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Code Generation 

Lecture 12 
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Lecture Outline 

•  Topic 1: Basic Code Generation 
–  The MIPS assembly language 
–  A simple source language 
–  Stack-machine implementation of the simple 

language 

•  Topic 2: Code Generation for Objects 
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From Stack Machines to MIPS 

•  The compiler generates code for a stack 
machine with accumulator 
–  Simplest code generation strategy, though it 

doesn’t yield extremely efficient code 
–  It’s not totally unrealistic, and is sufficiently 

complex for our purposes 

•  We want to run the resulting code on a real 
machine: the MIPS processor 
–  Of course, we’ll run it on a simulator 
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From Stack Machines to MIPS 

 

•  We simulate stack machine instructions using 
MIPS instructions and registers 

•  Much of what is described here regarding 
MIPS will be review for you 
–  Though some of it will be new, and part of it will be 

a different way of thinking about what you did in 
CS 301  
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Simulating a Stack Machine… 

•  The accumulator is kept in MIPS register $a0 
–  Could have used any register 

•  The stack is kept in memory 
–  The stack grows towards lower addresses 
–  Standard convention on the MIPS architecture 
–  Nominally, $a0 is top of stack, but we won’t say that 

•  So consider it distinct from the stack 

•  The address of the next location on the stack 
(the unallocated memory where the next push 
goes) is kept in MIPS register $sp 
–  The top of the stack is at address $sp + 4 
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MIPS Assembly 

MIPS architecture 
–  Prototypical Reduced Instruction Set Computer 

(RISC) architecture 
–  Arithmetic operations use registers for operands 

and results 
–  Must use load and store instructions to use 

operands and results in memory 
–  32 general purpose registers (32 bits each) 

•  We will use $sp, $a0 and $t1 (a temporary register) 

•  Read the SPIM documentation for details 
–  Or just review your notes from CS 301   
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A Sample of MIPS Instructions 

–  lw reg1 offset(reg2) 
•  Load 32-bit word from address reg2 + offset into reg1 

–  add reg1 reg2 reg3 
•  reg1 ← reg2 + reg3 

–  sw reg1 offset(reg2) 
•  Store 32-bit word in reg1 at address reg2 + offset 

–  addiu reg1 reg2 imm 
•  reg1 ← reg2 + imm 
•  “u” means unsigned: overflow is not checked 

–  li reg imm 
•  reg ← imm 
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MIPS Assembly. Example. 

•  The stack-machine code for 7 + 5 in MIPS: 
acc ← 7 
push acc 
 
acc ← 5 
acc ← acc + top_of_stack 
 
pop 

li $a0 7 
sw $a0 0($sp) 
addiu $sp $sp -4 
li $a0 5 
lw $t1 4($sp) 
add $a0 $a0 $t1 
addiu $sp $sp 4   

•  We now generalize this to a simple language… 
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A Small Language 

•  A language with integers and integer 
operations (with the following grammar) 

            P → D; P | D 
            D → def id(ARGS) = E; 
     ARGS → id, ARGS | id 
           E →  int | id | if E1 = E2 then E3 else E4 

                  | E1 + E2 | E1 – E2 | id(E1,…,En) 
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A Small Language (Cont.) 

•  The first function definition f is the “main” 
routine (the entry point of the program) 

•  Running the program on input i means 
computing f(i) 

•  Program for computing the Fibonacci numbers: 
           def fib(x) = if x = 1 then 0 else  
                               if x = 2 then 1 else   
                                   fib(x - 1) + fib(x – 2)  
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Code Generation Strategy 

•  For each expression e we generate MIPS code 
that: 
–  Computes the value of e and places it in $a0 
–  Preserves $sp and the contents of the stack 

•  So whatever stack looked like before executing code for e, 
stack should look exactly like that after code is executed 

•  We define a code generation function cgen(e) 
whose result is the code generated for e 
–  Note cgen() produces code (that accomplishes the 

above requirements) 



•  As usual, we will work by cases (show how to 
do this for various language constructs) 

•  So we focus on expressions, and we show how 
our cgen() code will work for each kind of 
expression in the language 

12 



13 

Code Generation for Constants 

•  The code to evaluate a constant simply copies 
it into the accumulator: 
                     cgen(i) = li $a0 i 

 
•  This  preserves the stack, as required 

–  No modification to stack pointer, or push or pop of 
data 

•  Convention: Color key: 
–  RED: compile time 
–  BLUE: run time 
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Code Generation for Constants 

•  The code to evaluate a constant simply copies 
it into the accumulator: 
                     cgen(i) = li $a0 i 

•  Convention: Color key: 
–  RED: compile time 

•  So at compile time, we run cgen(i), which produces the 
code in blue, that will run at run time 

–  BLUE: run time 
•  Purpose here is to help you separate mentally 

that we have things that happen at compile 
time and thing deferred to run time 
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Code Generation for Add 

          cgen(e1 + e2) =  
                     cgen(e1)  
                     sw $a0 0($sp) 
                     addiu $sp $sp -4 
                     cgen(e2) 
                     lw $t1 4($sp) 
                     add $a0 $t1 $a0 
                     addiu $sp $sp 4 

cgen(e1 + e2) =  
           cgen(e1)  
           print “sw $a0 0($sp)” 
           print “addiu $sp $sp -4” 
           cgen(e2) 
           print “lw $t1 4($sp)” 
           print “add $a0 $t1 $a0” 
           print “addiu $sp $sp 4” 
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Code Generation for Add  

•  Possible Optimization: Put the result of e1 directly in  
$t1? 

         cgen(e1 + e2) =  
                     cgen(e1) 
                     move $t1 $a0  
                     cgen(e2) 
                     add $a0 $t1 $a0 
                      

•  Try to generate code for : 3 + (7 + 5) 
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Code Generation for Add. Wrong! 

•  Possible Optimization: Put the result of e1 directly in  
$t1? 

         cgen(e1 + e2) =  
                     cgen(e1) 
                     move $t1 $a0  
                     cgen(e2) 
                     add $a0 $t1 $a0 
                      

•  Try to generate code for : 1 + (2 + 3) 

1 + (2 + 3) 
li $a0 1 
move $t1 $a0 
li $a0 2 
move $t1 $a0       (2 + 3) 
li $a0 3 
add $a0 $t1 $a0  (get 5) 
add $a0 $t1 $a0  (get 7) 
   



Code Generation for Add. Wrong! 

•  Possible Optimization: Put the result of e1 directly in  
$t1? 

         cgen(e1 + e2) =  
                     cgen(e1) 
                     move $t1 $a0  
                     cgen(e2) 
                     add $a0 $t1 $a0 
                      

•  Try to generate code for : 1 + (2 + 3) 

1 + (2 + 3) 
li $a0 1 
move $t1 $a0 
li $a0 2 
move $t1 $a0       (2 + 3) 
li $a0 3 
add $a0 $t1 $a0  (get 5) 
add $a0 $t1 $a0  (get 7) 
   

So the problem is that nested expressions will step on $t1. 
Need a stack to store intermediate values  
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Code Generation Points to Emphasize 

•  The code for  + is a template with “holes” for 
code for evaluating e1 and e2 

•  Stack machine code generation is recursive 
–  Code for e1 + e2 is code for e1 and e2 glued together 

•  Code generation can be written as a recursive-
descent of the AST 
–  At least for expressions 
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Code Generation for Sub and Constants 

•  New instruction: sub reg1 reg2 reg3 
–  Implements reg1  ← reg2 - reg3  

                cgen(e1 - e2) =  
                          cgen(e1)  
                          sw $a0 0($sp) 
                          addiu $sp $sp -4 
                          cgen(e2) 
                          lw $t1 4($sp) 
                          sub $a0 $t1 $a0   (only difference from add)  
                          addiu $sp $sp 4 
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Code Generation for Conditional 

•  We need flow control instructions 

•  New instruction: beq reg1 reg2 label 
–  Branch to label if reg1 = reg2 

•  New instruction: b label 
–  Unconditional jump to label 
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Code Generation for If (Cont.) 

cgen(if e1 = e2 then e3 else e4) =  
  cgen(e1)  
  sw $a0 0($sp) 
  addiu $sp $sp -4 
  cgen(e2) 
  lw $t1 4($sp) 
  addiu $sp $sp 4 
  beq $a0 $t1 true_branch 
 

false_branch: 
  cgen(e4) 
  b end_if 
true_branch: 
  cgen(e3) 
end_if: 
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The Activation Record 

•  Code for function calls and function definitions 
depends intimately on the layout of the AR 

•  A very simple AR suffices for our current 
language: 
–  The result is always in the accumulator 

•  No need to store the result in the AR 
–  The activation record holds actual parameters 

•  For f(x1,…,xn) push xn,…,x1 on the stack 
•  These are the only variables in this language – no local or 

global vars other than arguments to function calls 



24 

The Activation Record (Cont.) 

•  The stack discipline guarantees that on 
function exit $sp is the same as it was on 
function entry 
–  No need for a control link – purpose is to help us 

find previous AR, but preservation of $sp means we 
already have this 

–  Also, never need to look for another AR during 
function call, since no non-local vars 
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The Activation Record (Cont.) 

 
•  We need the return address 

•  A pointer to the current (not previous) 
activation is useful 
–  This pointer lives in register $fp (frame pointer) 
–  Reason for frame pointer will be clear shortly 



The Activation Record 

•  Summary: For this language, an AR with the 
caller’s frame pointer, the actual parameters, 
and the return address suffices 

•  Picture: Consider a call to f(x,y), the AR is: 

y 
x 

old fp 

SP 

FP 

AR of f 

Note: caller’s fp needs to be saved, because pointer to 
current frame is in $fp 
 



The Activation Record 

•  Summary: For this language, an AR with the 
caller’s frame pointer, the actual parameters, 
and the return address suffices 

•  Picture: Consider a call to f(x,y), the AR is: 

y 
x 

old fp 

SP 

FP 

AR of f 

Note: last 
argument (y) 
pushed on 
first – this 
makes  
finding the 
arguments a 
little easier RA 
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Code Generation for Function Call 

•  The calling sequence is the instructions (of 
both caller and callee) to set up a function 
invocation 

•  New instruction (jump and link): jal label 
–  Jump to label, save address of next instruction 

(instruction following jal) in $ra 
–  On other architectures the return address is 

stored on the stack by the “call” instruction 
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Code Generation for Function Call (Cont.) 

cgen(f(e1,…,en)) =  
    sw $fp 0($sp) 
    addiu $sp $sp -4 
    cgen(en) 
    sw $a0 0($sp) 
    addiu $sp $sp -4 
    … 
    cgen(e1) 
    sw $a0 0($sp) 
    addiu $sp $sp -4 
    jal f_entry 

•  The caller saves its value 
of the frame pointer 

•  Then it saves the actual 
parameters in reverse 
order 

•  The caller saves the 
return address in 
register $ra 

•  The AR so far is 4*n+4 
bytes long 
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Code Generation for Function Call (Cont.) 

cgen(f(e1,…,en)) =  
    sw $fp 0($sp) 
    addiu $sp $sp -4 
    cgen(en) 
    sw $a0 0($sp) 
    addiu $sp $sp -4 
    … 
    cgen(e1) 
    sw $a0 0($sp) 
    addiu $sp $sp -4 
    jal f_entry 

•  The caller saves its value 
of the frame pointer 

•  Then it saves the actual 
parameters in reverse 
order 

•  The caller saves the 
return address in 
register $ra 

•  The AR so far is 4*n+4 
bytes long 

c 
a 
l 
l 
e 
r 
 
s 
i 
d 
e 
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Code Generation for Function Definition 

•  New instruction: jr reg 
–  Jump to address in register reg 

     cgen(def f(x1,…,xn) = e) =  
    f_entry: move $fp $sp 
                  sw $ra 0($sp) 
                  addiu $sp $sp -4 
                  cgen(e) 
                  lw $ra 4($sp) 
                  addiu $sp $sp z 
                  lw $fp 0($sp) 
                  jr $ra 

•  Note: The frame pointer 
points to the top, not 
bottom of the frame 

•  The callee pops the return 
address, the actual 
arguments and the saved 
value of the frame pointer 

•  z = 4*n + 8  
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Code Generation for Function Definition 

•  New instruction: jr reg 
–  Jump to address in register reg 

     cgen(def f(x1,…,xn) = e) =  
    f_entry: move $fp $sp 
                  sw $ra 0($sp) 
                  addiu $sp $sp -4 
                  cgen(e) 
                  lw $ra 4($sp) 
                  addiu $sp $sp z 
                  lw $fp 0($sp) 
                  jr $ra 

•  Note: The frame pointer 
points to the top, not 
bottom of the frame 

•  The callee pops the return 
address, the actual 
arguments and the saved 
value of the frame pointer 

•  z = 4*n + 8  

Note: callee must push $ra on stack since not known 
by caller until jal instruction 

c 
a 
l 
l 
e 
e 
 
s 
i 
d 
e 
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Calling Sequence: Example for f(x,y) 

Before call           On entry         Before exit   After call 

SP 

FP 

y 
x 

old fp 

SP 

FP 

SP 

FP 

SP 
return 

y 
x 

old fp 

FP 

jal 
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 Code Generation for Variables 

•  Variable references are the last construct 

•  The “variables” of a function are just its 
parameters 
–  They are all in the AR 
–  Pushed by the caller 

•  Problem: Because the stack grows when 
intermediate results are saved, the variables 
are not at a fixed offset from $sp 
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Code Generation for Variables (Cont.) 

•  Solution: use a frame pointer 
–  Always points to the return address on the stack 
–  Since it does not move it can be used to find the 

variables 
•  Let xi be the ith (i = 1,…,n) formal parameter of 

the function for which code is being generated 
  
         cgen(xi) = lw $a0 z($fp)          ( z = 4*i ) 
 
(note: this index calculation is why we push  
arguments onto stack in reverse order) 
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Code Generation for Variables (Cont.) 

•  Solution: use a frame pointer 
–  Always points to the return address on the stack 
–  Since it does not move it can be used to find the 

variables 
•  Let xi be the ith (i = 1,…,n) formal parameter of 

the function for which code is being generated 
  
         cgen(xi) = lw $a0 z($fp)          ( z = 4*i ) 
 
(Also: value of z computed at compile time, 

not run time) 
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Code Generation for Variables (Cont.) 

•  Example: For a function def f(x,y) = e the 
activation and frame pointer are set up as 
follows: 

y 
x 

return 

old fp 
•  X is at fp + 4 
•  Y is at fp + 8 

FP 

SP 
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Summary 

•  The activation record must be designed 
together with the code generator  

•  Code generation can be done by recursive 
traversal of the AST 

•  We recommend you use a stack machine for 
your Cool compiler (it’s simple) 
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Summary 

•  Production compilers do different things 
–  Emphasis is on keeping values (esp. current stack 

frame) in registers 
–  Intermediate results are laid out in the AR, not 

pushed and popped from the stack 



Example 

•  In the next few slides, we’ll generate code for a 
small sample program 

def sumto(x) = if x = 0 then 0 else x + sumto(x-1) 

•  What does this do? 
–  Not super interesting, but does illustrate all of the 

issues we’ve been discussing in the previous few slides 
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sumto_entry: move $fp $sp 
                      sw $ra 0($sp) 

           addiu $sp $sp -4 
           lw $a0  4($fp) 

                      sw $a0 0($sp) 
                      addiu $sp $sp -4 
                       li $a0 0 
                       lw $t1 4($sp) 
                       addiu $sp $sp 4 
                       beq $a0 $t1 true1 
  false1:           lw $a0 4($fp) 
                       sw $a0 0($sp) 

            addiu $sp $sp -4 
                       sw $fp 0($sp) 
                       addiu $sp $sp -4 

            lw $a0  4($fp) 
 

             
         

         
 
 

def sumto(x) = if x = 0 then 0 else x + sumto(x-1) 

 
                      sw $a0 0($sp) 
                      addiu $sp $sp -4 
                       li $a0 1 
                       lw $t1 4($sp) 
                       sub $a0 $t1 $a0 
                       addiu $sp $sp 4 
                       sw $a0 0($sp) 

            addiu $sp $sp -4 
                       jal sumto_entry 
                       lw $t1 4($sp) 
                       add $a0 $t1 $a0 
                       addiu $sp $sp 4 
                       b endif1 
 true1:             li $a0 0  
 endif1:            lw $ra 4($sp)  
                        addiu $sp $sp 12 
                        lw $fp 0($sp) 
                        jr $ra                     

             
         

         
 
 



 
sumto_entry: move $fp $sp 
                      sw $ra 0($sp) 

           addiu $sp $sp -4 
           lw $a0  4($fp) 

                      sw $a0 0($sp) 
                      addiu $sp $sp -4 
                       li $a0 0 
                       lw $t1 4($sp) 
                       addiu $sp $sp 4 
                       beq $a0 $t1 true1 
  false1:           lw $a0 4($fp) 
                       sw $a0 0($sp) 

            addiu $sp $sp -4 
                       sw $fp 0($sp) 
                       addiu $sp $sp -4 

            lw $a0  4($fp) 
 

             
         

         
 
 

def sumto(x) = if x = 0 then 0 else x + sumto(x-1) 

 
                      sw $a0 0($sp) 
                      addiu $sp $sp -4 
                       li $a0 1 
                       lw $t1 4($sp) 
                       sub $a0 $t1 $a0 
                       addiu $sp $sp 4 
                       sw $a0 0($sp) 

            addiu $sp $sp -4 
                       jal sumto_entry 
                       lw $t1 4($sp) 
                       add $a0 $t1 $a0 
                       addiu $sp $sp 4 
                       b endif1 
 true1:             li $a0 0  
 endif1:            lw $ra 4($sp)  
                        addiu $sp $sp 12 
                        lw $fp 0($sp) 
                        jr $ra                     

             
         

         
 
 



Notes 

•  Code is constructed as a bunch of templates 
pasted together 
–  But you do wind up with one linear sequence of code 

•  If you’re confused, review the templates and 
see how they fit into the example 

•  Note also that this is extremely inefficient 
code 
–   How many times do we load x, then immediately 

store it on the stack, then reload it, etc. 
–  This is result of our simple code generation strategy 
–  Code does not have to be this inefficient 

•  We’ll see improved cgen techniques in subsequent lectures 



Real Compilers…  

•  Do a better job of keeping values in registers 
•  Do a better job managing temporaries that 

have to be stored in the AR 
•  Let’s discuss these improvements 

–  Starting with the second issue 

44 
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An Improvement 

•  Idea: Keep temporaries in the AR 
–  Not as efficient as keeping temporaries in 

registers (which we’ll discuss at a future date) 
–  Right now: let’s discuss improving management of 

temporaries that, for whatever reason, happen to 
be in the AR 

•  The code generator must assign a fixed 
location in the AR for each temporary 
–  So code generator pre-allocates memory for each 

temporary, allowing access without stack 
manipulation 
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Example 

  def fib(x) = if x = 1 then 0 else  
               if x = 2 then 1 else   
                   fib(x - 1) + fib(x – 2)  

•  What intermediate values are placed on the 
stack? 

•  How many slots are needed in the AR to hold 
these values? 



Example 

  def fib(x) = if x = 1 then 0 else  
               if x = 2 then 1 else   
                   fib(x - 1) + fib(x – 2)  
•  How many temporaries do we need? 

–  We need 5 total 
–  BUT, we don’t need them all at the same time 

•  After check involving 1, don’t need that temporary 
anymore.  So can reclaim that memory before getting to 2 

•  Same with check involving 2 (cleared before getting to 3) 
and 3 (cleared before getting to 4) 

•  But can’t clear 4 before getting to 5 (need both at same 
time) 

–  Bottom line: Can do this with only 2 temporaries) 

 

1 

2 

3 4 
5 



Example 

  def fib(x) = if x = 1 then 0 else  
               if x = 2 then 1 else   
                   fib(x - 1) + fib(x – 2)  
•  How many temporaries do we need? 

–  We need 5 total 
–  BUT, we don’t need them all at the same time 

•  After check involving 1, don’t need that temporary 
anymore.  So can reclaim that memory before getting to 2 

•  Same with check involving 2 (cleared before getting to 3) 
and 3 (cleared before getting to 4) 

•  But can’t clear 4 before getting to 5 (need both at same 
time) 

–  Bottom line: Can do this with only 2 temporaries) 

 

1 

2 

3 4 
5 



How Many Temporaries? 

•  Let NT(e) = # of temps needed in current AR in 
order to evaluate e 

•  NT(e1 + e2) = max(NT(e1), NT(e2) + 1) 
–  Needs at least as many temporaries as NT(e1) 
–  Needs at least as many temporaries as NT(e2) + 1 

•  The +1 needed since need to hold onto the value of e1 while 
evaluating e2 

–  max, not sum, since once e1 evaluated, don’t need any of 
space for those temporaries 

•  Space used for temporaries in e1 can be reused 
for temporaries in e2 
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The Equations 

NT(e1 + e2) = max(NT(e1), 1 + NT(e2)) 
NT(e1 - e2) = max(NT(e1), 1 + NT(e2)) 

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4)) 
NT(id(e1,…,en) = max(NT(e1),…,NT(en)) 

NT(int) = 0 
NT(id) = 0 

 

Is this bottom-up or top-down? 
What is NT(…code for fib…)? 
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The Equations 

NT(e1 + e2) = max(NT(e1), 1 + NT(e2)) 
NT(e1 - e2) = max(NT(e1), 1 + NT(e2)) 

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4)) 
NT(id(e1,…,en) = max(NT(e1),…,NT(en)) 

NT(int) = 0 
NT(id) = 0 

 

Is this bottom-up or top-down? 
What is NT(…code for fib…)? 

Why don’t we need 
space to store all 
the ei?  



The Equations 

NT(e1 + e2) = max(NT(e1), 1 + NT(e2)) 
NT(e1 - e2) = max(NT(e1), 1 + NT(e2)) 

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4)) 
NT(id(e1,…,en) = max(NT(e1),…,NT(en)) 

NT(int) = 0 
NT(id) = 0 

 

Is this bottom-up or top-down? 
What is NT(…code for fib…)? 

Why don’t we need 
space to store all 
the ei? Because these 
are stored not in the 
current AR, but in  
the new AR we are  
building for the  
function call. 



Use the Equations on Our Example 

 
 
def fib(x) = if x = 1 then 0 else 
 

  if x = 2 then 1 else 
 

   fix(x-1) + fib(x-2) 
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Use the Equations on Our Example 

 
 
def fib(x) = if x = 1 then 0 else 
 

  if x = 2 then 1 else  
 

   fix(x-1) + fib(x-2) 
 
 

   
 
  

54 

0 

0 1  0 

0 

0 1 0 

1 
1 

1 
1 
2 



Use the Equations on Our Example 

 
 
def fib(x) = if x = 1 then 0 else 
 

  if x = 2 then 1 else  
 

   fix(x-1) + fib(x-2) 
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0 

0 1  0 

0 

0 1 0 

1 
1 

1 
1 
2 
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The Revised AR 

•  For a function definition f(x1,…,xn) = e the AR 
has 2 + n + NT(e) elements 
–  Return address 
–  Frame pointer 
–  n arguments 
–  NT(e) locations for intermediate results 
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Picture 

. . . 
x1 

Return Addr. 
Temp NT(e) 

. . . 
Temp 1 

Old FP 
xn 

Recall that the current frame pointer points 
to the memory location where the RA is stored 
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Revised Code Generation 

•  Code generation must know how many 
temporaries are in use at each point 

•  Add a new argument to code generation: the 
position of the next available temporary 
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Code Generation for + (original) 

cgen(e1 + e2) =  
                     cgen(e1)  
                     sw $a0 0($sp) 
                     addiu $sp $sp -4 
                     cgen(e2) 
                     lw $t1 4($sp) 
                     add $a0 $t1 $a0 
                     addiu $sp $sp 4 



60 

Code Generation for + (revised) 

cgen(e1 + e2, nt) =  
                     cgen(e1, nt)  
                     sw $a0 nt($fp) 
                     cgen(e2, nt + 4) 
                     lw $t1 nt($fp) 
                     add $a0 $t1 $a0 
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Notes 

•  The temporary area is used like a small, fixed-
size stack 

•  Exercise: Write out cgen for other constructs 
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Code Generation for OO Languages 

Topic II 



Object Layout 

•  OO implementation = Stuff from last part + 
more stuff 

•  OO Slogan: If B is a subclass of A, than an 
object of class B can be used wherever an 
object of class A is expected 
–  Substitutability property… 

•  This means that code in class A works 
unmodified for an object of class B 
–  Note with regards to code generation strategy, 

that our generated code for A must work even on 
subclasses not even yet written when we compile A! 
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Only Two Questions We Need to Answer Here 

•  How are objects represented in memory? 
–  I.e., layout and representation for objects 

•  How is dynamic dispatch implemented? 
–  This is the characteristic feature of using objects, 

so we better have a handle on this 
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Object Layout Example 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 

}; 
 
Class  B inherits A { 

 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 

}; 

Class  C inherits A { 
 c: Int <- 3; 
 h(): Int { a <- a * c }; 

}; 
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Object Layout Example (cont.) 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 

}; 
 
Class  B inherits A { 

 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 

}; 

Class  C inherits A { 
 c: Int <- 3; 
 h(): Int { a <- a * c }; 

}; 

Attributes a and d are 
inherited by classes B 
and C 
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Object Layout Example (cont.) 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 

}; 
 
Class  B inherits A { 

 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 

}; 

Class  C inherits A { 
 c: Int <- 3; 
 h(): Int { a <- a * c }; 

}; 

All methods in all 
classes (in this 
example) refer to a 
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Object Layout Example (cont.) 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 

}; 
 
Class  B inherits A { 

 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 

}; 

Class  C inherits A { 
 c: Int <- 3; 
 h(): Int { a <- a * c }; 

}; 

So, for all of these 
methods to work 
correctly in A, B, and 
C, attribute a must be 
in the same “place” in 
each object.  Consider, 
e.g., the method f 



How Do We Accomplish This? 

•  Objects are laid out in contiguous memory 

•  Each attribute stored at a fixed offset in the 
object 
–  The attribute is in the same place in every object 

of that class 

•  When a method is invoked, the object itself is 
the self parameter and the fields are the 
object’s attributes 
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a self 
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Object Layout (Cont.) 

An object is like a struct in C.  The reference 
foo.field 

is an index into a foo struct at an offset 
corresponding to field 

 
Objects in Cool are implemented similarly 

–  Objects are laid out in contiguous memory 
–  Each attribute stored at a fixed offset in object 
–  When a method is invoked, the object is self and 

the fields are the object’s attributes 
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Cool Object Layout 

•  The first 3 words of Cool objects contain 
header information: 

Dispatch Ptr 
Attribute 1 
Attribute 2 

. . . 

Class Tag 
Object Size 

Offset 

0 

4 

8 

12 

16 

Every COOL 
object has 
these three 
entries  
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Cool Object Layout (Cont.) 

•  Class tag is an integer 
–  Identifies class of the object 
–  Compiler numbers all of the classes 
–  Each class has its own unique identifier 

•  Object size is an integer 
–  Size of the object in words 
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Cool Object Layout (Cont.) 

•  Dispatch ptr is a pointer to a table of methods 
–  More later 

•  Attributes in subsequent slots 
–  In some order determined by the compiler 
–  All objects of that class will have the attributes of 

that class laid out in the same order 

•  And again: All of this laid out in contiguous 
chunk of memory 
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Subclasses 

Observation: Given a layout for class A, a layout 
for subclass B can be defined by extending 
the layout of A with additional slots for the 

additional attributes of B 
 

Leaves the layout of A unchanged  
(B is an extension) 



Layout Picture 

 Offset 
Class 

0 4 8 12 16 20 

A Atag 5 * a d 

B Btag 6 * a d b 

C Ctag 6 * a d c 

After A’s field come all of B’s fields laid out, in order, as  
they appear textually in the code 
 



Layout Picture 

 Offset 
Class 

0 4 8 12 16 20 

A Atag 5 * a d 

B Btag 6 * a d b 

C Ctag 6 * a d c 

Note: can’t call a method of class B on an object of class C, because 
different attributes in third position, and that’s OK since B, C unrelated 
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Subclasses (Cont.) 

•  The offset for an attribute is the same in a 
class and all of its subclasses 
–  Any method for an A1 can be used on a subclass A2 

•  Consider layout for An < … < A3 < A2 < A1 

A2 attrs 
A3 attrs 

. . . 

Header 
A1 attrs. 

A1 object 

A2 object 

A3 object 

What about 
chain of 
inheritance? 
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Dynamic Dispatch 

•  Consider the following dispatches                         
(using the same example) 
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Object Layout Example (Repeat) 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 

}; 
 
Class  B inherits A { 

 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 

}; 

Class  C inherits A { 
 c: Int <- 3; 
 h(): Int { a <- a * c }; 

}; 
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Dynamic Dispatch Example 

•  e.g() 
–  g refers to method in B if e is a B 

•  e.f() 
–  f refers to method in A if f is an A or C                      

(inherited in the case of C) 
–  f refers to method in B for a B object 

•  The implementation of methods and dynamic 
dispatch strongly resembles the 
implementation of attributes 
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Dispatch Tables 

•  Every class has a fixed set of methods         
(including inherited methods) 

•  A dispatch table indexes these methods 
–  An array of method entry points 
–  A method f lives at a fixed offset in the dispatch 

table for a class and all of its subclasses 
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Dispatch Table Example 

•  The dispatch table for 
class A has only 1 
method 

•  The tables for B and C 
extend the table for A 
to the right 

•  Because methods can be 
overridden, the method 
for f is not the same in 
every class, but is 
always at the same 
offset 

 Offset 
Class 

0 4 

A fA 

B fB g 

C fA h 
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Using Dispatch Tables 

•  The dispatch pointer in an object of class X 
points to the dispatch table for class X 

•  Every method f of class X is assigned an 
offset Of in the dispatch table at compile time 
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Using Dispatch Tables (Cont.) 

•  To implement a dynamic dispatch e.f() we 
–  Evaluate e, giving an object x 
–  Call D[Of] 

•  D is the dispatch table for x 
•  In the call, self is bound to x 


