
1

Operational Semantics of Cool

Lecture 13

2

Lecture Outline

•  COOL operational semantics

•  Motivation

•  Notation

•  The rules

Motivation

•  We must specify for every Cool expression
what happens when it is evaluated
–  This is the “meaning” of an expression
–  Somehow give rules to specify what kind of

computation a particular expression does
•  The definition of a programming language:

–  For lexical analysis ⇒ tokens
–  For syntactic analysis ⇒ grammar
–  For semantic analysis ⇒ formal type rules
–  For code generation and optimization

⇒ evaluation rules (these guide code gen and opt.)

4

Evaluation Rules So Far

•  We have specified evaluation rules indirectly
–  The compilation of Cool to a stack machine
–  The evaluation rules of the stack machine

•  This is a complete description
–  You could take the generated assembly code, run it

on the machine, and see what the program does.
This would be a valid description of the behavior of
the program

–  Why isn’t it good enough?
•  I.e., why isn’t it good enough to just have a code generator

describe what is supposed to happen?

Motivation

•  This may be difficult to appreciate without
having written a few compilers.

•  In a nutshell, people, through hard experience,
have learned that…

5

6

Assembly Language Description of Semantics

•  Assembly-language descriptions of language
implementations have a lot of irrelevant detail
–- there is a lot of unnecessary stuff you have
to say when using such a complete executable
description of a program
–  Whether to use a stack machine or not
–  Which way the stack grows
–  How integers are represented
–  The particular instruction set of the architecture

•  None of these are intrinsic to any particular
programming language

Assembly Language Description of Semantics

•  Assembly-language descriptions of language
implementations have a lot of irrelevant detail –-
there is a lot of unnecessary stuff you have to
say when using such a complete executable
description of a program
–  Whether to use a stack machine or not
–  Which way the stack grows
–  How integers are represented
–  The particular instruction set of the architecture

•  Moreover, these are ONE way to describe the
language, but we don’t want it to be the only way

8

Assembly Language Description of Semantics

•  We need a complete description

–  But not an overly restrictive specification
•  I.e., we want a description that allows a variety of

implementations

•  When people have not done this (tried to find
a relatively high-level way to describe the
behavior of the language) they have invariably
ended up having to run the program on a
reference implementation

9

So What?

•  Reference implementation not completely
correct themselves
–  They have bugs
–  There are artifacts of the particular way in which

it was implemented.
•  These artifacts, because there is no better way of

defining some behavior, become an unintended part of the
language! A part that you may not want!

–  You don’t really want aspects of your language to be
defined based on accidents that occurred because
of the way the language was implemented for the
first time

10

Programming Language Semantics

•  Many ways to specify semantics
–  All equally powerful
–  Some more suitable to various tasks than others

•  We’ll use operational semantics
–  Describes program evaluation via execution rules on

an abstract machine
•  Think of a very high-level kind of code generation

–  Most useful for specifying implementations
–  This is what we use for Cool

11

Other Kinds of Semantics

•  Denotational semantics
–  Program’s meaning is a mathematical function

•  Program text is mapped to a mathematical function that
goes from inputs to outputs

–  Elegant, but introduces complications we don’t
really need to consider for purposes of defining an
implementation

•  Need to define a suitable space of functions

12

Other Kinds of Semantics

•  Axiomatic semantics

–  Program behavior described via logical formulae
•  If execution begins in state satisfying X, then it ends in

state satisfying Y
•  X and Y are formulas in some logic

–  Foundation of many program verification systems

13

Introduction to Operational Semantics

•  Once again we introduce a formal notation

•  Logical rules of inference (as we used in type
checking)
–  With some twists

14

Inference Rules

•  Recall the typing judgment
 Context ├ e : C

 In the given context, expression e has type C

•  We use something similar for evaluation
 Context ├ e : v

 In the given context, expr. e evaluates to value v
(Context is different: evaluation context as opposed

to type context)

15

Example Operational Semantics Rule

•  Example:

•  Suppose that within the given Context (same
for all three expressions) and using our rules
(which I have not yet disclosed), we could
show the hypotheses to be true. Then
certainly the conclusion would be true.

Context ├ e1 : 5
Context ├ e2 : 7

Context ├ e1 + e2 : 12

16

Example Operational Semantics Rule

•  Example:

•  What is the context giving?
–  Well, consider what it did with type checking: gave

information about the free variables
–  Here, it needs to give information about the values

of the free variables that appear in the
subexpressions

Context ├ e1 : 5
Context ├ e2 : 7

Context ├ e1 + e2 : 12

17

Example Operational Semantics Rule

•  Example:

•  The result of evaluating an expression can
depend on the result of evaluating its
subexpressions

•  The rules specify everything that is needed to
evaluate an expression

Context ├ e1 : 5
Context ├ e2 : 7

Context ├ e1 + e2 : 12

Contexts are Needed for Variables

•  Consider the evaluation of y ← x + 1
–  We need to keep track of values of variables
–  We need to allow variables to change their values

during evaluation

•  We track variables and their values with:
–  An environment : tells us where in memory a

variable is stored
•  Technically a mapping from variables to memory locations

–  A store : tells us what is in memory
•  Technically a mapping from memory locations to values

Note this use of term is not
same as in type checking

19

Variable Environments (and Related Notation)

•  A variable environment maps variable names to
locations
–  Keeps track of which variables are in scope
–  Tells in where those variables are
–  It is a list of variable:location pairs

•  Example:
 E = [a : l1 , b : l2]
•  E(a) looks up variable a in environment E

–  Here, variable a is at location l1

–  Here, variable b is at location l2

Variable Environments (and Related Notation)

•  A variable environment maps variable names to
locations
–  Keeps track of which variables are in scope
–  Tells in where those variables are
–  It is a list of variable:location pairs

•  Example:
 E = [a : l1 , b : l2]
•  E(a) looks up variable a in environment E

–  E keeps track of the variables that are in scope, so
the only variables that E mentions are those that
are in scope in the expressions being evaluated

21

Stores

•  A store maps memory locations to values
•  Example:
 S = [l1 → 5, l2 → 7]

•  S(l1) is the contents of a location l1 in store S

•  S’ = S[12/l1] defines a new store S’ such that
S’(l1) = 12 and S’(l) = S(l) if l ≠ l1

arrow is used so that stores look a little
different from environments. helps
prevent confusing the two

the replace or update operation

Cool Values

•  Cool values are objects
–  Which are, of course, generally a bit more

complicated than integers
–  All objects are instances of some class

•  X(a1 = l1, …, an = ln) is a Cool object where
–  X is the class of the object
–  ai are the attributes (including inherited ones)
–  li is the location where the value of ai is stored

•  This is a complete description of the object,
since once we know where the variables are
located, we can use store to look up values

Cool Values (Cont.)

•  Special cases (classes without attributes) and
special ways of writing them
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

•  There is a special value void of type Object
–  No operations can be performed on it
–  Except for the test isvoid

•  Can’t dispatch to void – gives a run-time error
–  Concrete implementations might use NULL here

24

Operational Rules of Cool

•  The evaluation judgment is
 so, E, S ├ e : v, S’
 read:

–  Given so the current value of self
–  And E the current variable environment
–  And S the current store
–  If the evaluation of e terminates then
–  The return value is v
–  And the new store is S’

•  Since e might have assignments in it that update the
memory

So always read
“if e
terminates…”

Notes

•  “Result” of evaluation is a value and a new store
–  New store models the side-effects

•  Some things don’t change
–  E - The variable environment
–  so - The current self object

•  These make sense: we can’t update the self object in COOL,
nor do we have access, in any form, to relocations of
variables stored. So these are invariant under evaluation

–  The operational semantics allows for non-terminating
evaluations

•  but judgement only holds if the evaluation of e terminates

Notes

•  “Result” of evaluation is a value and a new
store
–  New store models the side-effects

•  Some things don’t change
–  E - The variable environment
–  so - The current self object

•  Note: attributes of self object might change! It is
location and layout of attributes that do not change

–  The operational semantics allows for non-
terminating evaluations

•  but judgement only holds if the evaluation of e termnates

27

Operational Semantics for Base Values

•  No side effects in these cases
(the store does not change)

so, E, S ├ true : Bool(true), S so, E, S ├ false : Bool(false), S

s is a string literal
n is the length of s

so, E, S ├ s : String(n,s), S
i is an integer literal
so, E, S ├ i : Int(i), S

28

Operational Semantics of Variable References

•  Note the double lookup of variables
–  First from name to location
–  Then from location to value

•  The store does not change

E(id) = lid
S(lid) = v

so, E, S ├ id : v, S

29

Operational Semantics for Self

•  A special case:

so, E, S ├ self : so, S

30

Operational Semantics of Assignment

•  Three step process
–  Evaluate the right hand side

⇒ a value v and new store S1
–  Fetch the location of the assigned variable
–  The result is the value v and an updated store

so, E, S ├ e : v, S1
E(id) = lid

S2 = S1[v/lid]

so, E, S ├ id ← e : v, S2

note two parts:
identifier being
evaluated and an
expression that gives
the new value

31

Operational Semantics of Addition

•  Note the stores tell the order in which you

have to evaluate the expressions:
–  Because e1 is evaluated in the same store as the

overall expression, e1 must be evaluated first
–  Because e2 is evaluated in the store produced by

evaluating e1, e2 must be evaluated after e1
–  Finally, because the overall value ends with store

S2, e2 must be the last thing evaluated

so, E, S ├ e1 : v1, S1
so, E, S1 ├ e2 : v2, S2

so, E, S ├ e1 + e2 : v1 + v2, S2

32

Operational Semantics of Conditionals

•  The “threading” of the store enforces an
evaluation sequence
–  e1 must be evaluated first to produce S1
–  Then e2 can be evaluated

•  The result of evaluating e1 is a Bool. Why?

so, E, S ├ e1 : Bool(true), S1
so, E, S1 ├ e2 : v, S2

so, E, S ├ if e1 then e2 else e3 fi : v, S2

33

Operational Semantics of Sequences

•  Again the threading of the store expresses
the required evaluation sequence

•  Only the last value is used
•  But all the side-effects are collected

so, E, S ├ e1 : v1, S1
so, E, S1 ├ e2 : v2, S2

…
so, E, Sn-1 ├ en : vn , Sn

so, E, S ├ { e1; …; en; } : vn, Sn

Example

•  Consider the expression { X ← 7 + 5; 4;}

34

so, [x: l], [l ← 0]├ { x ← 7 + 5; 4; }

Example

•  Consider the expression { X ← 7 + 5; 4;}

35

so, [x:l], [l ← 0] ├ x : 7 + 5 so, [x:l], [?] ├ 4

so, [x: l], [l ← 0]├ { x ← 7 + 5; 4; }

Example

•  Consider the expression { X ← 7 + 5; 4;}

36

so, [x:l], [l ← 0] ├ 7 : Int(7), [l ← 0]
so, [x:l], [l ← 0] ├ 5 : Int(5), [l ← 0]
so, [x:l], [l ← 0] ├ 7 + 5 : Int(12), [l ← 0]
[l ← 0](12/l) = [l ← 12]
so, [x:l], [l ← 0] ├ x ← 7 + 5 : Int(12), [l ← 12]
 so, [x:l], [l ← 12]├ 4 : Int(4), [l ← 12]

so, [x: l], [l ← 0]├ { x ← 7 + 5; 4; } : Int(4), [l ← 12]

37

Operational Semantics of while (I)

•  If e1 evaluates to false the loop terminates
–  With the side-effects from the evaluation of e1

–  And with result value void

•  Type checking ensures e1 evaluates to a Bool

so, E, S ├ e1 : Bool(false), S1
so, E, S ├ while e1 loop e2 pool : void, S1

Note the resulting store is whatever resulted
from evaluating the predicate

38

Operational Semantics of while (II)

•  Note the sequencing (S → S1 → S2 → S3)
•  Note how looping is expressed

–  Evaluation of “while …” is expressed in terms of
the evaluation of itself in another state

•  The result of evaluating e2 is discarded
–  Only the side-effect is preserved

so, E, S ├ e1 : Bool(true), S1
so, E, S1 ├ e2 : v, S2

so, E, S2 ├ while e1 loop e2 pool : void, S3
so, E, S ├ while e1 loop e2 pool : void, S3

39

Operational Semantics of let Expressions (I)

•  In what context should e2 be evaluated?
–  Environment like E but with a new binding of id to a

fresh location lnew
–  Store like S1 but with lnew mapped to v1

so, E, S ├ e1 : v1, S1
so, ?, ? ├ e2 : v, S2
so, E, S ├ let id : T ← e1 in e2 : v2, S2

40

Operational Semantics of let Expressions (II)

•  We write lnew = newloc(S) to say that lnew is a
location not already used in S
–  newloc is like the memory allocation function

•  The operational rule for let:

so, E, S ├ e1 : v1, S1
lnew = newloc(S1)
so, E[lnew/id] , S1[v1/lnew] ├ e2 : v2, S2
so, E, S ├ let id : T ← e1 in e2 : v2, S2

So far

•  Some complicated stuff, but not the two most
complex operations:
–  Allocation of a new object
–  Dynamic dispatch
–  So, onward…

41

42

Operational Semantics of new

•  Informal semantics of new T
–  Allocate locations to hold all attributes of an

object of class T
•  Essentially, allocate a new object

–  Set attributes with their default values
•  We’ll see in a minute what these attributes are, and why

we need to set the attributes to defaults
–  Evaluate the initializers and set the resulting

attribute values
–  Return the newly allocated object

Operational Semantics of new

•  Informal semantics of new T
–  Allocate locations to hold all attributes of an

object of class T
•  Essentially, allocate a new object

–  Set attributes with their default values
•  We’ll see in a minute what these attributes are, and why

we need to set the attributes to defaults
–  Evaluate the initializers and set the resulting

attribute values
–  Return the newly allocated object

Note: quite a bit more than just allocating a little bit of memory
Actually much computation occurring

44

Default Values

•  For each class A there is a default value
denoted by DA
–  Dint = Int(0)
–  Dbool = Bool(false)
–  Dstring = String(0, “”)
–  DA = void (for any other class A)

45

More Notation

•  For a class A we write
 class(A) = (a1 : T1 ← e1, …, an : Tn ← en) where

–  ai are the attributes (including the inherited ones)
•  attributes listed in “greatest ancestor first” order
•  I.e., if C ≤ B ≤ A, then in call class(C), attributes of A

listed first, then attributes of B, then attributes of C
•  For given class, attributes listed in order they appear in

text
–  Ti are their declared types
–  ei are the initializers
–  Note that class is a function. It takes a class name

and returns the list of attributes of that class

46

Operational Semantics of new

•  new SELF_TYPE allocates an object with the
same dynamic type as self (this type is
denoted here by X)

T0 = if (T == SELF_TYPE and so = X(…)) then X else T
class(T0) = (a1 : T1 ← e1,…, an : Tn ← en)
li = newloc(S) for i = 1,…,n
v = T0(a1= l1,…,an= ln)
S1 = S[DT1/l1,…,DTn/ln]
E’ = [a1 : l1, …, an : ln]
v, E’, S1 ├ { a1 ← e1; …; an ← en; } : vn, S2
so, E, S ├ new T : v, S2

Note E’ has no relation to E

Notes on Operational Semantics of new.

•  The first three steps allocate the object

•  The remaining steps initialize it
–  By evaluating a sequence of assignments

•  State in which the initializers are evaluated
–  Self is the current object
–  Only the attributes are in scope (same as in typing)
–  Initial values of attributes are the defaults

•  Need the defaults because the attributes are in scope
inside their own initializers (might need to read an
attribute in order to finish computing its initial value)

Notes on Operational Semantics of new.

•  Note that it is not just COOL that has
complicated semantics for the initialization of
new objects…

•  Every OO language has fairly complex
semantics for the initialization of new objects

49

Operational Semantics of Method Dispatch

•  Informal semantics of e0.f(e1,…,en)
–  Evaluate the arguments in order e1,…,en
–  Evaluate e0 to the target object
–  Let X be the dynamic type of the target object
–  Fetch from X the definition of f (with n args.)
–  Create n new locations and an environment that

maps f’s formal arguments to those locations
–  Initialize the locations with the actual arguments
–  Set self to the target object and evaluate f’s body

50

More Notation

•  For a class A and a method f of A (possibly
inherited) we write:

impl(A, f) = (x1, …, xn, ebody) where
–  xi are the names of the formal arguments
–  ebody is the body of the method
–  As with class, impl is a function

51

Operational Semantics of Dispatch

so, E, S ├ e1 : v1 , S1
so, E, S1 ├ e2 : v2 , S2
…
so, E, Sn-1 ├en : vn , Sn
so, E, Sn ├ e0 : v0, Sn+1
v0 = X(a1 = l1,…, am = lm)
impl(X, f) = (x1,…, xn, ebody)
lxi = newloc(Sn+1) for i = 1,…,n
E’ = [a1 : l1,…,am : lm][x1/lx1, …, xn/lxn]
Sn+2 = Sn+1[v1/lx1,…,vn/lxn]
v0 , E’, Sn+2 ├ ebody : v, Sn+3
so, E, S ├ e0.f(e1,…,en) : v, Sn+3

52

Notes on Operational Semantics of Dispatch

•  The body of the method is invoked with
–  E mapping formal arguments and self’s attributes
–  S like the caller’s except with actual arguments

bound to the locations allocated for formals

•  The notion of the frame is implicit
–  New locations are allocated for actual arguments

•  The semantics of static dispatch is similar

53

Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

…
so, E, Sn ├ e0 : v0,Sn+1
v0 = X(a1 = l1,…, am = lm)
impl(X, f) = (x1,…, xn, ebody)
…
so, E, S ├ e0.f(e1,…,en) : v, Sn+3

What happens if impl(X, f) is not defined?
Cannot happen in a well-typed program

54

Runtime Errors (Cont.)

•  There are some runtime errors that the type
checker does not prevent
–  A dispatch on void
–  Division by zero
–  Substring out of range
–  Heap overflow

•  In such cases execution must abort gracefully
–  With an error message, not with segfault

55

Conclusions

•  Operational rules are very precise & detailed
–  Nothing is left unspecified
–  Read them carefully

•  Most languages do not have a well specified
operational semantics

•  When portability is important an operational
semantics becomes essential

