
1

Code Generation

Lecture 12

2

Lecture Outline

•  Topic 1: Basic Code Generation
–  The MIPS assembly language
–  A simple source language
–  Stack-machine implementation of the simple

language

•  Topic 2: Code Generation for Objects

3

From Stack Machines to MIPS

•  The compiler generates code for a stack
machine with accumulator
–  Simplest code generation strategy, though it

doesn’t yield extremely efficient code
–  It’s not totally unrealistic, and is sufficiently

complex for our purposes

•  We want to run the resulting code on a real
machine: the MIPS processor
–  Of course, we’ll run it on a simulator

4

From Stack Machines to MIPS

•  We simulate stack machine instructions using
MIPS instructions and registers

•  Much of what is described here regarding
MIPS will be review for you
–  Though some of it will be new, and part of it will be

a different way of thinking about what you did in
CS 301

5

Simulating a Stack Machine…

•  The accumulator is kept in MIPS register $a0
–  Could have used any register

•  The stack is kept in memory
–  The stack grows towards lower addresses
–  Standard convention on the MIPS architecture
–  Nominally, $a0 is top of stack, but we won’t say that

•  So consider it distinct from the stack

•  The address of the next location on the stack
(the unallocated memory where the next push
goes) is kept in MIPS register $sp
–  The top of the stack is at address $sp + 4

6

MIPS Assembly

MIPS architecture
–  Prototypical Reduced Instruction Set Computer

(RISC) architecture
–  Arithmetic operations use registers for operands

and results
–  Must use load and store instructions to use

operands and results in memory
–  32 general purpose registers (32 bits each)

•  We will use $sp, $a0 and $t1 (a temporary register)

•  Read the SPIM documentation for details
–  Or just review your notes from CS 301

7

A Sample of MIPS Instructions

–  lw reg1 offset(reg2)
•  Load 32-bit word from address reg2 + offset into reg1

–  add reg1 reg2 reg3
•  reg1 ← reg2 + reg3

–  sw reg1 offset(reg2)
•  Store 32-bit word in reg1 at address reg2 + offset

–  addiu reg1 reg2 imm
•  reg1 ← reg2 + imm
•  “u” means unsigned: overflow is not checked

–  li reg imm
•  reg ← imm

8

MIPS Assembly. Example.

•  The stack-machine code for 7 + 5 in MIPS:
acc ← 7
push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4

•  We now generalize this to a simple language…

9

A Small Language

•  A language with integers and integer
operations (with the following grammar)

 P → D; P | D
 D → def id(ARGS) = E;
 ARGS → id, ARGS | id
 E → int | id | if E1 = E2 then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)

10

A Small Language (Cont.)

•  The first function definition f is the “main”
routine (the entry point of the program)

•  Running the program on input i means
computing f(i)

•  Program for computing the Fibonacci numbers:
 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

11

Code Generation Strategy

•  For each expression e we generate MIPS code
that:
–  Computes the value of e and places it in $a0
–  Preserves $sp and the contents of the stack

•  So whatever stack looked like before executing code for e,
stack should look exactly like that after code is executed

•  We define a code generation function cgen(e)
whose result is the code generated for e
–  Note cgen() produces code (that accomplishes the

above requirements)

•  As usual, we will work by cases (show how to
do this for various language constructs)

•  So we focus on expressions, and we show how
our cgen() code will work for each kind of
expression in the language

12

13

Code Generation for Constants

•  The code to evaluate a constant simply copies
it into the accumulator:
 cgen(i) = li $a0 i

•  This preserves the stack, as required

–  No modification to stack pointer, or push or pop of
data

•  Convention: Color key:
–  RED: compile time
–  BLUE: run time

14

Code Generation for Constants

•  The code to evaluate a constant simply copies
it into the accumulator:
 cgen(i) = li $a0 i

•  Convention: Color key:
–  RED: compile time

•  So at compile time, we run cgen(i), which produces the
code in blue, that will run at run time

–  BLUE: run time
•  Purpose here is to help you separate mentally

that we have things that happen at compile
time and thing deferred to run time

15

Code Generation for Add

 cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

cgen(e1 + e2) =
 cgen(e1)
 print “sw $a0 0($sp)”
 print “addiu $sp $sp -4”
 cgen(e2)
 print “lw $t1 4($sp)”
 print “add $a0 $t1 $a0”
 print “addiu $sp $sp 4”

16

Code Generation for Add

•  Possible Optimization: Put the result of e1 directly in
$t1?

 cgen(e1 + e2) =
 cgen(e1)
 move $t1 $a0
 cgen(e2)
 add $a0 $t1 $a0

•  Try to generate code for : 3 + (7 + 5)

17

Code Generation for Add. Wrong!

•  Possible Optimization: Put the result of e1 directly in
$t1?

 cgen(e1 + e2) =
 cgen(e1)
 move $t1 $a0
 cgen(e2)
 add $a0 $t1 $a0

•  Try to generate code for : 1 + (2 + 3)

1 + (2 + 3)
li $a0 1
move $t1 $a0
li $a0 2
move $t1 $a0 (2 + 3)
li $a0 3
add $a0 $t1 $a0 (get 5)
add $a0 $t1 $a0 (get 7)

Code Generation for Add. Wrong!

•  Possible Optimization: Put the result of e1 directly in
$t1?

 cgen(e1 + e2) =
 cgen(e1)
 move $t1 $a0
 cgen(e2)
 add $a0 $t1 $a0

•  Try to generate code for : 1 + (2 + 3)

1 + (2 + 3)
li $a0 1
move $t1 $a0
li $a0 2
move $t1 $a0 (2 + 3)
li $a0 3
add $a0 $t1 $a0 (get 5)
add $a0 $t1 $a0 (get 7)

So the problem is that nested expressions will step on $t1.
Need a stack to store intermediate values

19

Code Generation Points to Emphasize

•  The code for + is a template with “holes” for
code for evaluating e1 and e2

•  Stack machine code generation is recursive
–  Code for e1 + e2 is code for e1 and e2 glued together

•  Code generation can be written as a recursive-
descent of the AST
–  At least for expressions

20

Code Generation for Sub and Constants

•  New instruction: sub reg1 reg2 reg3
–  Implements reg1 ← reg2 - reg3

 cgen(e1 - e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 sub $a0 $t1 $a0 (only difference from add)
 addiu $sp $sp 4

21

Code Generation for Conditional

•  We need flow control instructions

•  New instruction: beq reg1 reg2 label
–  Branch to label if reg1 = reg2

•  New instruction: b label
–  Unconditional jump to label

22

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true_branch

false_branch:
 cgen(e4)
 b end_if
true_branch:
 cgen(e3)
end_if:

23

The Activation Record

•  Code for function calls and function definitions
depends intimately on the layout of the AR

•  A very simple AR suffices for our current
language:
–  The result is always in the accumulator

•  No need to store the result in the AR
–  The activation record holds actual parameters

•  For f(x1,…,xn) push xn,…,x1 on the stack
•  These are the only variables in this language – no local or

global vars other than arguments to function calls

24

The Activation Record (Cont.)

•  The stack discipline guarantees that on
function exit $sp is the same as it was on
function entry
–  No need for a control link – purpose is to help us

find previous AR, but preservation of $sp means we
already have this

–  Also, never need to look for another AR during
function call, since no non-local vars

25

The Activation Record (Cont.)

•  We need the return address

•  A pointer to the current (not previous)
activation is useful
–  This pointer lives in register $fp (frame pointer)
–  Reason for frame pointer will be clear shortly

The Activation Record

•  Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters,
and the return address suffices

•  Picture: Consider a call to f(x,y), the AR is:

y
x

old fp

SP

FP

AR of f

Note: caller’s fp needs to be saved, because pointer to
current frame is in $fp

The Activation Record

•  Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters,
and the return address suffices

•  Picture: Consider a call to f(x,y), the AR is:

y
x

old fp

SP

FP

AR of f

Note: last
argument (y)
pushed on
first – this
makes
finding the
arguments a
little easier RA

28

Code Generation for Function Call

•  The calling sequence is the instructions (of
both caller and callee) to set up a function
invocation

•  New instruction (jump and link): jal label
–  Jump to label, save address of next instruction

(instruction following jal) in $ra
–  On other architectures the return address is

stored on the stack by the “call” instruction

29

Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(en)
 sw $a0 0($sp)
 addiu $sp $sp -4
 …
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

•  The caller saves its value
of the frame pointer

•  Then it saves the actual
parameters in reverse
order

•  The caller saves the
return address in
register $ra

•  The AR so far is 4*n+4
bytes long

30

Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(en)
 sw $a0 0($sp)
 addiu $sp $sp -4
 …
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

•  The caller saves its value
of the frame pointer

•  Then it saves the actual
parameters in reverse
order

•  The caller saves the
return address in
register $ra

•  The AR so far is 4*n+4
bytes long

c
a
l
l
e
r

s
i
d
e

31

Code Generation for Function Definition

•  New instruction: jr reg
–  Jump to address in register reg

 cgen(def f(x1,…,xn) = e) =
 f_entry: move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp z
 lw $fp 0($sp)
 jr $ra

•  Note: The frame pointer
points to the top, not
bottom of the frame

•  The callee pops the return
address, the actual
arguments and the saved
value of the frame pointer

•  z = 4*n + 8

32

Code Generation for Function Definition

•  New instruction: jr reg
–  Jump to address in register reg

 cgen(def f(x1,…,xn) = e) =
 f_entry: move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp z
 lw $fp 0($sp)
 jr $ra

•  Note: The frame pointer
points to the top, not
bottom of the frame

•  The callee pops the return
address, the actual
arguments and the saved
value of the frame pointer

•  z = 4*n + 8

Note: callee must push $ra on stack since not known
by caller until jal instruction

c
a
l
l
e
e

s
i
d
e

33

Calling Sequence: Example for f(x,y)

Before call On entry Before exit After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP

jal

34

 Code Generation for Variables

•  Variable references are the last construct

•  The “variables” of a function are just its
parameters
–  They are all in the AR
–  Pushed by the caller

•  Problem: Because the stack grows when
intermediate results are saved, the variables
are not at a fixed offset from $sp

35

Code Generation for Variables (Cont.)

•  Solution: use a frame pointer
–  Always points to the return address on the stack
–  Since it does not move it can be used to find the

variables
•  Let xi be the ith (i = 1,…,n) formal parameter of

the function for which code is being generated

 cgen(xi) = lw $a0 z($fp) (z = 4*i)

(note: this index calculation is why we push
arguments onto stack in reverse order)

36

Code Generation for Variables (Cont.)

•  Solution: use a frame pointer
–  Always points to the return address on the stack
–  Since it does not move it can be used to find the

variables
•  Let xi be the ith (i = 1,…,n) formal parameter of

the function for which code is being generated

 cgen(xi) = lw $a0 z($fp) (z = 4*i)

(Also: value of z computed at compile time,

not run time)

37

Code Generation for Variables (Cont.)

•  Example: For a function def f(x,y) = e the
activation and frame pointer are set up as
follows:

y
x

return

old fp
•  X is at fp + 4
•  Y is at fp + 8

FP

SP

38

Summary

•  The activation record must be designed
together with the code generator

•  Code generation can be done by recursive
traversal of the AST

•  We recommend you use a stack machine for
your Cool compiler (it’s simple)

39

Summary

•  Production compilers do different things
–  Emphasis is on keeping values (esp. current stack

frame) in registers
–  Intermediate results are laid out in the AR, not

pushed and popped from the stack

Example

•  In the next few slides, we’ll generate code for a
small sample program

def sumto(x) = if x = 0 then 0 else x + sumto(x-1)

•  What does this do?
–  Not super interesting, but does illustrate all of the

issues we’ve been discussing in the previous few slides

40

sumto_entry: move $fp $sp
 sw $ra 0($sp)

 addiu $sp $sp -4
 lw $a0 4($fp)

 sw $a0 0($sp)
 addiu $sp $sp -4
 li $a0 0
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true1
 false1: lw $a0 4($fp)
 sw $a0 0($sp)

 addiu $sp $sp -4
 sw $fp 0($sp)
 addiu $sp $sp -4

 lw $a0 4($fp)

def sumto(x) = if x = 0 then 0 else x + sumto(x-1)

 sw $a0 0($sp)
 addiu $sp $sp -4
 li $a0 1
 lw $t1 4($sp)
 sub $a0 $t1 $a0
 addiu $sp $sp 4
 sw $a0 0($sp)

 addiu $sp $sp -4
 jal sumto_entry
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4
 b endif1
 true1: li $a0 0
 endif1: lw $ra 4($sp)
 addiu $sp $sp 12
 lw $fp 0($sp)
 jr $ra

sumto_entry: move $fp $sp
 sw $ra 0($sp)

 addiu $sp $sp -4
 lw $a0 4($fp)

 sw $a0 0($sp)
 addiu $sp $sp -4
 li $a0 0
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true1
 false1: lw $a0 4($fp)
 sw $a0 0($sp)

 addiu $sp $sp -4
 sw $fp 0($sp)
 addiu $sp $sp -4

 lw $a0 4($fp)

def sumto(x) = if x = 0 then 0 else x + sumto(x-1)

 sw $a0 0($sp)
 addiu $sp $sp -4
 li $a0 1
 lw $t1 4($sp)
 sub $a0 $t1 $a0
 addiu $sp $sp 4
 sw $a0 0($sp)

 addiu $sp $sp -4
 jal sumto_entry
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4
 b endif1
 true1: li $a0 0
 endif1: lw $ra 4($sp)
 addiu $sp $sp 12
 lw $fp 0($sp)
 jr $ra

Notes

•  Code is constructed as a bunch of templates
pasted together
–  But you do wind up with one linear sequence of code

•  If you’re confused, review the templates and
see how they fit into the example

•  Note also that this is extremely inefficient
code
–  How many times do we load x, then immediately

store it on the stack, then reload it, etc.
–  This is result of our simple code generation strategy
–  Code does not have to be this inefficient

•  We’ll see improved cgen techniques in subsequent lectures

Real Compilers…

•  Do a better job of keeping values in registers
•  Do a better job managing temporaries that

have to be stored in the AR
•  Let’s discuss these improvements

–  Starting with the second issue

44

45

An Improvement

•  Idea: Keep temporaries in the AR
–  Not as efficient as keeping temporaries in

registers (which we’ll discuss at a future date)
–  Right now: let’s discuss improving management of

temporaries that, for whatever reason, happen to
be in the AR

•  The code generator must assign a fixed
location in the AR for each temporary
–  So code generator pre-allocates memory for each

temporary, allowing access without stack
manipulation

46

Example

 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

•  What intermediate values are placed on the
stack?

•  How many slots are needed in the AR to hold
these values?

Example

 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)
•  How many temporaries do we need?

–  We need 5 total
–  BUT, we don’t need them all at the same time

•  After check involving 1, don’t need that temporary
anymore. So can reclaim that memory before getting to 2

•  Same with check involving 2 (cleared before getting to 3)
and 3 (cleared before getting to 4)

•  But can’t clear 4 before getting to 5 (need both at same
time)

–  Bottom line: Can do this with only 2 temporaries)

1

2

3 4
5

Example

 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)
•  How many temporaries do we need?

–  We need 5 total
–  BUT, we don’t need them all at the same time

•  After check involving 1, don’t need that temporary
anymore. So can reclaim that memory before getting to 2

•  Same with check involving 2 (cleared before getting to 3)
and 3 (cleared before getting to 4)

•  But can’t clear 4 before getting to 5 (need both at same
time)

–  Bottom line: Can do this with only 2 temporaries)

1

2

3 4
5

How Many Temporaries?

•  Let NT(e) = # of temps needed in current AR in
order to evaluate e

•  NT(e1 + e2) = max(NT(e1), NT(e2) + 1)
–  Needs at least as many temporaries as NT(e1)
–  Needs at least as many temporaries as NT(e2) + 1

•  The +1 needed since need to hold onto the value of e1 while
evaluating e2

–  max, not sum, since once e1 evaluated, don’t need any of
space for those temporaries

•  Space used for temporaries in e1 can be reused
for temporaries in e2

50

The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

51

The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

Why don’t we need
space to store all
the ei?

The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

Why don’t we need
space to store all
the ei? Because these
are stored not in the
current AR, but in
the new AR we are
building for the
function call.

Use the Equations on Our Example

def fib(x) = if x = 1 then 0 else

 if x = 2 then 1 else

 fix(x-1) + fib(x-2)

53

Use the Equations on Our Example

def fib(x) = if x = 1 then 0 else

 if x = 2 then 1 else

 fix(x-1) + fib(x-2)

54

0

0 1 0

0

0 1 0

1
1

1
1
2

Use the Equations on Our Example

def fib(x) = if x = 1 then 0 else

 if x = 2 then 1 else

 fix(x-1) + fib(x-2)

55

0

0 1 0

0

0 1 0

1
1

1
1
2

56

The Revised AR

•  For a function definition f(x1,…,xn) = e the AR
has 2 + n + NT(e) elements
–  Return address
–  Frame pointer
–  n arguments
–  NT(e) locations for intermediate results

57

Picture

. . .
x1

Return Addr.
Temp NT(e)

. . .
Temp 1

Old FP
xn

Recall that the current frame pointer points
to the memory location where the RA is stored

58

Revised Code Generation

•  Code generation must know how many
temporaries are in use at each point

•  Add a new argument to code generation: the
position of the next available temporary

59

Code Generation for + (original)

cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

60

Code Generation for + (revised)

cgen(e1 + e2, nt) =
 cgen(e1, nt)
 sw $a0 nt($fp)
 cgen(e2, nt + 4)
 lw $t1 nt($fp)
 add $a0 $t1 $a0

61

Notes

•  The temporary area is used like a small, fixed-
size stack

•  Exercise: Write out cgen for other constructs

62

Code Generation for OO Languages

Topic II

Object Layout

•  OO implementation = Stuff from last part +
more stuff

•  OO Slogan: If B is a subclass of A, than an
object of class B can be used wherever an
object of class A is expected
–  Substitutability property…

•  This means that code in class A works
unmodified for an object of class B
–  Note with regards to code generation strategy,

that our generated code for A must work even on
subclasses not even yet written when we compile A!

64

Only Two Questions We Need to Answer Here

•  How are objects represented in memory?
–  I.e., layout and representation for objects

•  How is dynamic dispatch implemented?
–  This is the characteristic feature of using objects,

so we better have a handle on this

65

Object Layout Example

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };

};

Class B inherits A {

 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };

};

Class C inherits A {
 c: Int <- 3;
 h(): Int { a <- a * c };

};

66

Object Layout Example (cont.)

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };

};

Class B inherits A {

 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };

};

Class C inherits A {
 c: Int <- 3;
 h(): Int { a <- a * c };

};

Attributes a and d are
inherited by classes B
and C

67

Object Layout Example (cont.)

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };

};

Class B inherits A {

 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };

};

Class C inherits A {
 c: Int <- 3;
 h(): Int { a <- a * c };

};

All methods in all
classes (in this
example) refer to a

68

Object Layout Example (cont.)

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };

};

Class B inherits A {

 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };

};

Class C inherits A {
 c: Int <- 3;
 h(): Int { a <- a * c };

};

So, for all of these
methods to work
correctly in A, B, and
C, attribute a must be
in the same “place” in
each object. Consider,
e.g., the method f

How Do We Accomplish This?

•  Objects are laid out in contiguous memory

•  Each attribute stored at a fixed offset in the
object
–  The attribute is in the same place in every object

of that class

•  When a method is invoked, the object itself is
the self parameter and the fields are the
object’s attributes

69

a self

70

Object Layout (Cont.)

An object is like a struct in C. The reference
foo.field

is an index into a foo struct at an offset
corresponding to field

Objects in Cool are implemented similarly

–  Objects are laid out in contiguous memory
–  Each attribute stored at a fixed offset in object
–  When a method is invoked, the object is self and

the fields are the object’s attributes

71

Cool Object Layout

•  The first 3 words of Cool objects contain
header information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16

Every COOL
object has
these three
entries

72

Cool Object Layout (Cont.)

•  Class tag is an integer
–  Identifies class of the object
–  Compiler numbers all of the classes
–  Each class has its own unique identifier

•  Object size is an integer
–  Size of the object in words

73

Cool Object Layout (Cont.)

•  Dispatch ptr is a pointer to a table of methods
–  More later

•  Attributes in subsequent slots
–  In some order determined by the compiler
–  All objects of that class will have the attributes of

that class laid out in the same order

•  And again: All of this laid out in contiguous
chunk of memory

74

Subclasses

Observation: Given a layout for class A, a layout
for subclass B can be defined by extending
the layout of A with additional slots for the

additional attributes of B

Leaves the layout of A unchanged
(B is an extension)

Layout Picture

 Offset
Class

0 4 8 12 16 20

A Atag 5 * a d

B Btag 6 * a d b

C Ctag 6 * a d c

After A’s field come all of B’s fields laid out, in order, as
they appear textually in the code

Layout Picture

 Offset
Class

0 4 8 12 16 20

A Atag 5 * a d

B Btag 6 * a d b

C Ctag 6 * a d c

Note: can’t call a method of class B on an object of class C, because
different attributes in third position, and that’s OK since B, C unrelated

77

Subclasses (Cont.)

•  The offset for an attribute is the same in a
class and all of its subclasses
–  Any method for an A1 can be used on a subclass A2

•  Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object

What about
chain of
inheritance?

78

Dynamic Dispatch

•  Consider the following dispatches
(using the same example)

79

Object Layout Example (Repeat)

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };

};

Class B inherits A {

 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };

};

Class C inherits A {
 c: Int <- 3;
 h(): Int { a <- a * c };

};

80

Dynamic Dispatch Example

•  e.g()
–  g refers to method in B if e is a B

•  e.f()
–  f refers to method in A if f is an A or C

(inherited in the case of C)
–  f refers to method in B for a B object

•  The implementation of methods and dynamic
dispatch strongly resembles the
implementation of attributes

81

Dispatch Tables

•  Every class has a fixed set of methods
(including inherited methods)

•  A dispatch table indexes these methods
–  An array of method entry points
–  A method f lives at a fixed offset in the dispatch

table for a class and all of its subclasses

82

Dispatch Table Example

•  The dispatch table for
class A has only 1
method

•  The tables for B and C
extend the table for A
to the right

•  Because methods can be
overridden, the method
for f is not the same in
every class, but is
always at the same
offset

 Offset
Class

0 4

A fA

B fB g

C fA h

83

Using Dispatch Tables

•  The dispatch pointer in an object of class X
points to the dispatch table for class X

•  Every method f of class X is assigned an
offset Of in the dispatch table at compile time

84

Using Dispatch Tables (Cont.)

•  To implement a dynamic dispatch e.f() we
–  Evaluate e, giving an object x
–  Call D[Of]

•  D is the dispatch table for x
•  In the call, self is bound to x

