, S & \vdash e_1 : v_1, S_1 \\
\text{so, } ?, ?, & \vdash e_2 : v, S_2 \\
\text{so, } E, S & \vdash \text{let } id : T \leftarrow e_1 \text{ in } e_2 : v_2, S_2
\end{align*}
\]

- In what context should \(e_2 \) be evaluated?
 - Environment like \(E \) but with a new binding of \(id \) to a \textbf{fresh} location \(\text{l}_{\text{new}} \)
 - Store like \(S_1 \) but with \(\text{l}_{\text{new}} \) mapped to \(v_1 \)
Operational Semantics of let Expressions (II)

• We write $l_{\text{new}} = \text{newloc}(S)$ to say that l_{new} is a location not already used in S
 - newloc is like the memory allocation function

• The operational rule for let:

\[
\text{so, } E, S \vdash e_1 : v_1, S_1 \\
\text{so, } E[l_{\text{new}}/id], S_1[v_1/l_{\text{new}}] \vdash e_2 : v_2, S_2 \\
\text{so, } E, S \vdash \text{let id : T } \leftarrow e_1 \text{ in } e_2 : v_2, S_2
\]
So far

• Some complicated stuff, but not the two most complex operations:
 – Allocation of a new object
 – Dynamic dispatch
 – So, onward...
Operational Semantics of **new**

- **Informal semantics of new** T
 - Allocate locations to hold all attributes of an object of class T
 - Essentially, allocate a new object
 - Set attributes with their default values
 - We’ll see in a minute what these attributes are, and why we need to set the attributes to defaults
 - Evaluate the initializers and set the resulting attribute values
 - Return the newly allocated object
Operational Semantics of new

- **Informal semantics of new T**
 - Allocate locations to hold all attributes of an object of class T
 - Essentially, allocate a new object
 - Set attributes with their default values
 - We’ll see in a minute what these attributes are, and why we need to set the attributes to defaults
 - Evaluate the initializers and set the resulting attribute values
 - Return the newly allocated object

Note: quite a bit more than just allocating a little bit of memory
Actually much computation occurring
Default Values

• For each class A there is a default value denoted by D_A
 - $D_{\text{int}} = \text{Int}(0)$
 - $D_{\text{bool}} = \text{Bool}(\text{false})$
 - $D_{\text{string}} = \text{String}(0, "")$
 - $D_A = \text{void}$ (for any other class A)
More Notation

• For a class A we write

\[
\text{class}(A) = (a_1 : T_1 \leftarrow e_1, \ldots, a_n : T_n \leftarrow e_n)
\]

where

- \(a_i\) are the attributes (including the inherited ones)
 - attributes listed in “greatest ancestor first” order
 - I.e., if \(C \leq B \leq A\), then in call \text{class}(C), attributes of \(A\) listed first, then attributes of \(B\), then attributes of \(C\)
 - For given class, attributes listed in order they appear in text
- \(T_i\) are their declared types
- \(e_i\) are the initializers
- Note that \text{class} is a function. It takes a class name and returns the list of attributes of that class.
Operational Semantics of new

- `new SELF_TYPE` allocates an object with the same dynamic type as `self` (this type is denoted here by `X`)

\[
T_0 = \begin{cases}
X & \text{if } (T == \text{SELF_TYPE} \text{ and so} = X(...)) \\
T & \text{else}
\end{cases}
\]

\[
\text{class}(T_0) = (a_1 : T_1 \leftarrow e_1, ..., a_n : T_n \leftarrow e_n)
\]

\[
l_i = \text{newloc}(S) \text{ for } i = 1, ..., n
\]

\[
v = T_0(a_1 = l_1, ..., a_n = l_n)
\]

\[
S_1 = S[D_{T_1}/l_1, ..., D_{T_n}/l_n]
\]

\[
E' = [a_1 : l_1, ..., a_n : l_n]
\]

\[
v, E', S_1 \vdash \{ a_1 \leftarrow e_1; \ldots; a_n \leftarrow e_n; \} : v_n, S_2
\]

\[
\text{so, E, S} \vdash \text{new } T : v, S_2
\]

Note E' has no relation to E
Notes on Operational Semantics of `new`.

• The first three steps allocate the object

• The remaining steps initialize it
 - By evaluating a sequence of assignments

• State in which the initializers are evaluated
 - Self is the current object
 - Only the attributes are in scope (same as in typing)
 - Initial values of attributes are the defaults
 • Need the defaults because the attributes are in scope inside their own initializers (might need to read an attribute in order to finish computing its initial value)
Notes on Operational Semantics of `new`.

- Note that it is not just COOL that has complicated semantics for the initialization of new objects...

- Every OO language has fairly complex semantics for the initialization of new objects...
Operational Semantics of Method Dispatch

- Informal semantics of $e_0.f(e_1,\ldots,e_n)$
 - Evaluate the arguments in order e_1,\ldots,e_n
 - Evaluate e_0 to the target object
 - Let X be the dynamic type of the target object
 - Fetch from X the definition of f (with n args.)
 - Create n new locations and an environment that maps f’s formal arguments to those locations
 - Initialize the locations with the actual arguments
 - Set self to the target object and evaluate f’s body
More Notation

• For a class A and a method f of A (possibly inherited) we write:

$$\text{impl}(A, f) = (x_1, \ldots, x_n, e_{\text{body}}) \text{ where}$$

- x_i are the names of the formal arguments
- e_{body} is the body of the method
- As with class, impl is a function
Operational Semantics of Dispatch

so, E, S ⊢ e₁ : v₁, S₁
so, E, S₁ ⊢ e₂ : v₂, S₂
...
so, E, S_{n-1} ⊢ eₙ : vₙ, Sₙ
so, E, Sₙ ⊢ e₀ : v₀, Sₙ₊₁
v₀ = X(a₁ = l₁,..., aₘ = lₘ)
impl(X, f) = (x₁,..., xₙ, e_{body})
l_{xi} = newloc(S_{n+1}) for i = 1,...,n
E’ = [a₁ : l₁,...,aₘ : lₘ][x₁/l₁, ..., xₙ/lₙ]
S_{n+2} = S_{n+1}[v₁/l₁,...,vₙ/lₙ]
v₀, E’, S_{n+2} ⊢ e_{body} : v, S_{n+3}

so, E, S ⊢ e₀.f(e₁,...,eₙ) : v, S_{n+3}
Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
 - \(E \) mapping formal arguments and self’s attributes
 - \(S \) like the caller’s except with actual arguments bound to the locations allocated for formals

• The notion of the frame is implicit
 - New locations are allocated for actual arguments

• The semantics of static dispatch is similar
Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

\[\ldots \]
\[\text{so, } E, S_n \vdash e_0 : v_0, S_{n+1} \]
\[v_0 = X(a_1 = l_1, \ldots, a_m = l_m) \]
\[\text{impl}(X, f) = (x_1, \ldots, x_n, e_{\text{body}}) \]
\[\ldots \]
\[\text{so, } E, S \vdash e_0.f(e_1, \ldots, e_n) : v, S_{n+3} \]

What happens if \(\text{impl}(X, f) \) is not defined?

Cannot happen in a well-typed program
Runtime Errors (Cont.)

• There are some runtime errors that the type checker does not prevent
 - A dispatch on void
 - Division by zero
 - Substring out of range
 - Heap overflow

• In such cases execution must abort gracefully
 - With an error message, not with segfault
Conclusions

• Operational rules are very precise & detailed
 - Nothing is left unspecified
 - Read them carefully

• Most languages do not have a well specified operational semantics

• When portability is important an operational semantics becomes essential