Code Generation

Lecture 12

Lecture Outline

- Topic 1: Basic Code Generation
- The MIPS assembly language
- A simple source language

- Stack-machine implementation of the simple
language

» Topic 2: Code Generation for Objects

From Stack Machines to MIPS

»+ The compiler generates code for a stack
machine with accumulator

- Simplest code generation strategy, though it
doesn't yield extremely efficient code

- It's not totally unrealistic, and is sufficiently
complex for our purposes

- We want to run the resulting code on a real
machine: the MIPS processor
- Of course, we'll run it on a simulator

From Stack Machines to MIPS

- We simulate stack machine instructions using
MIPS instructions and registers

* Much of what is described here regarding
MIPS will be review for you
- Though some of it will be new, and part of it will be

a different way of thinking about what you did in
CS 301

Simulating a Stack Machine...

+ The accumulator is kept in MIPS register $a0
- Could have used any register

 The stack is kept in memory
- The stack grows towards lower addresses
- Standard convention on the MIPS architecture

- Nominally, $a0 is top of stack, but we won't say that
* So consider it distinct from the stack

*+ The address of the next location on the stack
(the unallocated memory where the next push
goes) is kept in MIPS register $sp
- The top of the stack is at address $sp + 4

MIPS Assembly

MIPS architecture

- Prototypical Reduced Instruction Set Computer
(RISC) architecture

- Arithmetic operations use registers for operands
and results

- Must use load and store instructions to use
operands and results in memory

- 32 general purpose registers (32 bits each)
- We will use $sp, $a0 and $t1 (a temporary register)

- Read the SPIM documentation for details
- Or just review your notes from CS 301

A Sample of MIPS Instructions

- lw reg; offset(reg,)
* Load 32-bit word from address reg, + offset into reg;

- add reg; reg, reg,
© reg; < reg, + reg;
- sw reg; offset(reg,)
+ Store 32-bit word in reg, at address reg, + offset
- addiu reg; reg, imm
* reg; <= reg, + imm
» “U” means unsigned: overflow is not checked
- li reg imm
* reg < imm

MIPS Assembly. Example.

- The stack-machine code for 7 + 5 in MIPS:

acc < 7 li $a0 7

push acc sw $a0 0($sp)
addiu $sp $sp -4

acc < 5 li $a0 5

acc < acc + top_of_stack lw $11 4($sp)
add $a0 $a0 $+1

pop addiu $sp $sp 4

+ We now generalize this to a simple language...

8

A Small Language

* A language with integers and integer
operations (with the following grammar)

P—-D;P|D
D — def id(ARGS) = E;
ARGS — id, ARGS | id
E— int|id|if E;= E, thenE; else E,
| E;+ E, | E;-E, | id(E,,... E,)

A Small Language (Cont.)

+ The first function definition f is the “main”
routine (the entry point of the program)

* Running the program on input i means
computing f(i)
* Program for computing the Fibonacci numbers:
def fib(x) = if x = 1then O else
if x =2 then1else
fib(x - 1) + fib(x - 2)

10

Code Generation Strategy

* For each expression e we generate MIPS code
that:

- Computes the value of e and places it in $a0

- Preserves $sp and the contents of the stack

* So whatever stack looked like before executing code for e,
stack should look exactly like that after code is executed

+ We define a code generation function cgen(e)
whose result is the code generated for e

- Note cgen() produces code (that accomplishes the

above requirements) .

* As usual, we will work by cases (show how to
do this for various language constructs)

+ S0 we focus on expressions, and we show how
our cgen() code will work for each kind of
expression in the language

12

Code Generation for Constants

+ The code to evaluate a constant simply copies
it into the accumulator:

cgen(i) = li $a0 i

- This preserves the stack, as required
- No modification to stack pointer, or push or pop of
data
» Convention: Color key:
- RED: compile time
- BLUE: run time

13

Code Generation for Constants

+ The code to evaluate a constant simply copies
it into the accumulator:

cgen(i) = li $a0 i
» Convention: Color key:

- RED: compile time

* So at compile time, we run cgen(i), which produces the
code in blue, that will run at run time

- BLUE: run time

* Purpose here is to help you separate mentally
that we have things that happen at compile
time and thing deferred to run time 14

Code Generation for Add

cgen(e, + e,) = cgen(e, + e,) =
cgen(e,) cgen(e,)
sw $a0 0($sp) print “sw $a0 0($sp)”
addiu $sp $sp -4 print “addiu $sp $sp -4”
cgen(e,) cgen(e,)
lw $11 4($sp) print “lw $11 4($sp)”
add $a0 $t1 $a0 print “add $a0 $11 $a0”

addiu $sp $sp 4 print “addiu $sp $sp 4”

15

Code Generation for Add

* Possible Optimization: Put the result of e; directly in
$t12

cgen(e; + e,) =
cgen(e,)
move $1t1 $a0

cgen(e,)
add $a0 $11 $a0

* Try to generate code for: 3 + (7 + 5)

16

Code Generation for Add. Wrong!

* Possible Optimization: Put the result of e; directly in
$t12

1+(2+3)
cgen(e; + e;) = i $a0 1
cgen(e,) move $11 $a0
move $t1 $a0 li $a0 2

2
cgene nove $1180_(2+3
add $a0 $11 $a0 add $a0 $t1 $a0 (get 5)
add $a0 $t1 $a0 (get 7)
/1
» Try to generate code for: 1+ (2 + 3)

17

Code Generation for Add. Wrong!

* Possible Optimization: Put the result of e; directly in
$t12

1+(2+3)
cgen(e; + e;) = i $a0 1
cgen(e,) move $11 $a0
move $t1 $a0 li $a0 2

coen(e) nove $11$00 _(2+3
i $a

add $a0 $11 $a0 add $a0 $t1 $a0 (get 5)

add $a0 $t1 $a0 (get 7)

/1

» Try to generate code for: 1+ (2 + 3)
So the problem is that nested expressions will step on $t1.
Need a stack to store intermediate values

Code Generation Points to Emphasize

* The code for +is a template with “holes” for
code for evaluating e; and e,

+ Stack machine code generation is recursive
- Code for e, + e, is code for e, and e, glued together

» Code generation can be written as a recursive-
descent of the AST

- At least for expressions

19

Code Generation for Sub and Constants

* New instruction: sub reg; reg, regs;
- Implements reg, < reg, - regs

cgen(e; - e;) =
cgen(e;)
sw $a0 O($sp)
addiu $sp $sp -4
cgen(e,)
lw $11 4($sp)
sub $a0 $11 $a0 (only difference from add)
addiu $sp $sp 4

20

Code Generation for Conditional

- We need flow control instructions

 New instruction: beq reg; reg, label
- Branch to label if reg; = reg,

* New instruction: b label
- Unconditional jump to label

21

Code Generation for If (Cont.)

cgen(if e; = e, thene;else e,) =
cgen(e;)
sw $a0 O($sp)
addiu $sp $sp -4
cgen(e;)
lw $11 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch

false _branch:

cgen(e,)
b end_if

true_branch:

cgen(e;)
end_if:

22

The Activation Record

- Code for function calls and function definitions
depends intimately on the layout of the AR

* A very simple AR suffices for our current
language:
- The result is always in the accumulator
* No need to store the result in the AR
- The activation record holds actual parameters

- For f(xy,..,x,) push x,,.... x; on the stack

- These are the only variables in this language - no local or

global vars other than arguments to function calls
23

The Activation Record (Cont.)

+ The stack discipline guarantees that on
function exit $sp is the same as it was on
function entry

- No need for a control link - purpose is to help us
find previous AR, but preservation of $sp means we
already have this

- Also, never need to look for another AR during
function call, since no non-local vars

24

The Activation Record (Cont.)

- We need the return address

» A pointer to the current (not previous)
activation is useful

- This pointer lives in register $fp (frame pointer)
- Reason for frame pointer will be clear shortly

25

The Activation Record

- Summary: For this language, an AR with the
caller's frame pointer, the actual parameters,
and the return address suffices

» Picture: Consider a call to f(x,y), the AR is:

FP —
oldfp |
y >~ AR of f
X -
SP—>

Note: caller's fp needs to be saved, because pointer to
current frame is in $fp

The Activation Record

- Summary: For this language, an AR with the
caller's frame pointer, the actual parameters,
and the return address suffices

» Picture: Consider a call to f(x,y), the AR is:

Fp—>

old fp

Y

X

> ARof f

RA

Note: last
argument (y)
pushed on
first - this
makes
finding the
arguments a
little easier

Code Generation for Function Call

» The calling sequence is the instructions (of
both caller and callee) to set up a function
Invocation

* New instruction (jump and link): jal label

- Jump to label, save address of next instruction
(instruction following jal) in $ra

- On other architectures the return address is
stored on the stack by the “call” instruction

28

Code Generation for Function Call (Cont.)

cgen(f(ey,....e,)) =
sw $fp O($sp)
addiu $sp $sp -4
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4

cgen(e,)

sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

- The caller saves its value

of the frame pointer

- Then it saves the actual

parameters in reverse
order

- The caller saves the

return address in
register $ra

- The AR so far is 4*n+4

bytes long

29

S0 T T 0 0

®O Q =0

Code Generation for Function Call (Cont.)

cgen(f(ey,....e,)) =
sw $fp O($sp)
addiu $sp $sp -4
cgen(e,)

sw $a0 0($sp)
addiu $sp $sp -4

;93”(31)
sw $a0 0($sp)
addiu $sp $sp -4

jal f_entry

- The caller saves its value

of the frame pointer

- Then it saves the actual

parameters in reverse
order

- The caller saves the

return address in
register $ra

- The AR so far is 4*n+4

bytes long

30

Code Generation for Function Definition

* New instruction: jr reg
- Jump to address in register reg

cgen(def f(xy,..x,) =€)= . Note: The frame pointer
f_entry: move $fp $sp Boin’rs to the top, not
sw $ra O($sp) ottom of the frame

addiu $sp $sp -4 - The callee pops the return

cgen(e) address, the actual
ar'?umen’rs and the saved

lw $ra 4($sp) value of the frame pointer

addiu $Sp $Sp Z « 72=4*n+ 8

lw $fp O($sp)

jr $ra

31

O 0 o0 0O

Code Generation for Function Definition

* New instruction: jr reg
- Jump to address in register reg

- cgen(def f(x;,..x)) = €)= . Note: The frame pointer
f_entry: move $fp $sp Boin’rs to the top, not

®O Q =0

SW $r'a O($Sp) ottom Of the fr'Clme
addiu $sp $sp -4 - The callee pops the return
cgen(e) address, the actual
J ar'?umen’rs and the saved

lw $ra 4($sp) value of the frame pointer
addiu $Sp $Sp Z « 72=4*n+ 8
lw $fp O($sp)
jr $ra

Note: callee must push $ra on stack since not known 32

by caller until jal instruction

Calling Sequence: Example for f(x,y)

Before call Onentry I Before exit After call
ja
FP FP FP)
SP old fp oldfp | SP
Y Y
X X
SP FP| return

SP

33

Code Generation for Variables

- Variable references are the last construct

* The “variables™ of a function are just its
parameters

- They are all in the AR

- Pushed by the caller

» Problem: Because the stack grows when
intfermediate results are saved, the variables
are not at a fixed offset from $sp

34

Code Generation for Variables (Cont.)

+ Solution: use a frame pointer
- Always points to the return address on the stack

- Since it does not move it can be used to find the
variables

+ Let x; be the it (i = 1,...,n) formal parameter of
the function for which code is being generated

cgen(x.) = lw $a0 z($fp) (z=4%)

(note: this index calculation is why we push
arguments onto stack in reverse order)

Code Generation for Variables (Cont.)

+ Solution: use a frame pointer
- Always points to the return address on the stack

- Since it does not move it can be used to find the
variables

+ Let x; be the it (i = 1,...,n) formal parameter of
the function for which code is being generated

cgen(x.) = lw $a0 z($fp) (z=4%)

(Also: value of z computed at compile time,
not run time)

Code Generation for Variables (Cont.)

+ Example: For a function def f(x,y) = e the
activation and frame pointer are set up as
follows:

old fp
y « Xis at fp + 4
X * Yisat fp+ 8
FP| return

SP

37

Summary

» The activation record must be designed
together with the code generator

» Code generation can be done by recursive
traversal of the AST

+ We recommend you use a stack machine for
your Cool compiler (it's simple)

38

Summary

* Production compilers do different things

- Emphasis is on keeping values (esp. current stack
frame) in registers

- Intermediate results are laid out in the AR, not
pushed and popped from the stack

39

Example

* In the next few slides, we'll generate code for a
small sample program

def sumto(x) = if x = O then O else x + sumto(x-1)

- What does this do?

- Not super interesting, but does illustrate all of the
issues we've been discussing in the previous few slides

40

def sumto(x) = if x = 0 then O else x + sumto(x-1)

sumto_entry: move $fp $sp

falsel:

sw $ra O($sp)
addiu $sp $sp -4
lw $a0 4($fp)
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 O

lw $11 4($sp)
addiu $sp $sp 4
beq $a0 $t1 truel
lw $a0 4($fp)
sw $a0 0($sp)
addiu $sp $sp -4
sw $fp O($sp)
addiu $sp $sp -4
lw $a0 4($fp)

truel:
endifl:

sw $a0 0($sp)
addiu $sp $sp -4

li $a0 1

lw $11 4($sp)
sub $a0 $11 $a0
addiu $sp $sp 4
sw $a0 0($sp)
addiu $sp $sp -4
jal sumto_entry
lw $11 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4
b endifl

li $a0 O

lw $ra 4($sp)
addiu $sp $sp 12
lw $fp O($sp)
jr $ra

def sumto(x) = if x = 0 then O else x + sumto(x-1)

sumto_entry: move $fp $sp

falsel:

sw $ra O($sp)
addiu $sp $sp -4
lw $a0 4($fp)
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 O

lw $11 4($sp)
addiu $sp $sp 4
beq $a0 $t1 truel
lw $a0 4($fp)
sw $a0 0($sp)
addiu $sp $sp -4
sw $fp O($sp)
addiu $sp $sp -4
lw $a0 4($fp)

truel:
endifl:

sw $a0 0($sp)
addiu $sp $sp -4

li $a0 1

lw $11 4($sp)
sub $a0 $11 $a0
addiu $sp $sp 4
sw $a0 0($sp)
addiu $sp $sp -4
jal sumto_entry
lw $11 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4
b endifl

li $a0 O

lw $ra 4($sp)
addiu $sp $sp 12
lw $fp O($sp)
jr $ra

Notes

+ Code is constructed as a bunch of templates
pasted together

- But you do wind up with one linear sequence of code

+ If you're confused, review the templates and
see how they fit intfo the example

* Note also that this is extremely inefficient
code

- How many times do we load x, then immediately
store it on the stack, then reload it, etc.

- This is result of our simple code generation strategy

- Code does not have to be this inefficient
- We'll see improved cgen techniques in subsequent lectures

Real Compilers...

*+ Do a better job of keeping values in registers

» Do a better job managing temporaries that
have to be stored in the AR

- Let's discuss these improvements
- Starting with the second issue

44

An Improvement

* Idea: Keep temporaries in the AR

- Not as efficient as keeping temporaries in
registers (which we'll discuss at a future date)

- Right now: let's discuss improving management of
temporaries that, for whatever reason, happen to
be in the AR

* The code generator must assign a fixed
location in the AR for each temporary
- So code generator pre-allocates memory for each
temporary, allowing access without stack

manipulation
45

Example

def fib(x) = if x =1 then O else
if x =2 then1else
fib(x - 1) + fib(x - 2)

* What intermediate values are placed on the
stack?

+ How many slots are needed in the AR to hold
these values?

46

Example

def f |f®- 1 then O else
2 ’rhen 1 else

4+ flb@ 2)

How many temporaries do we heed?
- We need 5 total

- BUT, we don't need them all at the same time

- After check involving 1, don't need that temporary
anymore. So can reclaim that memory before getting to 2

+ Same with check involving 2 (cleared before getting to 3)
and 3 (cleared before getting to 4)

* But c)an"r clear 4 before getting to 5 (need both at same
time

- Bottom line: Can do this with only 2 temporaries)

Example

def f |f®- 1 then O else
2 ’rhen 1 else

4+ flb@ 2)

How many temporaries do we heed?
- We need 5 total

- BUT, we don't need them all at the same time

- After check involving 1, don't need that temporary
anymore. So can reclaim that memory before getting to 2

+ Same with check involving 2 (cleared before getting to 3)
and 3 (cleared before getting to 4)

* But c)an"r clear 4 before getting to 5 (need both at same
time

- Bottom line: Can do this with only 2 temporaries)

How Many Temporaries?

 Let NT(e) = # of temps needed in current AR in
order to evaluate e

* NT(e; + e,) = max(NT(e;), NT(e,) + 1)
- Needs at least as many temporaries as NT(e,)

- Needs at least as many temporaries as NT(e,) + 1

* The +1 needed since need to hold onto the value of e; while
evaluating e,

- max, hot sum, since once e, evaluated, don't need any of
space for those temporaries

» Space used for temporaries in e, can be reused
for temporaries in e,

The Equations

NT(e; + e,) = max(NT(e,), 1 + NT(e,))
NT(e; - e,) = max(NT(e;), 1 + NT(e,))
NT(if e, = e, then e; else e;) = max(NT(e;),1 + NT(e,), NT(e;), NT(e,))
NT(id(es,...,e,) = max(NT(e,),...NT(e,))
NT(int)=0
NT(id) =0

Is this bottom-up or top-down?
What is NT(...code for fib...)?

50

The Equations

NT(e; + e,) = max(NT(e,), 1 + NT(e,))
NT(e; - e,) = max(NT(e;), 1 + NT(e,))
NT(if e, = e, then e; else e;) = max(NT(e;),1 + NT(e,), NT(e;), NT(e,))
NT(id(e,,....e,) = max(NT(e,),...NT(e,))
NT(int)=0
NT(id) =0

Is this bottom-up or top-down? Why don't we need
space to store all

What is NT(...code for fib...)? the e;?

51

The Equations

NT(e; + e,) = max(NT(e,), 1 + NT(e,))
NT(e; - e,) = max(NT(e;), 1 + NT(e,))

NT(if e, = e, then e; else e;) = max(NT(e;),1 + NT(e,), NT(e;), NT(e,))
NT(id(e,,....e,) = max(NT(e,),...NT(e,))

NT(int)=0
NT(id)=0
Is this bottom-up or top-down? Why don't we need
. . space to store all
What is NT(...code for ":lli))’> the e;? Because these

are stored not in the
current AR, but in
the new AR we are
building for the
function call.

Use the Equations on Our Example

def fib(x) = if x = 1then O else
if x =2 then1else

fix(x-1) + fib(x-2)

53

Use the Equations on Our Example

O 1 0]
def fib(x) = if x = 1then O else

0O 1 0]
if x=2thenlelse 2
1 ' 1

| |

01 0 1
fix(x-1) + fib(x-2)

54

Use the Equations on Our Example

O 1 0]
def fib(x) = if x = 1then O else

0O 1 0]
if x=2thenlelse 2
1 ' 1

| |

01 0 1
fix(x-1) + fib(x-2)

55

The Revised AR

» For a function definition f(x;,..,.x,) = e the AR
has 2 + n + NT(e) elements
- Return address
- Frame pointer
- narguments
- NT(e) locations for intermediate results

56

Picture

Return Addr.
Temp NT(e)

Temp 1

Recall that the current frame pointer points
to the memory location where the RA is stored

Revised Code Generation

» Code generation must know how many
temporaries are in use at each point

* Add a new argument to code generation: the
position of the next available temporary

58

Code Generation for + (original)

cgen(e; + ¢;) -
cgen(e,)
sw $a0 O($sp)
addiu $sp $sp -4
cgen(e,)
lw $11 4($sp)
add $a0 $11 $a0
addiu $sp $sp 4

59

Code Generation for + (revised)

cgen(e, + e,, nt) =
cgen(e,, nt)
sw $a0 nt($fp)
cgen(e,, nt + 4)
lw $t1 nt($fp)
add $a0 $11 $a0

60

Notes

* The temporary area is used like a small, fixed-
size stack

+ Exercise: Write out cgen for other constructs

61

Code Generation for OO Languages

Topic IT

62

Object Layout

» OO0 implementation = Stuff from last part +
more stuff

* OO Slogan: If B is asubclass of A, than an
object of class B can be used wherever an
object of class A is expected
- Substitutability property...

» This means that code in class A works
unmodified for an object of class B
- Note with regards to code generation strategy,

that our generated code for A must work even on
subclasses not even yet written when we compile Al

Only Two Questions We Need to Answer Here

* How are objects represented in memory?
- I.e., layout and representation for objects

* How is dynamic dispatch implemented?

- This is the characteristic feature of using objects,
so we better have a handle on this

64

Object Layout Example

Class A {

a: Int < O;

d: Int<-1;

fO: Int{a<-a+d}
>

Class B inherits A {

b: Int <- 2;

fO): Int{a};

g): Int{a<-a-b}
k

Class C inherits A {

%

c: Int<- 3;
h(): Int{a<-a*c};

65

Object Layout Example (cont.)

Class A { Class C inherits A {
a: Int <- O; c: Int <- 3;
d: Int <« 1L h(): Int{a<-a*c}
fO: Int{a<-a+d}; %
>
Attributes a and d are
Class B inherits A { inherited by classes B
b: Int <- 2; and €
fO: Int{a}

g(): Int{a<-a-b};
}

66

Object Layout Example (cont.)

Class A {
a: Int <-0;
d: Int<-1;

fO: Int{a<-a+d}

)

Class B inherits A {
b: Int <- 2;
fO): Int{a};

g): Int{a<-a-b}

};

Class C inherits A {
c: Int<- 3;

h(): Int{a<-a*c};

%

All methods in all
classes (in this
example) refer to a

67

Object Layout Example (cont.)

Class A {
a: Int <- 0;
d: Int <- 1;

fO): Int{a<-a+d}

)

Class B inherits A {
b: Int <- 2;
fO): Int {a};

g(): Int{a<-a-b};

};

Class C inherits A {

c: Int<- 3;
h(): Int{a<-a*c};

So, for all of these
methods to work
correctly in A, B, and
C, attribute a must be
in the same "place” in

each object. Consider,

e.g., the method f

68

How Do We Accomplish This?

+ Objects are laid out in contiguous memory

- Each attribute stored at a fixed offset in the

object
- The attribute is in the same place in every object
of that class Y
self > a

* When a method is invoked, the object itself is
the self parameter and the fields are the
object's attributes

69

Object Layout (Cont.)

An object is like a struct in C. The reference
foo.field

is an index into a foo struct at an offset
corresponding to field

Objects in Cool are implemented similarly
- Objects are laid out in contiguous memory
- Each attribute stored at a fixed offset in object

- When a method is invoked, the object is self and
the fields are the object’ s attributes

70

Cool Object Layout

* The first 3 words of Cool objects contain

header information:
Offset

Every COOL Class Tag 0
bj : :

*?h éigr’r:gze < Object Size 4

entries Dispatch Ptr 8

Attribute 1 12
Attribute 2 16

71

Cool Object Layout (Cont.)

» Class tag is an integer
- Identifies class of the object
- Compiler numbers all of the classes
- Each class has its own unique identifier

- Object size is an integer
- Size of the object in words

72

Cool Object Layout (Cont.)

» Dispatch ptr is a pointer to a table of methods
- More later
* Attributes in subsequent slots

- In some order determined by the compiler

- All objects of that class will have the attributes of
that class laid out in the same order

* And again: All of this laid out in contiguous
chunk of memory

73

Subclasses

Observation: Given a layout for class A, a layout
for subclass B can be defined by extending
the layout of A with additional slots for the

additional attributes of B

Leaves the layout of A unchanged
(B is an extension)

74

Layout Picture

Offset |0 4 8 12 |16 |20
Class

A Atag|b * a d

B Btag | 6 * a d b
C Ctag |6 * a d C

After A's field come all of B's fields laid out, in order, as
they appear textually in the code

Layout Picture

Offset |0 4 8 12 |16 |20
Class

A Atag|b * a d

B Btag | 6 * a d b
C Ctag |6 * a d C

Note: can't call a method of class B on an object of class C, because
different attributes in third position, and that's OK since B, C unrelated

Subclasses (Cont.)

« The offset for an attribute is the same in a
class and all of its subclasses

- Any method for an A, can be used on a subclass A,
+ Consider layout for A, < .. < A5 < A, < A,

Header A; object What about

A, attrs. A, object chain of

A att inheritance?
2 GTTr'S A; object

As attrs

77

Dynamic Dispatch

+ Consider the following dispatches
(using the same example)

78

Object Layout Example (Repeat)

Class A {
a: Int <- 0;
d: Int <- 1;

fO): Int{a<-a+d}

)

Class B inherits A {
b: Int <- 2;
fO): Int{a};

g(): Int{a<-a-b};

};

Class C inherits A {

%

c: Int<- 3;
h(): Int {a<-a* c};

79

Dynamic Dispatch Example

© e.g()
- g refers fo method inB if eisa B
- e.f()

- f refers to method in Aif fisanAor C
(inherited in the case of ()

- f refers to method in B for a B object

* The implementation of methods and dynamic
dispatch strongly resembles the
implementation of attributes

80

Dispatch Tables

+ Every class has a fixed set of methods
(including inherited methods)

* A dispatch table indexes these methods
- An array of method entry points

- A method f lives at a fixed offset in the dispatch
table for a class and all of its subclasses

81

Dispatch Table Example

Offset 10 4 » The dispatch table for

Class class A has only 1
method

A fA * The tables for B and C
extend the table for A
to the right

B fB |g + Because methods can be
overridden, the method

C fFA In for f is not the same in
every class, but is
always at the same

offset

82

Using Dispatch Tables

» The dispatch pointer in an object of class X
points to the dispatch table for class X

+ Every method f of class X is assigned an
offset O; in the dispatch table at compile time

83

Using Dispatch Tables (Cont.)

+ To implement a dynamic dispatch e.f() we
- Evaluate e, giving an object x

- CG” D[Of]
- D is the dispatch table for x
* In the call, self is bound to x

84

