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Operational Semantics of Cool 

Lecture 13 
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Lecture Outline 

•  COOL operational semantics 

•  Motivation 

•  Notation 

•  The rules 



Motivation 

•  We must specify for every Cool expression 
what happens when it is evaluated 
–  This is the “meaning” of an expression 
–  Somehow give rules to specify what kind of 

computation a particular expression does 
•  The definition of a programming language: 

–  For lexical analysis ⇒ tokens 
–  For syntactic analysis ⇒ grammar 
–  For semantic analysis ⇒ formal type rules 
–  For code generation and optimization  

⇒ evaluation rules (these guide code gen and opt.) 
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Evaluation Rules So Far 

•  We have specified evaluation rules indirectly 
–  The compilation of Cool to a stack machine 
–  The evaluation rules of the stack machine 

•  This is a complete description 
–  You could take the generated assembly code, run it 

on the machine, and see what the program does.  
This would be a valid description of the behavior of 
the program  

–  Why isn’t it good enough? 
•  I.e., why isn’t it good enough to just have a code generator 

describe what is supposed to happen?  



Motivation 

•  This may be difficult to appreciate without 
having written a few compilers.  

•  In a nutshell, people, through hard experience, 
have learned that…  
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Assembly Language Description of Semantics 

•  Assembly-language descriptions of language 
implementations have a lot of irrelevant detail 
–- there is a lot of unnecessary stuff you have 
to say when using such a complete executable 
description of a program  
–  Whether to use a stack machine or not 
–  Which way the stack grows 
–  How integers are represented  
–  The particular instruction set of the architecture 

•  None of these are intrinsic to any particular 
programming language 
 



Assembly Language Description of Semantics 

•  Assembly-language descriptions of language 
implementations have a lot of irrelevant detail –- 
there is a lot of unnecessary stuff you have to 
say when using such a complete executable 
description of a program  
–  Whether to use a stack machine or not 
–  Which way the stack grows 
–  How integers are represented  
–  The particular instruction set of the architecture 

•  Moreover, these are ONE way to describe the 
language, but we don’t want it to be the only way 
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Assembly Language Description of Semantics 

 
•  We need a complete description 

–  But not an overly restrictive specification 
•  I.e., we want a description that allows a variety of 

implementations 

•  When people have not done this (tried to find 
a relatively high-level way to describe the 
behavior of the language) they have invariably 
ended up having to run the program on a 
reference implementation 
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So What? 
 

•  Reference implementation not completely 
correct themselves 
–  They have bugs 
–  There are artifacts of the particular way in which 

it was implemented.   
•  These artifacts, because there is no better way of 

defining some behavior, become an unintended part of the 
language!  A part that you may not want! 

–  You don’t really want aspects of your language to be 
defined based on accidents that occurred because 
of the way the language was implemented for the 
first time 
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Programming Language Semantics 

•  Many ways to specify semantics  
–  All equally powerful 
–  Some more suitable to various tasks than others 

•  We’ll use operational semantics 
–  Describes program evaluation via execution rules on 

an abstract machine 
•  Think of a very high-level kind of code generation 

–  Most useful for specifying implementations 
–  This is what we use for Cool 
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Other Kinds of Semantics  

•  Denotational semantics  
–  Program’s meaning is a mathematical function 

•  Program text is mapped to a mathematical function that 
goes from inputs to outputs 

–  Elegant, but introduces complications we don’t 
really need to consider for purposes of defining an 
implementation 

•  Need to define a suitable space of functions 
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Other Kinds of Semantics  

 
•  Axiomatic semantics 

–  Program behavior described via logical formulae 
•  If execution begins in state satisfying X, then it ends in 

state satisfying Y 
•  X and Y are formulas in some logic 

–  Foundation of many program verification systems 
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Introduction to Operational Semantics 

•  Once again we introduce a formal notation 

•  Logical rules of inference (as we used in type 
checking) 
–  With some twists 
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Inference Rules 

•  Recall the typing judgment 
                  Context  ├ e : C 

 In the given context, expression e has type C 

•  We use something similar for evaluation 
                 Context ├ e : v 

 In the given context, expr. e evaluates to value v 
(Context is different: evaluation context as opposed 

to type context) 
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Example Operational Semantics Rule 

•  Example: 

•  Suppose that within the given Context (same 
for all three expressions) and using our rules 
(which I have not yet disclosed), we could 
show the hypotheses to be true.  Then 
certainly the conclusion would be true. 

Context ├ e1 : 5 
Context ├ e2 : 7 

Context ├ e1 + e2 : 12 
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Example Operational Semantics Rule 

•  Example: 

•  What is the context giving? 
–  Well, consider what it did with type checking: gave 

information about the free variables 
–  Here, it needs to give information about the values 

of the free variables that appear in the 
subexpressions 

Context ├ e1 : 5 
Context ├ e2 : 7 

Context ├ e1 + e2 : 12 
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Example Operational Semantics Rule 

•  Example: 

•  The result of evaluating an expression can 
depend on the result of evaluating its 
subexpressions 

•  The rules specify everything that is needed to 
evaluate an expression 

Context ├ e1 : 5 
Context ├ e2 : 7 

Context ├ e1 + e2 : 12 



Contexts are Needed for Variables 

•  Consider the evaluation of y ← x + 1 
–  We need to keep track of values of variables 
–  We need to allow variables to change their values 

during evaluation 

•  We track variables and their values with: 
–  An environment : tells us where in memory a 

variable is stored 
•  Technically a mapping from variables to memory locations 

–  A store : tells us what is in memory 
•  Technically a mapping from memory locations to values 

Note this use of term is not  
same as in type checking 
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Variable Environments (and Related Notation) 

•  A variable environment maps variable names to 
locations  
–  Keeps track of which variables are in scope 
–  Tells in where those variables are 
–  It is a list of variable:location pairs 

•  Example: 
                     E = [a : l1 , b : l2] 
•  E(a) looks up variable a in environment E 

–  Here, variable a is at location l1 

–  Here, variable b is at location l2 
 



Variable Environments (and Related Notation) 

•  A variable environment maps variable names to 
locations  
–  Keeps track of which variables are in scope 
–  Tells in where those variables are 
–  It is a list of variable:location pairs 

•  Example: 
                     E = [a : l1 , b : l2] 
•  E(a) looks up variable a in environment E 

–  E keeps track of the variables that are in scope, so 
the only variables that E mentions are those that 
are in scope in the expressions being evaluated 
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Stores 

•  A store maps memory locations to values 
•  Example: 
                   S = [l1 → 5, l2 → 7] 
 
•  S(l1) is the contents of a location l1 in store S 

•  S’ = S[12/l1] defines a new store S’ such that   
S’(l1) = 12    and    S’(l) = S(l) if l ≠ l1 

arrow is used so that stores look a little 
different from environments. helps 
prevent confusing the two 

the replace or update operation 



Cool Values 

•  Cool values are objects 
–  Which are, of course, generally a bit more 

complicated than integers 
–  All objects are instances of some class  

•  X(a1 = l1, …, an = ln) is a Cool object where 
–  X is the class of the object 
–  ai are the attributes (including inherited ones) 
–  li is the location where the value of ai is stored 

•  This is a complete description of the object, 
since once we know where the variables are 
located, we can use store to look up values 



Cool Values (Cont.) 

•  Special cases (classes without attributes) and 
special ways of writing them 
Int(5)                       the integer 5 
Bool(true)                 the boolean true 
String(4, “Cool”)       the string “Cool” of length 4 
 

•  There is a special value void of type Object 
–  No operations can be performed on it 
–  Except for the test isvoid 

•  Can’t dispatch to void – gives a run-time error 
–  Concrete implementations might use NULL here 
 



24 

Operational Rules of Cool 

•  The evaluation judgment is 
                   so, E, S ├ e : v, S’ 
  read: 

–  Given so the current value of self 
–  And E the current variable environment 
–  And S the current store 
–  If the evaluation of e terminates then 
–  The return value is v 
–  And the new store is S’ 

•  Since e might have assignments in it that update the 
memory 

  

So always read 
“if e 
terminates…” 



Notes 

•  “Result” of evaluation is a value and a new store 
–  New store models the side-effects 

•  Some things don’t change 
–  E - The variable environment  
–  so - The current self object 

•  These make sense: we can’t update the self object in COOL, 
nor do we have access, in any form, to relocations of 
variables stored.  So these are invariant under evaluation 

–  The operational semantics allows for non-terminating 
evaluations 

•  but judgement only holds if the evaluation of e terminates 



Notes 

•  “Result” of evaluation is a value and a new 
store 
–  New store models the side-effects 

•  Some things don’t change 
–  E - The variable environment  
–  so - The current self object 

•  Note: attributes of self object might change!  It is 
location and layout of attributes that do not change 

–  The operational semantics allows for non-
terminating evaluations 

•  but judgement only holds if the evaluation of e termnates 
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Operational Semantics for Base Values 

•  No side effects in these cases 
(the store does not change) 
 

so, E, S ├ true : Bool(true), S so, E, S ├ false : Bool(false), S 

s is a string literal 
n is the length of s 

so, E, S ├ s : String(n,s), S 
i is an integer literal 
so, E, S ├ i : Int(i), S 
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Operational Semantics of Variable References 

•  Note the double lookup of variables 
–  First from name to location 
–  Then from location to value 

•  The store does not change 

E(id) = lid 
S(lid) = v 

so, E, S ├ id : v, S 
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Operational Semantics for Self 

•  A special case: 

so, E, S ├ self : so, S 
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Operational Semantics of Assignment 

•  Three step process 
–  Evaluate the right hand side 

⇒ a value v and new store S1 
–  Fetch the location of the assigned variable 
–  The result is the value v and an updated store  

so, E, S ├ e : v, S1  
E(id) = lid 

S2 = S1[v/lid] 

so, E, S ├ id ← e : v, S2 

note two parts: 
identifier being 
evaluated and an 
expression that gives 
the new value 
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Operational Semantics of Addition 

 
•  Note the stores tell the order in which you 

have to evaluate the expressions: 
–  Because e1 is evaluated in the same store as the 

overall expression, e1 must be evaluated first   
–  Because e2 is evaluated in the store produced by 

evaluating e1, e2 must be evaluated after e1 
–  Finally, because the overall value ends with store 

S2, e2 must be the last thing evaluated   

so, E, S ├ e1 : v1, S1 
so, E, S1 ├ e2 : v2, S2  

so, E, S ├ e1 + e2 : v1 + v2, S2 
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Operational Semantics of Conditionals 

•  The “threading” of the store enforces an 
evaluation sequence 
–  e1 must be evaluated first to produce S1  
–  Then e2 can be evaluated 

•  The result of evaluating e1 is a Bool. Why? 

so, E, S ├ e1 : Bool(true), S1  
so, E, S1 ├ e2 : v, S2 

so, E, S ├ if e1 then e2 else e3 fi : v, S2 
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Operational Semantics of Sequences 

•  Again the threading of the store expresses 
the required evaluation sequence 

•  Only the last value is used 
•  But all the side-effects are collected 

so, E, S ├  e1 : v1, S1  
so, E, S1 ├  e2 : v2, S2 

…  
so, E, Sn-1 ├  en : vn , Sn 

so, E, S ├  { e1; …; en; } : vn, Sn 



Example 

•  Consider the expression { X ← 7 + 5; 4;} 
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so, [x: l], [l ← 0]├  { x ← 7 + 5; 4; }  



Example 

•  Consider the expression { X ← 7 + 5; 4;} 
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so, [x:l], [l ← 0] ├  x : 7 + 5        so, [x:l], [  ?  ] ├ 4  

so, [x: l], [l ← 0]├  { x ← 7 + 5; 4; }  



Example 

•  Consider the expression { X ← 7 + 5; 4;} 
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so, [x:l], [l ← 0] ├ 7 : Int(7), [l ← 0] 
so, [x:l], [l ← 0] ├ 5 : Int(5), [l ← 0] 
so, [x:l], [l ← 0] ├ 7 + 5 : Int(12), [l ← 0] 
[l ← 0](12/l) = [l ← 12] 
so, [x:l], [l ← 0] ├  x ← 7 + 5 : Int(12), [l ← 12]     
                                          so, [x:l], [l ←  12]├ 4 : Int(4), [l ← 12] 

   
so, [x: l], [l ← 0]├  { x ← 7 + 5; 4; } : Int(4), [l ← 12] 
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Operational Semantics of while (I) 

•  If e1 evaluates to false the loop terminates 
–  With the side-effects from the evaluation of e1 

–  And with result value void 

•  Type checking ensures  e1 evaluates to a Bool 

so, E, S ├ e1 : Bool(false), S1  
so, E, S ├ while e1 loop e2 pool : void, S1 

Note the resulting store is whatever resulted 
from evaluating the predicate 
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Operational Semantics of while (II) 

•  Note the sequencing (S → S1 → S2 → S3) 
•  Note how looping is expressed 

–  Evaluation of “while …” is expressed in terms of 
the evaluation of itself in another state 

•  The result of evaluating e2 is discarded 
–  Only the side-effect is preserved 

so, E, S ├ e1 : Bool(true), S1  
so, E, S1 ├ e2 : v, S2 

so, E, S2 ├ while e1 loop e2 pool : void, S3 
so, E, S ├ while e1 loop e2 pool : void, S3 
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Operational Semantics of let Expressions (I) 

•  In what context should e2 be evaluated? 
–  Environment like E but with a new binding of id to a 

fresh location lnew 
–  Store like S1 but with lnew mapped to v1 

so, E, S ├ e1 : v1, S1  
so, ?, ? ├ e2 : v, S2 
so, E, S ├ let id : T ← e1 in e2 : v2, S2 
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Operational Semantics of let Expressions (II) 

•  We write lnew =  newloc(S) to say that lnew is a 
location not already used in S 
–  newloc is like the memory allocation function 

•  The operational rule for let: 

so, E, S ├ e1 : v1, S1 
lnew = newloc(S1)  
so, E[lnew/id] , S1[v1/lnew] ├ e2 : v2, S2 
so, E, S ├ let id : T ← e1 in e2 : v2, S2 



So far 

•  Some complicated stuff, but not the two most 
complex operations: 
–   Allocation of a new object 
–  Dynamic dispatch 
–  So, onward… 

41 
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Operational Semantics of new 

•  Informal semantics of new T 
–  Allocate locations to hold all attributes of an 

object of class T 
•  Essentially, allocate a new object 

–  Set attributes with their default values 
•  We’ll see in a minute what these attributes are, and why 

we need to set the attributes to defaults   
–  Evaluate the initializers and set the resulting 

attribute values 
–  Return the newly allocated object 



Operational Semantics of new 

•  Informal semantics of new T 
–  Allocate locations to hold all attributes of an 

object of class T 
•  Essentially, allocate a new object 

–  Set attributes with their default values 
•  We’ll see in a minute what these attributes are, and why 

we need to set the attributes to defaults   
–  Evaluate the initializers and set the resulting 

attribute values 
–  Return the newly allocated object 

Note: quite a bit more than just allocating a little bit of memory 
Actually much computation occurring 
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Default Values 

•  For each class A there is a default value 
denoted by DA 
–  Dint = Int(0) 
–  Dbool = Bool(false) 
–  Dstring = String(0, “”) 
–  DA = void (for any other class A)   
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More Notation 

•  For a class A we write 
 class(A) = (a1 : T1 ← e1, …, an : Tn ← en) where 

–  ai are the attributes (including the inherited ones) 
•  attributes listed in “greatest ancestor first” order 
•  I.e., if C ≤ B ≤ A, then in call class(C), attributes of A 

listed first, then attributes of B, then attributes of C 
•  For given class, attributes listed in order they appear in 

text 
–  Ti are their declared types 
–  ei are the initializers 
–  Note that class is a function.  It takes a class name 

and returns the list of attributes of that class 
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Operational Semantics of new 

•  new SELF_TYPE  allocates an object with the 
same dynamic type as self (this type is 
denoted here by X) 

T0 = if (T == SELF_TYPE and so = X(…)) then X else T 
class(T0) = (a1 : T1 ← e1,…, an : Tn ← en) 
li = newloc(S) for i = 1,…,n 
v = T0(a1= l1,…,an= ln) 
S1 = S[DT1/l1,…,DTn/ln] 
E’ = [a1 : l1, …, an : ln] 
v, E’, S1 ├ { a1 ← e1; …; an ← en; } : vn, S2 
so, E, S ├ new T : v, S2 

Note E’ has no relation to E 



Notes on Operational Semantics of new. 

•  The first three steps allocate the object 

•  The remaining steps initialize it 
–  By evaluating a sequence of assignments 

•  State in which the initializers are evaluated 
–  Self is the current object 
–  Only the attributes are in scope (same as in typing) 
–  Initial values of attributes are the defaults 

•  Need the defaults because the attributes are in scope 
inside their own initializers (might need to read an 
attribute in order to finish computing its initial value) 



Notes on Operational Semantics of new. 

•  Note that it is not just COOL that has 
complicated semantics for the initialization of 
new objects… 

•  Every OO language has fairly complex 
semantics for the initialization of new objects 
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Operational Semantics of Method Dispatch 

•  Informal semantics of e0.f(e1,…,en) 
–  Evaluate the arguments in order e1,…,en 
–  Evaluate e0 to the target object 
–  Let X be the dynamic type of the target object 
–  Fetch from X the definition of f (with n args.) 
–  Create n new locations and an environment that 

maps f’s formal arguments to those locations 
–  Initialize the locations with the actual arguments 
–  Set self to the target object and evaluate f’s body 
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More Notation 

•  For a class A and a method f of A (possibly 
inherited) we write: 

impl(A, f) = (x1, …, xn, ebody) where 
–  xi are the names of the formal arguments 
–  ebody is the body of the method 
–  As with class, impl is a function 
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Operational Semantics of Dispatch 

so, E, S ├ e1  : v1 , S1 
so, E, S1 ├ e2  : v2 , S2 
… 
so, E, Sn-1 ├en  : vn , Sn 
so, E, Sn ├ e0  : v0, Sn+1 
v0 = X(a1 = l1,…, am  = lm) 
impl(X, f) = (x1,…, xn, ebody) 
lxi = newloc(Sn+1) for i = 1,…,n 
E’ = [a1 : l1,…,am : lm][x1/lx1, …, xn/lxn] 
Sn+2 = Sn+1[v1/lx1,…,vn/lxn] 
v0 , E’, Sn+2 ├ ebody : v, Sn+3 
so, E, S ├ e0.f(e1,…,en)  : v, Sn+3 
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Notes on Operational Semantics of Dispatch 

•  The body of the method is invoked with 
–  E mapping formal arguments and self’s attributes 
–  S like the caller’s except with actual arguments 

bound to the locations allocated for formals 

•  The notion of the frame is implicit 
–  New locations are allocated for actual arguments 

•  The semantics of static dispatch is similar 
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Runtime Errors 

Operational rules do not cover all cases 
Consider the dispatch example: 

… 
so, E, Sn ├ e0  : v0,Sn+1 
v0 = X(a1 = l1,…, am  = lm) 
impl(X, f) = (x1,…, xn, ebody) 
… 
so, E, S ├ e0.f(e1,…,en)  : v, Sn+3 

What happens if impl(X, f) is not defined? 
Cannot happen in a well-typed program  
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Runtime Errors (Cont.) 

•  There are some runtime errors that the type 
checker does not prevent 
–  A dispatch on void 
–  Division by zero 
–  Substring out of range 
–  Heap overflow 

•  In such cases execution must abort gracefully 
–  With an error message, not with segfault  
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Conclusions 

•  Operational rules are very precise & detailed 
–  Nothing is left unspecified 
–  Read them carefully 

•  Most languages do not have a well specified 
operational semantics 

•  When portability is important an operational 
semantics becomes essential 


