
1

Run-time Environments

Lecture 11

2

Status

•  We have covered the front-end phases
–  Lexical analysis
–  Parsing
–  Semantic analysis

•  No more looking for errors
•  No longer trying to determine whether it is a

valid program
•  But, we will still use data structures generated

by front end

enforce
language
definition

3

Status

•  Next are the back-end phases

–  Optimization
–  Code generation

•  We’ll do code generation first . . .

4

Run-time environments

•  Before discussing code generation, we need to
understand what we are trying to generate
–  Before we can actually try to generate it!

•  First we’ll talk about what the translated
program looks like and how it’s organized

•  Then we’ll talk about the code generation
algorithms that are actually producing those
things

•  There are a number of standard techniques
for structuring executable code that are
widely used

5

Outline

•  We’ll discuss management of run-time
resources

•  Stressing the correspondence between
–  static (compile-time) and
–  dynamic (run-time) structures
–  This is an important piece of understanding how a

compiler really works: what happens at compile time
vs what is deferred to runtime

•  Storage organization

6

Run-time Resources

•  Execution of a program is initially under the
control of the operating system

•  When a program is invoked:
–  The OS allocates space for the program
–  The code is loaded into part of the space
–  The OS jumps to the entry point (i.e., “main”)

7

Memory Layout (Roughly)

Low Address

High Address

Memory

Code

Other Space

Entirety of memory that is allocated to program

8

Notes

•  By tradition, pictures of machine runtime
memory organization have:
–  Low address at the top
–  High address at the bottom
–  Lines delimiting areas for different kinds of data

•  These pictures are simplifications
–  E.g., not all memory need be contiguous

•  Think, for example, of what happens with virtual memory
–  But pictures help describe what the kinds of memory

are and what compiler needs to do with them

9

What is Other Space?

•  Holds all data for the program
•  Other Space = Data Space

•  Compiler is responsible for:
–  Generating code
–  Orchestrating use of the data

area
•  This is tricky part of code

generation: deciding what layout of
data will be and then generating
code that correctly manipulates that
data (because code contains
references to data)

Code

 Data

Code Generation Goals

•  Two overall goals for code generation:
–  Correctness

•  Generate code that faithfully implements the programmer’s
program

–  Speed
•  Make good use of resources and run reasonably quickly

•  Most complications in code generation come
from trying to be fast as well as correct
–  Easy to generate either in isolation

•  Correct code that runs slowly
•  Fast code that is not correct (this one is very easy – we can

generate extremely fast code that gives wrong answers!)

Code Generation Goals

•  Over time, a fairly elaborate framework has
been developed detailing how a code generator
and the corresponding runtime structures
should be organized and implemented in order
to meet the goal of producing code that is
simultaneously fast and correct.

•  First step in talking about this is to discuss
something called activations

12

First, Two Assumptions about Execution

1.  Execution is sequential; control moves from
one point in a program to another in a well-
defined order

2.  When a procedure is called, control
eventually returns to the point immediately
after the call

Do these assumptions always hold?

13

First, Two Assumptions about Execution

1.  Execution is sequential; control moves from
one point in a program to another in a well-
defined order

Programming languages that have concurrency violate
this assumption – statement after current statement
might be in completely different thread

First, Two Assumptions about Execution

2.  When a procedure is called, control
eventually returns to the point immediately
after the call

Advanced Control constructs – exceptions and call/cc (call with
current continuation – google it) – affect flow of control in fairly
dramatic ways

C++ and Java throw and catch style exceptions – a thrown
exception might escape from multiple procedures before it is
caught, so no guarantee that a call to [a procedure that can
throw an exception] will end up with control returning to the line
following the procedure call.

We may or may not discuss these advanced features later. We focus
on ideas basic to all implementations. Those languages with advanced
features build upon these basic principles.

15

Activations

•  An invocation of procedure P is an activation
of P

•  The lifetime of an activation of P is
–  All the steps to execute P
–  Including all the steps in procedures P calls
–  So all the statements that are executed between

the moment P is called, and the moment P returns,
including all the functions that P itself calls

16

Lifetimes of Variables

•  The lifetime of a variable x is the portion of
execution in which x is defined
–  All the steps of execution from the time that x is

created until the time that x is destroyed or
deallocated

•  Note that
–  Lifetime is a dynamic (run-time) concept
–  Scope is a static concept

•  Recall scope refers to the portion of the program text in
which the variable is visible

17

Activation Trees

•  Assumption (2) requires that when P calls Q,
then Q returns before P does, thus…

•  Lifetimes of procedure activations are
properly nested. So…

•  Activation lifetimes can be depicted as a tree

18

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main

f g

 g

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main

f g

 g

Note: tree shows
containment of lifetime.

E.g. g’s lifetime is
contained in main’s

E.g., lifetime of left
branch g is disjoint from
lifetime of f, since they
are siblings in tree.

E.g., multiple activations
of g (every call is another
activation)

20

Example 2 (Recursion)

Class Main {
 g() : Int { 1 };
 f(x:Int): Int { if x = 0 then g() else f(x - 1) fi};
 main(): Int {{f(3); }};

}

What is the activation tree for this example?

21

Notes

•  The activation tree depends on run-time
behavior

•  The activation tree may be different for
every program input

•  Since activations are properly nested, a stack
can track currently active procedures

22

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main Stack

Main

23

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main

g

Stack

Main

g

24

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main

g f

Stack

Main

f

25

Example

Class Main {
 g() : Int { 1 };
 f(): Int { g() };
 main(): Int {{ g(); f(); }};

}
 Main

f g

g

Stack

Main

f
g

26

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

Note: This shows
stack growing from
low address to
high. Almost every
stack I’ve
encountered in this
context in practice
grows from high
address to low.

27

Activation Records (What’s in Them?)

•  The information needed to manage one
procedure activation is called an activation
record (AR) or frame

•  Activation records contain more than you
might expect:
–  If procedure F calls G, then G’s activation record

contains a mix of info about F and G.

28

Activation Records (Why?)

•  There is state associated with each
procedure – information required in order to
properly execute the procedure, and this
needs to be kept somewhere
–  Activation record is for storing this state

•  So, let’s look at this in a bit more detail…

29

What is in G’s AR when F calls G?

•  F is “suspended” until G completes, at which
point F resumes. G’s AR contains information
needed to resume execution of F.
–  And F’s activation record contains state relevant to

suspended procedure F
•  E.g., values of variables local to F

•  G’s AR may also contain:
–  G’s return value (needed by F)
–  Actual parameters to G (supplied by F)
–  Space for G’s local variables

30

The Contents of a Typical AR for G

•  Space for G’s return value
•  Actual parameters
•  Pointer to the previous activation record

–  The control link; points to AR of caller of G
•  Machine status prior to calling G

–  Contents of registers & program counter
–  Local variables

•  Other temporary values

31

Example 2, Revisited

Class Main {
 g() : Int { 1 };
 f(x:Int):Int {if x=0 then g() else f(x - 1)(**)fi};
 main(): Int {{f(3); (*)

 }};}

AR for f:

result
argument
control link
return address

32

Stack After Two Calls to f

Main

(**)

2
(result) f
(*)

3
(result) f

Notes

•  Main has no argument or local variables and its
result is never used; its AR is uninteresting

•  (*) and (**) are return addresses of the
invocations of f
–  The return address is where execution resumes

after a procedure call finishes
•  This is only one of many possible AR designs

–  Would also work for C, Pascal, FORTRAN, etc.
–  Ex. Many compilers don’t use a control link entry:

don’t need it to find the calling activation record
•  In project, the COOL compiler does not use a control link

–  Ex. Some compilers store return address in register

34

Note Also

Main

(**)

2
(result) f
(*)

3
(result) f

Stack is both a “stack” of
activation records and a
“stack” of individual
entries.
While we think of it as
a collection of frames, it
is really just one contiguous
portion of memory, in
effect a gigantic array.
And some compiler writers
take advantage of this.

35

What Happens After an Activation Returns?

The picture shows the state after the call to the
2nd invocation of f returns

Green arrow indicates
frame that is now top AR
on stack
(But note previous top
stack frame still resides in
memory!)
AND we need to access it
(to get the result of the call
f(2), the result being at top of
AR for call f(2))

Main

(**)

2
1 f
(*)

3
(result) f

36

Discussion

•  The advantage of placing the return value 1st in
a frame is that the caller can find it at a fixed
offset from its own frame
–  Knows it is in first position of AR that was old top of

stack – at fixed offset from current top of stack

•  There is nothing magic about this organization
–  Can rearrange order of frame elements
–  Can divide caller/callee responsibilities differently
–  Only metric: An organization is better if it improves

execution speed or simplifies code generation

37

Discussion (Cont.)

•  Real compilers hold as much of the frame
content as possible in registers
–  Especially the method result and arguments

•  Because these are accessed so frequently

38

The Main Point

The compiler must determine, at compile-time,

the layout of activation records and generate
code that correctly accesses locations in the

activation record

Thus, the AR layout and the code generator
must be designed together!

39

Globals

•  All references to a global variable point to the
same object (this is defn of global, after all)
–  Can’t store a global in an activation record

•  Because ARs are deallocated when activation complete

•  Globals are assigned a fixed address once
–  Variables with fixed address are said to be “statically

allocated”, because allocated at compile time
•  Compiled decides where they will be placed, and they stay

there for entire execution of the program

•  Depending on the programming language, there
may be other statically allocated values
–  We’ll see examples of this later

40

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

41

Heap Storage

•  Also, a value that outlives the procedure that
creates it cannot be kept in the AR

method foo() { new Bar }
The Bar value must survive deallocation of foo’s AR,
because the Bar object is the result of foo(), so it

must be accessible to foo()’s caller after foo() exits

•  Languages with dynamically allocated data (such
as above) generally use a heap to store dynamic
data

42

Summary (thus far)

•  The code area contains object code
–  For many languages, fixed size and read only
–  Some languages allow code created at run time!

•  The static area contains data (not code) with
fixed addresses (e.g., global data)
–  Fixed size, may be readable or writable

43

Summary (thus far)

•  The stack contains an AR for each currently
active procedure
–  Each AR usually fixed size, contains locals

•  Heap contains all other data (including
dynamically allocated data)
–  In C, heap is managed by malloc and free
–  In Java, have new and garbage collection

44

Notes

•  Both the heap and the stack grow

•  Must take care that they don’t grow into each
other

•  Solution: start heap and stack at opposite
ends of memory and let them grow towards
each other

Memory Layout with Heap

Low Address

High Address

Memory

Code

Stack

Static Data

Heap

Note: Heaps I’ve seen grow from low address to high!

Note: If stack pointer
and heap pointer ever
cross, program is out
of memory and will
abort or runtime
system will try to
obtain more memory
from OS

46

Data Layout

•  Low-level details of machine architecture are
important in laying out data for correct code
and maximum performance

•  Chief among these concerns is alignment

47

Alignment

•  Most modern machines are either 32 or 64 bit
–  8 bits in a byte
–  4 or 8 bytes in a word
–  Machines are either byte or word addressable

•  Meaning that the native language of the machine it is
possible to reference memory by individual bytes or by
words

•  Data is word aligned if it begins at a word
boundary (if you don’t understand, please ask)

•  Most machines have some alignment
restrictions
–  Or performance penalties for poor alignment

Alignment

•  Most machines have some alignment
restrictions
–  Or performance penalties for poor alignment

•  Restrictions come in two forms
–  If data not properly aligned, machine fails to

execute instruction that referenced non-aligned
data

•  E.g, “seg fault” or “bus error”, or machine hangs.
–  If data not properly aligned, program executes

correctly, but at significant performance cost
•  Often dramatic – can be 10 times slower to access

misaligned data!
•  Execution far more efficient if data properly aligned

49

Where does this come up?

•  Example: A string
“Hello”

Takes 5 characters (without a terminating \0)

•  To word align next datum, add 3 “padding”
characters to the string
–  Or 2, as above, if we include the ‘\0’

•  The padding is not part of the string, it’s just
unused memory

H e l l o \0

next data item goes here

So, General Strategy

•  Align all data on word boundaries
•  If the data does not require an exact multiple

of 4 (or 8, as the case may be) of memory,
just pad so that it does

•  Occurs not just with strings, but with
character arrays as well
–  E.g., you ask for an array large enough for 10 chars,

then you get enough memory for 12 (assuming char
is a single byte)

50

On to Code Generation

•  Done with run time stuff, on to code
generation

•  Simplest model for code generation is called a
stack machine, the subject of the next few
slides

51

52

Stack Machines

•  Only storage is (surprisingly) a stack
•  A simple evaluation model
•  No variables or registers
•  A stack of values for intermediate results
•  Each instruction r = F(a1, a2, … , an)

–  Pops n operands from the top of the stack
–  Computes the operation F using those operands
–  Pushes the result r on the stack

53

Example of Stack Machine Operation

•  The addition operation on a stack machine: 5+7

5
7
9
…

5

7

9
…

pop

⊕

add

12
9
…

push Note: 5 and 7 need
to be pushed onto
stack!

54

Example of Stack Machine Operation

•  The addition operation on a stack machine: 5+7

5
7
9
…

5

7

9
…

pop

⊕

add

12
9
…

push
Important stack property: when you perform a stack operation, the
contents of the stack prior to beginning of evaluation of the expression
will be preserved

55

Example of a Stack Machine Program

•  Consider language with just two instructions
–  push i - place the integer i on top of the stack
–  add - pop two elements, add them and put
 the result back on the stack

•  A program to compute 7 + 5:
 push 7
 push 5
 add

Why Use a Stack Machine ?

•  Location of the operands is implicit
–  Always on the top of the stack
–  So no need to specify operands explicitly

•  No need to specify the location of the result
•  Instruction “add” as opposed to register

machine instruction “add r1, r2, r3”
 ⇒ Smaller encoding of instructions
 ⇒ More compact programs

•  This is one reason why Java Bytecodes use a
stack evaluation model
–  Code often transmitted via Internet, so benefit to

having more compact code

57

Why Use a Stack Machine ?

•  Because each operation takes operands from
the same place and puts results in the same
place

•  This means a uniform compilation scheme

•  And therefore a simpler compiler

58

Why a Register Machine ?

•  Generally faster because we can place data
exactly where we want it to be
–  Fewer intermediate operations (such as pushing and

popping) required to get at the data

Middle Ground?

•  There is an intermediate point between a pure
stack machine and a pure register machine

•  An n-register stack machine
–  Conceptually, keep the top n locations of the pure

stack machine’s stack in registers
•  The particular variant of this that we are

most interested in is the 1-register stack
machine
–  Turns out there is significant benefit even from

having just one register to store the data at top of
stack

–  The register is called the accumulator (it
accumulates results of operations)

60

Advantage of 1-Register Stack Machine

•  In pure stack machine, the add instruction
does 3 memory operations
–  Two reads and one write to the stack
–  The top of the stack is frequently accessed

•  In 1-register stack machine, the add does a
lot of the work out of the one register
–  Register accesses are faster

•  The “add” instruction is now
 acc ← acc + top_of_stack
–  Only one memory operation!

61

Stack Machine with Accumulator. Example

•  Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7

62

Notes

•  It is very important evaluation of a
subexpression preserves the stack
–  Stack before the evaluation of 7 + 5 is 3, <init>
–  Stack after the evaluation of 7 + 5 is 3, <init>
–  The first operand is on top of the stack

63

General Strategy: Stack Machine with Accumulator

•  Consider a COOL operation: op(e1,…,en)

–  Note e1,…,en are subexpressions
–  Each will require (perhaps involved) evaluation

•  The process:
•  For each ei (1 < i < n):

–  Compute ei (recursively, using same strategy)
•  Result ends up in accumulator

–  Push result on the stack
•  For en, just evaluate, don’t push onto stack

•  Pop n-1 values from the stack, compute op
•  Store result in accumulator

64

Notes:

•  Invariant: After evaluating an expression e,
the accumulator holds the value of e and the
stack is unchanged
•  Memory portion of stack is identical to what it was

before we started evaluating e

•  Put another way: Expression evaluation
preserves the stack

A Bigger Example: 3 + (7 + 5)

 Code Acc Stack
acc ← 3 3 <init>
push acc 3 3, <init>
acc ← 7 7 3, <init>
push acc 7 7, 3, <init>
acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>
acc ← acc + top_of_stack 15 3, <init>
pop 15 <init>

A Bigger Example: 3 + (7 + 5)

 Code Acc Stack
acc ← 3 3 <init>
push acc 3 3, <init>
acc ← 7 7 3, <init>
push acc 7 7, 3, <init>
acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>
acc ← acc + top_of_stack 15 3, <init>
pop 15 <init>
Note recursion and evaluation of subexpression 7 + 5

