
1 

Type Checking in COOL (II)  
 

Lecture 10 
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Lecture Outline 

•  Type systems and their expressiveness 

•  Type checking with SELF_TYPE in COOL 

•  Error recovery in semantic analysis 
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Expressiveness of Static Type Systems 

•  Static type systems detect common errors 
–  “static” because no knowledge of dynamic behavior 

(run-time behavior) of program 

•  But some correct programs are disallowed 
–  In fact, any static type system that does the 

correct thing is going to have to disallow some 
correctly typed programs, because it can’t reason 
precisely at compile time about everything that 
could happen as the program runs.  



Expressiveness of Static Type Systems 

•  Static type systems detect common errors 
 
•  But some correct programs are disallowed 

–  So some argue for dynamic type checking instead 
•  At run time we check whether operations being performed 

are appropriate for the actual data 
–  Others argue for more expressive static type 

checking 
•  Been a good amount of work on both, with good 

progress 
–  But more expressive type systems are more 

complex (so some ideas not yet in real languages) 
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Dynamic And Static Types 

•  The dynamic type of an object is the class C 
that is used in the “new C” expression that 
created it (may be different than declared 
type of object) 
–  A run-time notion 
–  Even languages that are not statically typed have 

the notion of dynamic type 
–  dynamic type can vary during execution 

•  The static type of an expression captures all 
dynamic types the expression could have 
–  A compile-time notion 
–  static type is invariant 



Dynamic and Static Types 

•  There must be some relationship between the 
static and dynamic types of an expression if 
the static type checker is to be correct 

•  This relationship can be formalized via some 
theorem such as… 
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Dynamic and Static Types. (Cont.) 

•  Soundness theorem: for all expressions E 
            dynamic_type(E) = static_type(E) 
   (in all executions, E evaluates to values of the type 

determined by the static type checker in the 
compiler) 

 
•  In early type systems the set of static types 

corresponded directly with the dynamic types 
–  So we had situation above 

•  This gets more complicated in advanced type 
systems (such as for COOL) 
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Dynamic and Static Types in COOL 

•  A variable of static type A can hold values of 
static type B, if B ≤ A  

 
class A { … } 
class B inherits A {…} 
class Main { 
   x:A ← new A; 
   … 
   x ← new B; 
   … 
}  

x has static 
type A 

Here, x’s value has 
dynamic type A 

Here, x’s value has 
dynamic type B 
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Dynamic and Static Types 

Soundness theorem for the Cool type system: 
       ∀ E.   dynamic_type(E)  ≤  static_type(E)  

 

Why is this Ok? 
–  All operations that can be used on an object of 

type C can also be used on an object of type C’ ≤ C 
•  Such as fetching the value of an attribute 
•  Or invoking a method on the object 

–  Subclasses only add attributes or methods 
–  Methods can be redefined but with same type! 



Bottom Line   

•  Type systems are becoming more expressive, 
but while progress has been made in both 
static and dynamic typing, many of the results 
of this progress have not yet found their way 
into current programming languages 
–  Düg? 

•  And now, on to the much mentioned coverage 
of SELF_TYPE 
–  We start with a motivating example… 
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An Example 
 
class Count { 
   i : int ← 0; 
   inc () : Count { 
        { 
            i ← i + 1; 
            self; 
        } 
    }; 
};   

•  Class Count just 
increments a counter 

•  The inc method works 
for any subclass 



An Example 

•  Count could be thought of as a base class that 
provides counter functionality… 

•  …In which case, whenever someone needs a 
counter for a specific purpose, they could 
subclass Count… 

•  Said subclass would automatically inherit the 
inc() method… 

•  So that they could have a counter without 
having to reimplement code 
–  Of course here the code is small and simple, but you 

can imagine similar situation with more complex code 
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An Example 
 
class Count { 
   i : int ← 0; 
   inc () : Count { 
        { 
            i ← i + 1; 
            self; 
        } 
    }; 
};   

•  Class Count just 
increments a counter 

•  The inc method works 
for any subclass 

•  But there is disaster 
lurking in the type 
system 
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An Example (Cont.) 

•  Consider a subclass Stock of Count 
 
class Stock inherits Count {  
   name : String; -- name of item 
}; 

•  E.g., Implementing a warehouse accounting 
program and want to keep track of number of 
number of items of different kinds that are in 
stock 
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An Example (Cont.) 

•  Consider a subclass Stock of Count 
 
class Stock inherits Count {  
   name : String; -- name of item 
}; 

 
class Main { 
  Stock a ← (new Stock).inc ();  
  …  a.name … 
}; 

•  And the following use of Stock: 

Type checking error! 
Why? 
But note that it would 
work fine! 
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What Went Wrong? 

•   (new Stock).inc()  has dynamic type Stock 
–  starts with a new Stock object, increments its i instance 

variable, and returns self (a Stock object) 

•  So it is legitimate to write  
         Stock a ← (new Stock).inc () 
 

•  But this is not well-typed 
–  (new Stock).inc()  has static type Count, which is correct, but 

not useful in this context. And since Count is not a subtype of 
Stock, type error!  

•  The type checker “loses” type information 
–  This makes inheriting inc useless 
–  So, we must redefine inc for each of the subclasses, with a 

specialized return type  
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SELF_TYPE to the Rescue  

•  To solve this problem, we will extend the type system 

•  Insight: 
–  inc returns “self” 
–  Therefore the return value has same type as “self”  
–  Which could be Count or any subtype of Count! 

•  Introduce a new keyword, SELF_TYPE, to use for the 
return value of such functions 
–  We will also need to modify the typing rules to handle 

SELF_TYPE 
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SELF_TYPE to the Rescue (Cont.) 

•  SELF_TYPE allows the return type of inc to change 
when inc is inherited 
–  i.e., allows us to reason about how the actual return type of 

inc() changes dynamically when inc() is inherited 

•  Modify the declaration of inc to read 
                   inc() : SELF_TYPE  { … } 
 
•  The type checker can now prove: 
        C,M ├ (new Count).inc() : Count 
        C,M ├ (new Stock).inc() : Stock 

  

•  The program from before is now well typed 
–  Remember what self is: the type of the expression on which 

the method was dispatched 
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Notes About SELF_TYPE 

•  SELF_TYPE is not a dynamic type (nor is it a 
class name – the only type that is not a class) 

–  It is a static type 

–  It helps the type checker to keep better track of 
types 

–  It enables the type checker to accept more 
correct programs 

•  In short, having SELF_TYPE increases the 
expressive power of the type system 
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SELF_TYPE and Dynamic Types (Example) 

•  What can be the dynamic type of the object 
returned by inc? 
–  Answer: whatever could be the dynamic type of “self” 

  
class A inherits Count { } ; 
class B inherits Count { } ; 
class C inherits Count { } ; 

–  Answer: Count or any subtype of Count 

           (inc could be invoked through any of these classes) 
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SELF_TYPE and Dynamic Types (Example) 

•  In general, if SELF_TYPE appears in the code of class 
C as the declared type of some expression E then 
               dynamic_type(E) ≤ C 
 
Why? Because SELF_TYPE is the type of self, which 

is defined to be the type of the object on which a 
method is dispatched.  And any object that is 
“dispatching” a method of class C must either be of 
class C or a subclass of C 
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SELF_TYPE and Dynamic Types (Example) 

•  In general, if SELF_TYPE appears in the code of class 
C as the declared type of some expression E then 
               dynamic_type(E) ≤ C 

•  Significant: The meaning of SELF_TYPE depends on 
the context (where it appears) 
–  We write SELF_TYPEC to refer to an occurrence of 

SELF_TYPE in the body of C 
•  This is done to remind ourselves what class we’re talking about 

•  This suggests a simple typing rule: 
                  SELF_TYPEC ≤ C                      (*) 
 



SELF_TYPE and Dynamic Types (Example) 
 

•  So:           SELF_TYPEC ≤ C                      (*) 
 
This rule, while simple, and somewhat obvious, is also 

important, because it gives us some idea of what 
SELF_TYPE really is: The best way to think of 
SELF_TYPE is as a type variable (i.e., a variable whose 
value is a type) that ranges over all the subclasses of 
the class in which it appears. 

 
Because it’s a variable, it doesn’t have a fixed type, but 

is guaranteed to be some type bounded by C -- it is 
some type that inherits directly or indirectly from C 
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Type Checking 

•  Rule (*) has an important consequence: 
–  In type checking it is always safe to replace 

SELF_TYPEC by C 
•  Think about why this is: when a method returns self, then 

since self “is a” C,  changing the return type to C doesn’t 
violate type rules (you are returning a C) 

•  This suggests one way to handle SELF_TYPE : 
–  Replace all occurrences of SELF_TYPEC by C 

•  This would be correct but not very useful – it’s 
like not having SELF_TYPE at all 
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Operations on SELF_TYPE 

•  So to do better than just throwing away all 
the SELF_TYPEs, we need to incorporate 
them into the type system.  

•  Recall the only two operations on types 
–  T1 ≤ T2             T1 is a subtype of T2 
–  lub(T1,T2)     the least-upper bound of T1 and T2 

•  We must extend these operations to handle 
SELF_TYPE 
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Extending ≤ 

Let T and T’ be any types except SELF_TYPE 
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC 
•  That this rule is true is easily seen by considering the notion 

of SELF_TYPE as a variable.  So, SELF_TYPE can be any 
subtype of C.  But just like in 8th grade algebra, once you 
give a value to a variable, you have to give that same value to 
ALL occurrences of that variable.  So here, if SELF_TYPE 
has value C’, a subtype of C, then what this rule is asserting 
is that C’ ≤ C’ 
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Extending ≤ 

Let T and T’ be any types except SELF_TYPE 
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC 
•  It’s also reasonable to ask what happens if you are 

comparing SELF_TYPES from different classes, say C and D. 
•  Answer: In Cool we never need to compare SELF_TYPEs 

coming from different classes (so no need to have, say, C 
and D here).  Though we haven’t shown it yet, the type rules 
of COOL are written in such a way that this just will never 
happen. 
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Extending ≤ 

Let T and T’ be any types except SELF_TYPE 
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC 

2.  SELF_TYPEC ≤ T  if C ≤ T 
•  SELF_TYPEC can be any subtype of C 
•  This includes C itself  
•  Thus this is the most flexible rule we can allow 
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Extending ≤ (Cont.) 

3.   T ≤ SELF_TYPEC always false   
That is, a regular class type is NEVER a subtype of 

SELF_TYPEC 
To see this, think about the possibilities: where can C 

and T be in the type hierarchy? 
It T and C are unrelated (both inherit from Object 

but otherwise have nothing to do with each other), 
then clearly T can’t be a subtype of SELF_TYPEC 
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Extending ≤ (Cont.) 

3.   T ≤ SELF_TYPEC always false   
That is, a regular class type is NEVER a subtype of 

SELF_TYPEC 
To see this, think about the possibilities: where can C 

and T be in the type hierarchy? 
If they are related, then you might think that if T is a 

subtype of C, this could work out.  But we can’t allow 
it even in this case:  Think about a hierarchy where T 
has some strict subtype A.  The because SELF_TYPEC 
ranges over all subtypes of C, SELF_TYPEC could 
assume value A, in which case relationship above is in 
wrong order.  Since it can’t work for all possible 
subtypes of C, have to have it be false.  
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Extending ≤ (Cont.) 

3.   T ≤ SELF_TYPEC always false   
That is, a regular class type is NEVER a subtype of 

SELF_TYPEC 
To see this, think about the possibilities: where can C 

and T be in the type hierarchy? 
But, there is one very special case where one could argue 

that we should allow this to be true: the case where T 
is the only leaf of the descendants of C (T is the 
unique minimal type) in the class hierarchy, in which 
case T truly would be a subtype of all possible values 
of SELF_TYPEC 

(For this to happen need type hierarchy below C to be a 
single chain down to T) 

 



32 

Extending ≤ (Cont.) 

3.   T ≤ SELF_TYPEC always false   
That is, a regular class type is NEVER a subtype of 

SELF_TYPEC 
To see this, think about the possibilities: where can C 

and T be in the type hierarchy? 
The problem with this special case is that it is extremely 

fragile: a programmer might come along and add a 
subclass of C that is unrelated to T (not an ancestor 
of T) and this would no longer work.  In this case you 
would suddenly be getting type errors in code that 
previously type checked fine, and hadn’t been changed 
at all.  Not a good language design.  So no regular class 
type is ever a subtype of SELF_TYPEC 
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Extending ≤ (Cont.) 

 
4.  T ≤ T’ (just use rules from before we added 

SELF_TYPE, since neither type here involves 
SELF_TYPE) 

Based on these rules we can extend lub … 
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Summary ≤ 

Let T and T’ be any types except SELF_TYPE 
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC 
 

2.  SELF_TYPEC ≤ T  if C ≤ T 

3.  T ≤ SELF_TYPEC always false 

4.  T ≤ T’  
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Extending lub(T,T’) 

Let T and T’ be any types but SELF_TYPE 
Again there are four cases: 
1.  lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC 

2.  lub(SELF_TYPEC, T) = lub(C, T) 
This is the best we can do because SELF_TYPEC ≤ C 

  
3.  lub(T, SELF_TYPEC) = lub(C, T) 

4.  lub(T, T’) defined as before 



36 

Where Can SELF_TYPE Appear in COOL?  

•  The parser checks that SELF_TYPE appears only 
where a type is expected 

–  But this is too permissive 

•  But SELF_TYPE is not allowed everywhere a type 
can appear: 

1.  class T inherits T’  {…}   
•  T, T’ cannot be SELF_TYPE 

2.  x : T                                   
•  T can be SELF_TYPE 
•  An attribute whose type is ≤ SELF_TYPEC 
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Where Can SELF_TYPE Appear in COOL? 

3.  let x : T in E 
•  T can be SELF_TYPE 
•  x has a type ≤ SELF_TYPEC 

4.  new T 
•  T can be SELF_TYPE 
•  Creates an object of the same dynamic type as self 

5.  m@T(E1,…,En) 
•  T cannot be SELF_TYPE 

•  Because in dynamic dispatch T must be an actual class name 



Where Can SELF_TYPE Not Appear in COOL? 

6.  m(x : T) : T’ { … }                
•  Only T’ can be SELF_TYPE ! 

What could go wrong if T were SELF_TYPE? 
 
Consider the method call e.m(e’), where e’ has 

type T0.  According to our rule for method 
types, T0 must be a subtype of the type of 
the formal parameter.  If, however, the 
formal parameter has type SELF_TYPE, then 
must have T0 ≤ SELF_TYPE, which is a no-no 
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Where Can SELF_TYPE Not Appear in COOL? 

6.  m(x : T) : T’ { … }                
•  Only T’ can be SELF_TYPE ! 

What else could go wrong if T were SELF_TYPE? 
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Where Can SELF_TYPE Not Appear in COOL? 

 
class A {  comp(x : SELF_TYPE) : Bool  {…};  }; 
class B inherits A {  
     b : int;  
     comp(x : SELF_TYPE) : Bool { … x.b …};  }; 
… 
  let x : A ← new B in  … x.comp(new A); … 
… 

static type A 
dynamic type B 
the key here! 

note use of attribute 
b in overriding method 

presumably compares input 
parameter with self 
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Where Can SELF_TYPE Not Appear in COOL? 

 
class A {  comp(x : SELF_TYPE) : Bool  {…};  }; 
class B inherits A {  
     b : int;  
     comp(x : SELF_TYPE) : Bool { … x.b …};  }; 
… 
  let x : A ← new B in  … x.comp(new A); … 
… 

presumably compares input 
parameter with self 

statically type checks fine: x has static type A, and in 
code for A, SELF_TYPE is A, so passing in a new A is fine.  
But dynamic type of x is B, so when x.comp() call is 
executed, it is executing the b version method, but with 
an object of dynamic type A!  Result is a runtime crash! 



Another Extension   

•  So now, let’s extend our type rules by 
integrating the rules for SELF_TYPE. 
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Typing Rules for SELF_TYPE 

•  Since occurrences of SELF_TYPE depend on 
the enclosing class we need to carry more 
context during type checking (i.e., another 
environment) 
–  We need to always know the class to which the rule 

is applying, which is why there is a C below 
•  New form of the typing judgment: 
            O,M,C ├ e : T 

   (An expression e occurring in the body of C has 
static type T given a variable type environment O 
and method signatures M) 
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Type Checking Rules 

•  The next step is to design type rules using 
SELF_TYPE for each language construct 

•  Most of the rules look the same except that the 
augmented ≤ and lub are used 

•  Example:   
O(Id) = T0 
O,M,C ├ e1 : T1 
T1 ≤ T0 
O,M,C ├ Id ← e1 : T1 

[Assign] 
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What’s Different? 

•  Some rules do have to change: Recall the old 
rule for dispatch 

 
O,M,C ├ e0 : T0 
          ! 
O,M,C ├ en : Tn  
M(T0, f) = (T1’,…,Tn’,Tn+1’) 
Tn+1’ ≠ SELF_TYPE 
Ti ≤ Ti’     1 ≤ i ≤ n 
O,M,C ├ e0.f(e1,…,en) : Tn+1’ 

implicit in our 
previous version 
of this rule, but 
made explicit 
here 

But being able to return SELF_TYPE is exactly 
where the use of SELF_TYPE buys us something! 



What’s Different? 

•  If the return type of the method is 
SELF_TYPE then the type of the dispatch is 
the type of the dispatch expression: 

 
O,M,C ├ e0 : T0 
           ! 
O,M,C ├ en : Tn  
M(T0, f) = (T1’,…,Tn’, SELF_TYPE) 
Ti ≤ Ti’     1 ≤ i ≤ n 
O,M,C ├ e0.f(e1,…,en) : T0 

note! 
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What’s Different? 

•  Note this rule handles the Stock example 

•  Formal parameters cannot be SELF_TYPE 

•  Actual arguments can be SELF_TYPE 
–  The extended ≤ relation handles this case 

•  The type T0 of the dispatch expression could be 
SELF_TYPE 
–  Which class is used to find the declaration of f? 
–  Answer: it is safe to use the class where the dispatch appears 
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What’s Different? 

 
•  The type T0 of the dispatch expression could be 

SELF_TYPE 
–  Which class is used to find the declaration of f? 
–  Answer: it is safe to use the class where the dispatch appears 

O,M,C ├ e0 : SELF_TYPEC  
M(C, f) = (…) 
O,M,C ├ e0.f(e1)  

because e0 occurs in class C, use C in the lookup 
of type signature 
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Static Dispatch 

•  Recall the original rule for static dispatch 
 
O,M,C ├ e0 : T0 
           ! 
O,M,C ├ en : Tn  
T0 ≤ T 
M(T, f) = (T1’,…,Tn’,Tn+1’) 
Tn+1’ ≠ SELF_TYPE 
Ti ≤ Ti’     1 ≤ i ≤ n 
O,M,C ├ e0@T.f(e1,…,en) : Tn+1’ 
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Static Dispatch 

•  If the return type of the method is 
SELF_TYPE we have: 

 
O,M,C ├ e0 : T0 
           ! 
O,M,C ├ en : Tn  
T0 ≤ T 
M(T, f) = (T1’,…,Tn’,SELF_TYPE) 
Ti ≤ Ti’    1 ≤ i ≤ n 
O,M,C ├ e0@T.f(e1,…,en) : T0 

note return type is T0, not T.  Why? 
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Static Dispatch 

•  Why is this rule correct? 

•  If we dispatch a method returning 
SELF_TYPE in class T, don’t we get back a T? 

•  No. SELF_TYPE is the type of the self 
parameter, which may be a subtype of the 
class in which the method appears 
–  SELF_TYPE is the type of the self parameter.  So 

even though we are dispatching to a method of 
class T, the self parameter still has type To.  



New Rules 

•  There are two new rules using SELF_TYPE 

O,M,C ├ self : SELF_TYPEC 

O,M,C ├ new SELF_TYPE : SELF_TYPEC 

•  There are a number of other places where 
SELF_TYPE is used 

Note these are rules where we need to know the class C 
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Summary of SELF_TYPE 

•  The extended ≤ and lub operations can do a lot of the 
work.  

•  SELF_TYPE can be used only in a few places. Be sure 
it isn’t used anywhere else. 

•  A use of SELF_TYPE always refers to any subtype of 
the current class 
–  The exception is the type checking of dispatch. The method 

return type of SELF_TYPE might have nothing to do with the 
current class 
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Why Cover SELF_TYPE ? 

•  SELF_TYPE is a research idea 
–  It adds more expressiveness to the type system 

•  SELF_TYPE itself is not so important 
–  except for the project 

•  Rather, SELF_TYPE is meant to illustrate that type 
checking can be quite subtle 

•  In practice, there should be a balance between the 
complexity of the type system and its expressiveness 
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Error Recovery 

•  As with parsing, it is important to recover from type 
errors 

•  Detecting where errors occur is easier than in parsing 
–  Because we already have the AST 
–  So there is no reason to skip over portions of code 

•  The Problem:  
–  What type is assigned to an expression with no legitimate 

type? 
•  Type checker works by structural induction, and it can’t just get stuck  
•  Need to assign some type to something like this, because… 

–  This type will influence the typing of the enclosing expression 
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Error Recovery Attempt 

•  Assign type Object to ill-typed expressions 

assume bug in code and  
x is undefined 

 
let y : Int ← x + 2  in  y + 3 

•  We’ll walk down the AST.  When we get to the 
leaf for x, we’ll see that x is undefined, which 
will generate an error message 

•  In order to recover, since x is undeclared we’ll 
assume its type is Object 

•  But now we move up the AST, and attempt to 
type the + operation, in which we have     
Object + Int 
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Error Recovery Attempt 

•  Assign type Object to ill-typed expressions 

assume bug in code and  
x is undefined 

 
let y : Int ← x + 2  in  y + 3 

•  This will generate another typing error, 
something like “+ applied to an object” 

•  Since we can’t type Object + Int, our 
recovery strategy says we give it type 
Object, so Object + Int = Object 
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Error Recovery Attempt 

•  But the next AST node will be the 
initialization, in which we are assigning 
something of type Object to a variable 
declared as type Int, which will generate yet 
another type error. 

•  Bottom line: this strategy is workable (we 
don’t get stuck), but a single error can lead to 
a whole cascade of errors 

•  Part of the reason for cascade: very few 
operations defined for type Object 
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Better Error Recovery 

•  We can introduce a new type called No_type for use 
with ill-typed expressions 
–  Not available to the programmer – just there for the use of 

the compiler 

•  Special property: Define No_type ≤ C for all types C 
–  Subtype of every type 
–  Note this is opposite of Object 

•  Every operation is defined for No_type 
–  And all return a No_type result 

•  Only one typing error (“x is undefined”) for:  
let y : Int ← x + 2  in  y + 3 
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Notes 

•  A “real” compiler would use something like 
No_type 

•  However, there are some implementation issues 
–  The class hierarchy is not a tree anymore (it’s a DAG 

with No_type at the bottom) 
•  So tree algorithms can no longer be applied 

•  The Object solution is fine in the class project 
–  Because the above issue is just too much of a hassle to 

deal with at our level 
–  We just live with the cascading errors 


