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Run-time Environments 

Lecture 11 
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Status 

•  We have covered the front-end phases 
–  Lexical analysis 
–  Parsing 
–  Semantic analysis 

•  No more looking for errors 
•  No longer trying to determine whether it is a 

valid program 
•  But, we will still use data structures generated 

by front end 

enforce 
language  
definition 



3 

Status 

 
•  Next are the back-end phases 

–  Optimization 
–  Code generation 

•  We’ll do code generation first . . . 
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Run-time environments 

•  Before discussing code generation, we need to 
understand what we are trying to generate 
–  Before we can actually try to generate it! 

•  First we’ll talk about what the translated 
program looks like and how it’s organized 

•  Then we’ll talk about the code generation 
algorithms that are actually producing those 
things 

•  There are a number of standard techniques 
for structuring executable code that are 
widely used 
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Outline 

•  We’ll discuss management of run-time 
resources 

•  Stressing the correspondence between  
–  static (compile-time) and  
–  dynamic (run-time) structures 
–  This is an important piece of understanding how a 

compiler really works: what happens at compile time 
vs what is deferred to runtime 

•  Storage organization 
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Run-time Resources 

•  Execution of a program is initially under the 
control of the operating system 

•  When a program is invoked: 
–  The OS allocates space for the program 
–  The code is loaded into part of the space 
–  The OS jumps to the entry point (i.e., “main”) 
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Memory Layout (Roughly)  

Low Address 

High Address 

Memory 

Code 

Other Space 

Entirety of memory that is allocated to program 
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Notes 

•  By tradition, pictures of machine runtime 
memory organization have: 
–  Low address at the top 
–  High address at the bottom 
–  Lines delimiting areas for different kinds of data 

•  These pictures are simplifications 
–  E.g., not all memory need be contiguous 

•  Think, for example, of what happens with virtual memory 
–  But pictures help describe what the kinds of memory 

are and what compiler needs to do with them 
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What is Other Space? 

•  Holds all data for the program 
•  Other Space = Data Space 

•  Compiler is responsible for: 
–  Generating code 
–  Orchestrating use of the data 

area 
•  This is tricky part of code 

generation: deciding what layout of 
data will be and then generating 
code that correctly manipulates that 
data (because code contains 
references to data) 

Code 

       Data 



Code Generation Goals 

•  Two overall goals for code generation: 
–  Correctness 

•  Generate code that faithfully implements the programmer’s 
program 

–  Speed 
•  Make good use of resources and run reasonably quickly 

•  Most complications in code generation come 
from trying to be fast as well as correct 
–  Easy to generate either in isolation 

•  Correct code that runs slowly 
•  Fast code that is not correct (this one is very easy – we can 

generate extremely fast code that gives wrong answers!) 



Code Generation Goals 

•  Over time, a fairly elaborate framework has 
been developed detailing how a code generator 
and the corresponding runtime structures 
should be organized and implemented in order 
to meet the goal of producing code that is 
simultaneously fast and correct. 

•  First step in talking about this is to discuss 
something called activations 
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First, Two Assumptions about Execution 

1.  Execution is sequential; control moves from 
one point in a program to another in a well-
defined order 

2.  When a procedure is called, control 
eventually returns to the point immediately 
after the call 

Do these assumptions always hold? 
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First, Two Assumptions about Execution 

1.  Execution is sequential; control moves from 
one point in a program to another in a well-
defined order 

Programming languages that have concurrency violate 
this assumption – statement after current statement 
might be in completely different thread 
 



First, Two Assumptions about Execution 

2.  When a procedure is called, control 
eventually returns to the point immediately 
after the call 

Advanced Control constructs – exceptions and call/cc (call with 
current continuation – google it) – affect flow of control in fairly 
dramatic ways 
 
C++ and Java throw and catch style exceptions – a thrown 
exception might escape from multiple procedures before it is 
caught, so no guarantee that a call to [a procedure that can 
throw an exception] will end up with control returning to the line 
following the procedure call. 

We may or may not discuss these advanced features later. We focus 
on ideas basic to all implementations.  Those languages with advanced 
features build upon these basic principles. 
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Activations 

•  An invocation of procedure P is an activation 
of P 

•  The lifetime of an activation of P is 
–  All the steps to execute P 
–  Including all the steps in procedures P calls 
–  So all the statements that are executed between 

the moment P is called, and the moment P returns, 
including all the functions that P itself calls 
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Lifetimes of Variables 

•  The lifetime of a variable x is the portion of 
execution in which x is defined 
–  All the steps of execution from the time that x is 

created until the time that x is destroyed or 
deallocated 

•  Note that 
–  Lifetime is a dynamic (run-time) concept 
–  Scope is a static concept 

•  Recall scope refers to the portion of the program text in 
which the variable is visible 
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Activation Trees 

•  Assumption (2) requires that when P calls Q, 
then Q returns before P does, thus… 

•  Lifetimes of procedure activations are 
properly nested. So… 

•  Activation lifetimes can be depicted as a tree 
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Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main 

f g 

 g 



Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main 

f g 

 g 

Note: tree shows 
containment of lifetime. 
 
E.g. g’s lifetime is 
contained in main’s 
 
E.g., lifetime of left 
branch g is disjoint from 
lifetime of f, since they 
are siblings in tree. 
 
E.g., multiple activations 
of g (every call is another 
activation) 
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Example 2 (Recursion) 

Class Main { 
 g() : Int { 1 }; 
 f(x:Int):  Int { if x = 0 then g() else f(x - 1) fi}; 
 main(): Int {{f(3); }}; 

} 
 
 
What is the activation tree for this example? 
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Notes 

•  The activation tree depends on run-time 
behavior 

•  The activation tree may be different for 
every program input 

•  Since activations are properly nested, a stack 
can track currently active procedures 
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Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main Stack 

Main 
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Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main 

g 

Stack 

Main 

g 
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Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main 

g f 

Stack 

Main 

f 
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Example 

Class Main { 
 g() : Int { 1 }; 
 f():  Int { g() }; 
 main(): Int {{ g(); f(); }}; 

} 
 Main 

f g 

g 

Stack 

Main 

f 
g 
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Revised Memory Layout 

Low Address 

High Address 

Memory 

Code 

Stack 

Note: This shows 
stack growing from 
low address to 
high.  Almost every 
stack I’ve 
encountered in this 
context in practice 
grows from high 
address to low. 
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Activation Records (What’s in Them?) 

•  The information needed to manage one 
procedure activation is called an activation 
record (AR) or frame 

•  Activation records contain more than you 
might expect: 
–  If procedure F calls G, then G’s activation record 

contains a mix of info about F and G. 
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Activation Records (Why?) 

•  There is state associated with each 
procedure – information required in order to 
properly execute the procedure, and this 
needs to be kept somewhere 
–  Activation record is for storing this state 

•  So, let’s look at this in a bit more detail… 
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What is in G’s AR when F calls G? 

•  F is “suspended” until G completes, at which 
point F resumes.  G’s AR contains information 
needed to resume execution of F. 
–  And F’s activation record contains state relevant to 

suspended procedure F  
•  E.g., values of variables local to F  

•  G’s AR may also contain: 
–  G’s return value (needed by F) 
–  Actual parameters to G (supplied by F) 
–  Space for G’s local variables 
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The Contents of a Typical AR for G 

•  Space for G’s return value 
•  Actual parameters 
•  Pointer to the previous activation record 

–  The control link; points to AR of caller of G 
•   Machine status prior to calling G 

–  Contents of registers & program  counter 
–  Local variables 

•  Other temporary values 
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Example 2, Revisited 

Class Main { 
 g() : Int { 1 }; 
 f(x:Int):Int {if x=0 then g() else f(x - 1)(**)fi}; 
 main(): Int {{f(3); (*) 

 }};} 
 
AR for f: 

result 
argument 
control link 
return address 
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Stack After Two Calls to f 

Main 

(**) 

2 
(result) f 
(*) 

3 
(result) f 



Notes 

•  Main has no argument or local variables and its 
result is never used; its AR is uninteresting 

•  (*) and (**) are return addresses of the 
invocations of f 
–  The return address is where execution resumes 

after a procedure call finishes 
•  This is only one of many possible AR designs 

–  Would also work for C, Pascal, FORTRAN, etc. 
–  Ex. Many compilers don’t use a control link entry: 

don’t need it to find the calling activation record 
•  In project, the COOL compiler does not use a control link 

–  Ex. Some compilers store return address in register 
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Note Also 

Main 

(**) 

2 
(result) f 
(*) 

3 
(result) f 

Stack is both a “stack” of  
activation records and a 
“stack” of individual 
entries. 
While we think of it as 
a collection of frames, it 
is really just one contiguous 
portion of memory, in 
effect a gigantic array. 
And some compiler writers 
take advantage of this. 
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What Happens After an Activation Returns? 

The picture shows the state after the call to the 
2nd invocation of f returns 

Green arrow indicates 
frame that is now top AR 
on stack 
(But note previous top 
stack frame still resides in 
memory!) 
AND we need to access it 
(to get the result of the call 
f(2), the result being at top of  
AR for call f(2)) 
 

Main 

(**) 

2 
1 f 
(*) 

3 
(result) f 
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Discussion 

•  The advantage of placing the return value 1st in 
a frame is that the caller can find it at a fixed 
offset from its own frame 
–  Knows it is in first position of AR that was old top of 

stack – at fixed offset from current top of stack 

•  There is nothing magic about this organization 
–  Can rearrange order of frame elements 
–  Can divide caller/callee responsibilities differently 
–  Only metric: An organization is better if it improves 

execution speed or simplifies code generation 
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Discussion (Cont.) 

•  Real compilers hold as much of the frame 
content as possible in registers 
–  Especially the method result and arguments 

•  Because these are accessed so frequently 
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The Main Point 

 
The compiler must determine, at compile-time, 

the layout of activation records and generate 
code that correctly accesses locations in the 

activation record 
 

Thus, the AR layout and the code generator 
must be designed together! 
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Globals 

•  All references to a global variable point to the 
same object (this is defn of global, after all) 
–  Can’t store a global in an activation record 

•  Because ARs are deallocated when activation complete 

•  Globals are assigned a fixed address once 
–  Variables with fixed address are said to be “statically 

allocated”, because allocated at compile time 
•  Compiled decides where they will be placed, and they stay 

there for entire execution of the program 

•  Depending on the programming language, there 
may be other statically allocated values 
–  We’ll see examples of this later 
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Memory Layout with Static Data 

Low Address 

High Address 

Memory 

Code 

Stack 

Static Data 
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Heap Storage 

•  Also, a value that outlives the procedure that 
creates it cannot be kept in the AR 

method foo() { new Bar } 
The Bar value must survive deallocation of foo’s AR, 
because the Bar object is the result of foo(), so it 

must be accessible to foo()’s caller after foo() exits 
 

•  Languages with dynamically allocated data (such 
as above) generally use a heap to store dynamic 
data 
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Summary (thus far) 

•  The code area contains object code 
–  For many languages, fixed size and read only 
–  Some languages allow code created at run time! 

•  The static area contains data (not code) with 
fixed addresses (e.g., global data) 
–  Fixed size, may be readable or writable 
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Summary (thus far) 

•  The stack contains an AR for each currently 
active procedure 
–  Each AR usually fixed size, contains locals 

•  Heap contains all other data (including 
dynamically allocated data) 
–  In C, heap is managed by malloc and free 
–  In Java, have new and garbage collection 
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Notes 

•  Both the heap and the stack grow 

•  Must take care that they don’t grow into each 
other 

•  Solution: start heap and stack at opposite 
ends of memory and let them grow towards 
each other 



Memory Layout with Heap 

Low Address 

High Address 

Memory 

Code 

Stack 

Static Data 

Heap 

Note: Heaps I’ve seen grow from low address to high! 

Note: If stack pointer 
and heap pointer ever 
cross, program is out 
of memory and will 
abort or runtime 
system will try to 
obtain more memory 
from OS 
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Data Layout 

•  Low-level details of machine architecture are 
important in laying out data for correct code 
and maximum performance 

•  Chief among these concerns is alignment 
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Alignment 

•  Most modern machines are either 32 or 64 bit 
–  8 bits in a byte 
–  4 or 8 bytes in a word 
–  Machines are either byte or word addressable 

•  Meaning that the native language of the machine it is 
possible to reference memory by individual bytes or by 
words 

•  Data is word aligned if it begins at a word 
boundary (if you don’t understand, please ask) 

•  Most machines have some alignment 
restrictions 
–  Or performance penalties for poor alignment 



Alignment 

•  Most machines have some alignment 
restrictions 
–  Or performance penalties for poor alignment 

•  Restrictions come in two forms 
–  If data not properly aligned, machine fails to 

execute instruction that referenced non-aligned 
data 

•  E.g, “seg fault” or “bus error”, or machine hangs.  
–  If data not properly aligned, program executes 

correctly, but at significant performance cost  
•  Often dramatic – can be 10 times slower to access 

misaligned data! 
•  Execution far more efficient if data properly aligned 
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Where does this come up? 

•  Example: A string 
“Hello” 

Takes 5 characters (without a terminating \0) 

•  To word align next datum, add 3 “padding” 
characters to the string 
–  Or 2, as above, if we include the ‘\0’  

•  The padding is not part of the string, it’s just 
unused memory 

H e l l o \0 

next data item goes here 



So, General Strategy 

•  Align all data on word boundaries 
•  If the data does not require an exact multiple 

of 4 (or 8, as the case may be) of memory, 
just pad so that it does 

•  Occurs not just with strings, but with 
character arrays as well  
–  E.g., you ask for an array large enough for 10 chars, 

then you get enough memory for 12 (assuming char 
is a single byte) 
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On to Code Generation 

•  Done with run time stuff, on to code 
generation 

•  Simplest model for code generation is called a 
stack machine, the subject of the next few 
slides 

51 



52 

Stack Machines 

•  Only storage is (surprisingly) a stack 
•  A simple evaluation model 
•  No variables or registers 
•  A stack of values for intermediate results 
•  Each instruction r = F(a1, a2, … , an) 

–  Pops n operands from the top of the stack  
–  Computes the operation F using those operands 
–  Pushes the result r on the stack 
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Example of Stack Machine Operation 

•  The addition operation on a stack machine: 5+7  

5 
7 
9 
… 

5 

7 

9 
… 

pop 

⊕ 

add 

12 
9 
… 

push Note: 5 and 7 need 
to be pushed onto  
stack! 
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Example of Stack Machine Operation 

•  The addition operation on a stack machine: 5+7 

5 
7 
9 
… 

5 

7 

9 
… 

pop 

⊕ 

add 

12 
9 
… 

push 
Important stack property: when you perform a stack operation, the 
contents of the stack prior to beginning of evaluation of the expression 
will be preserved 
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Example of a Stack Machine Program 

•  Consider language with just two instructions 
–  push i    - place the integer i on top of the stack 
–  add       -  pop two elements, add them and put  
                   the result back on the stack 

•  A program to compute 7 + 5: 
                       push 7 
                       push 5 
                       add    



Why Use a Stack Machine ? 

•  Location of the operands is implicit 
–  Always on the top of the stack 
–  So no need to specify operands explicitly 

•  No need to specify the location of the result 
•  Instruction “add” as opposed to register 

machine instruction “add r1, r2, r3” 
    ⇒ Smaller encoding of instructions 
    ⇒ More compact programs 

•  This is one reason why Java Bytecodes use a 
stack evaluation model 
–  Code often transmitted via Internet, so benefit to 

having more compact code 
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Why Use a Stack Machine ? 

•  Because each operation takes operands from 
the same place and puts results in the same 
place 

•  This means a uniform compilation scheme 

•  And therefore a simpler compiler 
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Why a Register Machine ? 

•  Generally faster because we can place data 
exactly where we want it to be 
–  Fewer intermediate operations (such as pushing and 

popping) required to get at the data 



Middle Ground? 

•  There is an intermediate point between a pure 
stack machine and a pure register machine 

•  An n-register stack machine 
–  Conceptually, keep the top n locations of the pure 

stack machine’s stack in registers 
•  The particular variant of this that we are 

most interested in is the 1-register stack 
machine 
–  Turns out there is significant benefit even from 

having just one register to store the data at top of 
stack 

–  The register is called the accumulator (it 
accumulates results of operations) 
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Advantage of 1-Register Stack Machine 

•  In pure stack machine, the add instruction 
does 3 memory operations 
–  Two reads and one write to the stack 
–  The top of the stack is frequently accessed 

•  In 1-register stack machine, the add does a 
lot of the work out of the one register 
–  Register accesses are faster 

•  The “add” instruction is now 
               acc ← acc + top_of_stack 
–  Only one memory operation! 
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Stack Machine with Accumulator. Example 

•  Compute 7 + 5 using an accumulator 

… 

acc 

stack 

5 

7 
… 

acc ← 5 

12 

… 

⊕ 

acc ← acc + top_of_stack 
pop 

… 

7 

acc ← 7 
push acc 

7 
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Notes 

•  It is very important evaluation of a 
subexpression preserves the stack 
–  Stack before the evaluation of 7 + 5 is  3, <init> 
–  Stack after the evaluation of 7 + 5 is 3, <init> 
–  The first operand is on top of the stack 
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General Strategy: Stack Machine with Accumulator 
 
•  Consider a COOL operation: op(e1,…,en)  

–  Note e1,…,en are subexpressions 
–  Each will require (perhaps involved) evaluation 

•  The process: 
•  For each ei (1 < i < n): 

–  Compute ei (recursively, using same strategy) 
•  Result ends up in accumulator 

–  Push result on the stack 
•  For en, just evaluate, don’t push onto stack 

•  Pop n-1 values from the stack, compute op 
•  Store result in accumulator 
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Notes: 

•  Invariant: After evaluating an expression e, 
the accumulator holds the value of e and the 
stack is unchanged 
•  Memory portion of stack is identical to what it was 

before we started evaluating e 

•  Put another way: Expression evaluation 
preserves the stack 



A Bigger Example: 3 + (7 + 5) 

 Code                                Acc        Stack 
acc ← 3                                  3               <init> 
push acc                                 3               3, <init> 
acc ← 7                                  7              3, <init> 
push acc                                 7              7, 3, <init> 
acc ← 5                                  5              7, 3, <init> 
acc ← acc + top_of_stack     12             7, 3, <init> 
pop                                        12              3, <init> 
acc ← acc + top_of_stack     15             3, <init> 
pop                                        15              <init> 



A Bigger Example: 3 + (7 + 5) 

 Code                                Acc        Stack 
acc ← 3                                  3               <init> 
push acc                                 3               3, <init> 
acc ← 7                                  7              3, <init> 
push acc                                 7              7, 3, <init> 
acc ← 5                                  5              7, 3, <init> 
acc ← acc + top_of_stack     12             7, 3, <init> 
pop                                        12              3, <init> 
acc ← acc + top_of_stack     15             3, <init> 
pop                                        15              <init> 
Note recursion and evaluation of subexpression 7 + 5 


