
1

Type Checking in COOL (II)

Lecture 10

2

Lecture Outline

•  Type systems and their expressiveness

•  Type checking with SELF_TYPE in COOL

•  Error recovery in semantic analysis

3

Expressiveness of Static Type Systems

•  Static type systems detect common errors
–  “static” because no knowledge of dynamic behavior

(run-time behavior) of program

•  But some correct programs are disallowed
–  In fact, any static type system that does the

correct thing is going to have to disallow some
correctly typed programs, because it can’t reason
precisely at compile time about everything that
could happen as the program runs.

Expressiveness of Static Type Systems

•  Static type systems detect common errors

•  But some correct programs are disallowed

–  So some argue for dynamic type checking instead
•  At run time we check whether operations being performed

are appropriate for the actual data
–  Others argue for more expressive static type

checking
•  Been a good amount of work on both, with good

progress
–  But more expressive type systems are more

complex (so some ideas not yet in real languages)

5

Dynamic And Static Types

•  The dynamic type of an object is the class C
that is used in the “new C” expression that
created it (may be different than declared
type of object)
–  A run-time notion
–  Even languages that are not statically typed have

the notion of dynamic type
–  dynamic type can vary during execution

•  The static type of an expression captures all
dynamic types the expression could have
–  A compile-time notion
–  static type is invariant

Dynamic and Static Types

•  There must be some relationship between the
static and dynamic types of an expression if
the static type checker is to be correct

•  This relationship can be formalized via some
theorem such as…

6

7

Dynamic and Static Types. (Cont.)

•  Soundness theorem: for all expressions E
 dynamic_type(E) = static_type(E)
 (in all executions, E evaluates to values of the type

determined by the static type checker in the
compiler)

•  In early type systems the set of static types

corresponded directly with the dynamic types
–  So we had situation above

•  This gets more complicated in advanced type
systems (such as for COOL)

8

Dynamic and Static Types in COOL

•  A variable of static type A can hold values of
static type B, if B ≤ A

class A { … }
class B inherits A {…}
class Main {
 x:A ← new A;
 …
 x ← new B;
 …
}

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

9

Dynamic and Static Types

Soundness theorem for the Cool type system:
 ∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
–  All operations that can be used on an object of

type C can also be used on an object of type C’ ≤ C
•  Such as fetching the value of an attribute
•  Or invoking a method on the object

–  Subclasses only add attributes or methods
–  Methods can be redefined but with same type!

Bottom Line

•  Type systems are becoming more expressive,
but while progress has been made in both
static and dynamic typing, many of the results
of this progress have not yet found their way
into current programming languages
–  Düg?

•  And now, on to the much mentioned coverage
of SELF_TYPE
–  We start with a motivating example…

10

11

An Example

class Count {
 i : int ← 0;
 inc () : Count {
 {
 i ← i + 1;
 self;
 }
 };
};

•  Class Count just
increments a counter

•  The inc method works
for any subclass

An Example

•  Count could be thought of as a base class that
provides counter functionality…

•  …In which case, whenever someone needs a
counter for a specific purpose, they could
subclass Count…

•  Said subclass would automatically inherit the
inc() method…

•  So that they could have a counter without
having to reimplement code
–  Of course here the code is small and simple, but you

can imagine similar situation with more complex code

13

An Example

class Count {
 i : int ← 0;
 inc () : Count {
 {
 i ← i + 1;
 self;
 }
 };
};

•  Class Count just
increments a counter

•  The inc method works
for any subclass

•  But there is disaster
lurking in the type
system

14

An Example (Cont.)

•  Consider a subclass Stock of Count

class Stock inherits Count {
 name : String; -- name of item
};

•  E.g., Implementing a warehouse accounting
program and want to keep track of number of
number of items of different kinds that are in
stock

15

An Example (Cont.)

•  Consider a subclass Stock of Count

class Stock inherits Count {
 name : String; -- name of item
};

class Main {
 Stock a ← (new Stock).inc ();
 … a.name …
};

•  And the following use of Stock:

Type checking error!
Why?
But note that it would
work fine!

16

What Went Wrong?

•  (new Stock).inc() has dynamic type Stock
–  starts with a new Stock object, increments its i instance

variable, and returns self (a Stock object)

•  So it is legitimate to write
 Stock a ← (new Stock).inc ()

•  But this is not well-typed
–  (new Stock).inc() has static type Count, which is correct, but

not useful in this context. And since Count is not a subtype of
Stock, type error!

•  The type checker “loses” type information
–  This makes inheriting inc useless
–  So, we must redefine inc for each of the subclasses, with a

specialized return type

17

SELF_TYPE to the Rescue

•  To solve this problem, we will extend the type system

•  Insight:
–  inc returns “self”
–  Therefore the return value has same type as “self”
–  Which could be Count or any subtype of Count!

•  Introduce a new keyword, SELF_TYPE, to use for the
return value of such functions
–  We will also need to modify the typing rules to handle

SELF_TYPE

18

SELF_TYPE to the Rescue (Cont.)

•  SELF_TYPE allows the return type of inc to change
when inc is inherited
–  i.e., allows us to reason about how the actual return type of

inc() changes dynamically when inc() is inherited

•  Modify the declaration of inc to read
 inc() : SELF_TYPE { … }

•  The type checker can now prove:
 C,M ├ (new Count).inc() : Count
 C,M ├ (new Stock).inc() : Stock

•  The program from before is now well typed
–  Remember what self is: the type of the expression on which

the method was dispatched

19

Notes About SELF_TYPE

•  SELF_TYPE is not a dynamic type (nor is it a
class name – the only type that is not a class)

–  It is a static type

–  It helps the type checker to keep better track of
types

–  It enables the type checker to accept more
correct programs

•  In short, having SELF_TYPE increases the
expressive power of the type system

20

SELF_TYPE and Dynamic Types (Example)

•  What can be the dynamic type of the object
returned by inc?
–  Answer: whatever could be the dynamic type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

–  Answer: Count or any subtype of Count

 (inc could be invoked through any of these classes)

21

SELF_TYPE and Dynamic Types (Example)

•  In general, if SELF_TYPE appears in the code of class
C as the declared type of some expression E then
 dynamic_type(E) ≤ C

Why? Because SELF_TYPE is the type of self, which

is defined to be the type of the object on which a
method is dispatched. And any object that is
“dispatching” a method of class C must either be of
class C or a subclass of C

22

SELF_TYPE and Dynamic Types (Example)

•  In general, if SELF_TYPE appears in the code of class
C as the declared type of some expression E then
 dynamic_type(E) ≤ C

•  Significant: The meaning of SELF_TYPE depends on
the context (where it appears)
–  We write SELF_TYPEC to refer to an occurrence of

SELF_TYPE in the body of C
•  This is done to remind ourselves what class we’re talking about

•  This suggests a simple typing rule:
 SELF_TYPEC ≤ C (*)

SELF_TYPE and Dynamic Types (Example)

•  So: SELF_TYPEC ≤ C (*)

This rule, while simple, and somewhat obvious, is also

important, because it gives us some idea of what
SELF_TYPE really is: The best way to think of
SELF_TYPE is as a type variable (i.e., a variable whose
value is a type) that ranges over all the subclasses of
the class in which it appears.

Because it’s a variable, it doesn’t have a fixed type, but

is guaranteed to be some type bounded by C -- it is
some type that inherits directly or indirectly from C

24

Type Checking

•  Rule (*) has an important consequence:
–  In type checking it is always safe to replace

SELF_TYPEC by C
•  Think about why this is: when a method returns self, then

since self “is a” C, changing the return type to C doesn’t
violate type rules (you are returning a C)

•  This suggests one way to handle SELF_TYPE :
–  Replace all occurrences of SELF_TYPEC by C

•  This would be correct but not very useful – it’s
like not having SELF_TYPE at all

25

Operations on SELF_TYPE

•  So to do better than just throwing away all
the SELF_TYPEs, we need to incorporate
them into the type system.

•  Recall the only two operations on types
–  T1 ≤ T2 T1 is a subtype of T2
–  lub(T1,T2) the least-upper bound of T1 and T2

•  We must extend these operations to handle
SELF_TYPE

26

Extending ≤

Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC
•  That this rule is true is easily seen by considering the notion

of SELF_TYPE as a variable. So, SELF_TYPE can be any
subtype of C. But just like in 8th grade algebra, once you
give a value to a variable, you have to give that same value to
ALL occurrences of that variable. So here, if SELF_TYPE
has value C’, a subtype of C, then what this rule is asserting
is that C’ ≤ C’

27

Extending ≤

Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC
•  It’s also reasonable to ask what happens if you are

comparing SELF_TYPES from different classes, say C and D.
•  Answer: In Cool we never need to compare SELF_TYPEs

coming from different classes (so no need to have, say, C
and D here). Though we haven’t shown it yet, the type rules
of COOL are written in such a way that this just will never
happen.

28

Extending ≤

Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC

2.  SELF_TYPEC ≤ T if C ≤ T
•  SELF_TYPEC can be any subtype of C
•  This includes C itself
•  Thus this is the most flexible rule we can allow

29

Extending ≤ (Cont.)

3.  T ≤ SELF_TYPEC always false
That is, a regular class type is NEVER a subtype of

SELF_TYPEC
To see this, think about the possibilities: where can C

and T be in the type hierarchy?
It T and C are unrelated (both inherit from Object

but otherwise have nothing to do with each other),
then clearly T can’t be a subtype of SELF_TYPEC

30

Extending ≤ (Cont.)

3.  T ≤ SELF_TYPEC always false
That is, a regular class type is NEVER a subtype of

SELF_TYPEC
To see this, think about the possibilities: where can C

and T be in the type hierarchy?
If they are related, then you might think that if T is a

subtype of C, this could work out. But we can’t allow
it even in this case: Think about a hierarchy where T
has some strict subtype A. The because SELF_TYPEC
ranges over all subtypes of C, SELF_TYPEC could
assume value A, in which case relationship above is in
wrong order. Since it can’t work for all possible
subtypes of C, have to have it be false.

31

Extending ≤ (Cont.)

3.  T ≤ SELF_TYPEC always false
That is, a regular class type is NEVER a subtype of

SELF_TYPEC
To see this, think about the possibilities: where can C

and T be in the type hierarchy?
But, there is one very special case where one could argue

that we should allow this to be true: the case where T
is the only leaf of the descendants of C (T is the
unique minimal type) in the class hierarchy, in which
case T truly would be a subtype of all possible values
of SELF_TYPEC

(For this to happen need type hierarchy below C to be a
single chain down to T)

32

Extending ≤ (Cont.)

3.  T ≤ SELF_TYPEC always false
That is, a regular class type is NEVER a subtype of

SELF_TYPEC
To see this, think about the possibilities: where can C

and T be in the type hierarchy?
The problem with this special case is that it is extremely

fragile: a programmer might come along and add a
subclass of C that is unrelated to T (not an ancestor
of T) and this would no longer work. In this case you
would suddenly be getting type errors in code that
previously type checked fine, and hadn’t been changed
at all. Not a good language design. So no regular class
type is ever a subtype of SELF_TYPEC

33

Extending ≤ (Cont.)

4.  T ≤ T’ (just use rules from before we added

SELF_TYPE, since neither type here involves
SELF_TYPE)

Based on these rules we can extend lub …

34

Summary ≤

Let T and T’ be any types except SELF_TYPE
There are four cases in the definition of ≤

1.  SELF_TYPEC ≤ SELF_TYPEC

2.  SELF_TYPEC ≤ T if C ≤ T

3.  T ≤ SELF_TYPEC always false

4.  T ≤ T’

35

Extending lub(T,T’)

Let T and T’ be any types but SELF_TYPE
Again there are four cases:
1.  lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2.  lub(SELF_TYPEC, T) = lub(C, T)
This is the best we can do because SELF_TYPEC ≤ C

3.  lub(T, SELF_TYPEC) = lub(C, T)

4.  lub(T, T’) defined as before

36

Where Can SELF_TYPE Appear in COOL?

•  The parser checks that SELF_TYPE appears only
where a type is expected

–  But this is too permissive

•  But SELF_TYPE is not allowed everywhere a type
can appear:

1.  class T inherits T’ {…}
•  T, T’ cannot be SELF_TYPE

2.  x : T
•  T can be SELF_TYPE
•  An attribute whose type is ≤ SELF_TYPEC

37

Where Can SELF_TYPE Appear in COOL?

3.  let x : T in E
•  T can be SELF_TYPE
•  x has a type ≤ SELF_TYPEC

4.  new T
•  T can be SELF_TYPE
•  Creates an object of the same dynamic type as self

5.  m@T(E1,…,En)
•  T cannot be SELF_TYPE

•  Because in dynamic dispatch T must be an actual class name

Where Can SELF_TYPE Not Appear in COOL?

6.  m(x : T) : T’ { … }
•  Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

Consider the method call e.m(e’), where e’ has

type T0. According to our rule for method
types, T0 must be a subtype of the type of
the formal parameter. If, however, the
formal parameter has type SELF_TYPE, then
must have T0 ≤ SELF_TYPE, which is a no-no

39

Where Can SELF_TYPE Not Appear in COOL?

6.  m(x : T) : T’ { … }
•  Only T’ can be SELF_TYPE !

What else could go wrong if T were SELF_TYPE?

40

Where Can SELF_TYPE Not Appear in COOL?

class A { comp(x : SELF_TYPE) : Bool {…}; };
class B inherits A {
 b : int;
 comp(x : SELF_TYPE) : Bool { … x.b …}; };
…
 let x : A ← new B in … x.comp(new A); …
…

static type A
dynamic type B
the key here!

note use of attribute
b in overriding method

presumably compares input
parameter with self

41

Where Can SELF_TYPE Not Appear in COOL?

class A { comp(x : SELF_TYPE) : Bool {…}; };
class B inherits A {
 b : int;
 comp(x : SELF_TYPE) : Bool { … x.b …}; };
…
 let x : A ← new B in … x.comp(new A); …
…

presumably compares input
parameter with self

statically type checks fine: x has static type A, and in
code for A, SELF_TYPE is A, so passing in a new A is fine.
But dynamic type of x is B, so when x.comp() call is
executed, it is executing the b version method, but with
an object of dynamic type A! Result is a runtime crash!

Another Extension

•  So now, let’s extend our type rules by
integrating the rules for SELF_TYPE.

42

43

Typing Rules for SELF_TYPE

•  Since occurrences of SELF_TYPE depend on
the enclosing class we need to carry more
context during type checking (i.e., another
environment)
–  We need to always know the class to which the rule

is applying, which is why there is a C below
•  New form of the typing judgment:
 O,M,C ├ e : T

 (An expression e occurring in the body of C has
static type T given a variable type environment O
and method signatures M)

44

Type Checking Rules

•  The next step is to design type rules using
SELF_TYPE for each language construct

•  Most of the rules look the same except that the
augmented ≤ and lub are used

•  Example:
O(Id) = T0
O,M,C ├ e1 : T1
T1 ≤ T0
O,M,C ├ Id ← e1 : T1

[Assign]

45

What’s Different?

•  Some rules do have to change: Recall the old
rule for dispatch

O,M,C ├ e0 : T0
 !
O,M,C ├ en : Tn
M(T0, f) = (T1’,…,Tn’,Tn+1’)
Tn+1’ ≠ SELF_TYPE
Ti ≤ Ti’ 1 ≤ i ≤ n
O,M,C ├ e0.f(e1,…,en) : Tn+1’

implicit in our
previous version
of this rule, but
made explicit
here

But being able to return SELF_TYPE is exactly
where the use of SELF_TYPE buys us something!

What’s Different?

•  If the return type of the method is
SELF_TYPE then the type of the dispatch is
the type of the dispatch expression:

O,M,C ├ e0 : T0
 !
O,M,C ├ en : Tn
M(T0, f) = (T1’,…,Tn’, SELF_TYPE)
Ti ≤ Ti’ 1 ≤ i ≤ n
O,M,C ├ e0.f(e1,…,en) : T0

note!

47

What’s Different?

•  Note this rule handles the Stock example

•  Formal parameters cannot be SELF_TYPE

•  Actual arguments can be SELF_TYPE
–  The extended ≤ relation handles this case

•  The type T0 of the dispatch expression could be
SELF_TYPE
–  Which class is used to find the declaration of f?
–  Answer: it is safe to use the class where the dispatch appears

48

What’s Different?

•  The type T0 of the dispatch expression could be

SELF_TYPE
–  Which class is used to find the declaration of f?
–  Answer: it is safe to use the class where the dispatch appears

O,M,C ├ e0 : SELF_TYPEC
M(C, f) = (…)
O,M,C ├ e0.f(e1)

because e0 occurs in class C, use C in the lookup
of type signature

49

Static Dispatch

•  Recall the original rule for static dispatch

O,M,C ├ e0 : T0
 !
O,M,C ├ en : Tn
T0 ≤ T
M(T, f) = (T1’,…,Tn’,Tn+1’)
Tn+1’ ≠ SELF_TYPE
Ti ≤ Ti’ 1 ≤ i ≤ n
O,M,C ├ e0@T.f(e1,…,en) : Tn+1’

50

Static Dispatch

•  If the return type of the method is
SELF_TYPE we have:

O,M,C ├ e0 : T0
 !
O,M,C ├ en : Tn
T0 ≤ T
M(T, f) = (T1’,…,Tn’,SELF_TYPE)
Ti ≤ Ti’ 1 ≤ i ≤ n
O,M,C ├ e0@T.f(e1,…,en) : T0

note return type is T0, not T. Why?

51

Static Dispatch

•  Why is this rule correct?

•  If we dispatch a method returning
SELF_TYPE in class T, don’t we get back a T?

•  No. SELF_TYPE is the type of the self
parameter, which may be a subtype of the
class in which the method appears
–  SELF_TYPE is the type of the self parameter. So

even though we are dispatching to a method of
class T, the self parameter still has type To.

New Rules

•  There are two new rules using SELF_TYPE

O,M,C ├ self : SELF_TYPEC

O,M,C ├ new SELF_TYPE : SELF_TYPEC

•  There are a number of other places where
SELF_TYPE is used

Note these are rules where we need to know the class C

53

Summary of SELF_TYPE

•  The extended ≤ and lub operations can do a lot of the
work.

•  SELF_TYPE can be used only in a few places. Be sure
it isn’t used anywhere else.

•  A use of SELF_TYPE always refers to any subtype of
the current class
–  The exception is the type checking of dispatch. The method

return type of SELF_TYPE might have nothing to do with the
current class

54

Why Cover SELF_TYPE ?

•  SELF_TYPE is a research idea
–  It adds more expressiveness to the type system

•  SELF_TYPE itself is not so important
–  except for the project

•  Rather, SELF_TYPE is meant to illustrate that type
checking can be quite subtle

•  In practice, there should be a balance between the
complexity of the type system and its expressiveness

55

Error Recovery

•  As with parsing, it is important to recover from type
errors

•  Detecting where errors occur is easier than in parsing
–  Because we already have the AST
–  So there is no reason to skip over portions of code

•  The Problem:
–  What type is assigned to an expression with no legitimate

type?
•  Type checker works by structural induction, and it can’t just get stuck
•  Need to assign some type to something like this, because…

–  This type will influence the typing of the enclosing expression

56

Error Recovery Attempt

•  Assign type Object to ill-typed expressions

assume bug in code and
x is undefined

let y : Int ← x + 2 in y + 3

•  We’ll walk down the AST. When we get to the
leaf for x, we’ll see that x is undefined, which
will generate an error message

•  In order to recover, since x is undeclared we’ll
assume its type is Object

•  But now we move up the AST, and attempt to
type the + operation, in which we have
Object + Int

57

Error Recovery Attempt

•  Assign type Object to ill-typed expressions

assume bug in code and
x is undefined

let y : Int ← x + 2 in y + 3

•  This will generate another typing error,
something like “+ applied to an object”

•  Since we can’t type Object + Int, our
recovery strategy says we give it type
Object, so Object + Int = Object

58

Error Recovery Attempt

•  But the next AST node will be the
initialization, in which we are assigning
something of type Object to a variable
declared as type Int, which will generate yet
another type error.

•  Bottom line: this strategy is workable (we
don’t get stuck), but a single error can lead to
a whole cascade of errors

•  Part of the reason for cascade: very few
operations defined for type Object

59

Better Error Recovery

•  We can introduce a new type called No_type for use
with ill-typed expressions
–  Not available to the programmer – just there for the use of

the compiler

•  Special property: Define No_type ≤ C for all types C
–  Subtype of every type
–  Note this is opposite of Object

•  Every operation is defined for No_type
–  And all return a No_type result

•  Only one typing error (“x is undefined”) for:
let y : Int ← x + 2 in y + 3

60

Notes

•  A “real” compiler would use something like
No_type

•  However, there are some implementation issues
–  The class hierarchy is not a tree anymore (it’s a DAG

with No_type at the bottom)
•  So tree algorithms can no longer be applied

•  The Object solution is fine in the class project
–  Because the above issue is just too much of a hassle to

deal with at our level
–  We just live with the cascading errors

