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Overview of Semantic Analysis 
 

Lecture 9 
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Midterm Thursday 

•  In class 
–  SCPD students come to campus for the exam 

•  Material through lecture 8 
 
•  Open note 

–  Laptops OK, but no internet or computation 
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Outline 

•  The role of semantic analysis in a compiler 
–  A laundry list of tasks 

•  Scope 
–  Implementation: symbol tables 

•  Types   



4 

The Compiler So Far 

•  Lexical analysis 
–  Detects inputs with illegal tokens 

•  Parsing 
–  Detects inputs with ill-formed parse trees 

•  Semantic analysis 
–  Last “front end” phase 
–  Catches all remaining errors – last line of defense 

•  So in a sense, these are filters that reject 
input strings, leaving only valid programs  
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Why a Separate Semantic Analysis? 

•  Parsing cannot catch some errors 

•  Some language constructs not context-free 

•  Situation is very similar to moving from lexical 
analysis to parsing phases: some things cannot 
be expressed by CFGs, so we need something 
more to catch these 
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What Does Semantic Analysis Do? 

•  Checks of many kinds (this is typical).   
•  coolc checks 

1.  All identifiers are declared (and scope restrictions 
observed)  

2.  Type Checking (major functions of semantic 
analyzer for cool)  
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What Does Semantic Analysis Do? 

•  coolc checks:  
3.  Inheritance relationships (this and next two are 

common issues due to object-oriented nature of 
language) 

4.  Classes defined only once 
5.  Methods in a class defined only once 
6.  Reserved identifiers are not misused (common 

issue for most languages) 
And others (which we will also be discussing. . .) 

•  Main message: semantic analyzers do quite a 
few checks 

–  The requirements depend on the language 



Caveat: 

•  Checks listed in the previous slides are 
common for statically typed languages, but 
other classes of languages will have other 
kinds of checks 
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Scope 

•  Motivating problem for scope is that we want 
to match identifier declarations with uses of 
those identifiers 
–  Want to know which variable X we’re talking about 

if variable X might have more than one definition  
–  Important static analysis step in most languages 
–  Including COOL! 
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What’s Wrong? 

•  Example 1 
Let y: String ← “abc” in y + 3 

 
Note that declaration will be matched with use, so this 

will generate an error, since trying to add a string to a 
number 

 



11 

What’s Wrong? 

•  Example 2 
Let y: Int in x + 3 

 
Here’s a declaration of y, but no use of y (which is not an 

error – though we might want to generate a warning). 
But there is use of x, with no declaration here.  
Where is the definition?  If no outer declaration of x, 
then we should generate an undeclared variable error. 

 
Note: An example property that is not context 

free. 
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What’s Wrong? 

•  Example 2 
Let y: Int in x + 3 

 
Here’s a declaration of y, but no use of y (which is not an 

error – though we might want to generate a warning). 
But there is use of x, with no declaration here.  
Where is the definition?  If no outer declaration of x, 
then we should generate an undeclared variable error. 

•  Specifically, whether this statement generates an 
error depends on whether there is an outer 
declaration of x.  In other words, it depends on 
context, so it’s not context free! 

. 
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Scope (Cont.) 

•  The scope of an identifier is the portion of a 
program in which that identifier is accessible 

•  The same identifier may refer to different 
things in different parts of the program 
–  Different scopes for same name can’t overlap 
–  So a given variable x can only refer to one thing in a 

given part of the program 
•  An identifier may have restricted scope 

–  Think of examples where scope of variable is less 
than the entire program   
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Static vs. Dynamic Scope 

•  Most languages have static scope 
–  Scope depends only on the program text, not run-

time behavior 
–  Cool has static scope 
–  Though probably every language you have used to 

this point is statically scoped, it may come as a 
surprise that there are alternatives to static 
scoping… 
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Static vs. Dynamic Scope 

•  A few languages are dynamically scoped 
–  For a while there was some argument over which 

type of scoping was better.  It would seem that 
static scoping has won that argument. 

–  Lisp, SNOBOL 
–  Lisp has changed (a long time ago) to mostly static 

scoping 
–  Dynamic scope depends on execution of the 

program 
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Static Scoping Example 

let x: Int <- 0 in 
 { 
  x; 
  let x: Int <- 1 in 
   x; 
  x; 
 } 

 
Three uses of x.  Which refer to which definition? 
 



17 

Static Scoping Example (Cont.) 

let x: Int <- 0 in 
 { 
  x; 
  let x: Int <- 1 in 
   x; 
  x; 
 } 

Uses of x refer to closest enclosing definition 
 Most closely nested rule: variable binds to definition 
(of same name) that is most closely enclosing it. 



Dynamic Scope 

•  A dynamically-scoped variable refers to the 
closest enclosing binding in the execution of 
the program (the most recent binding of the 
variable) 

•  Example 
g(y) = let a ← 4 in f(3); 
f(x) = a; 
–  Note a defined in some function g.  f isn’t in same 

syntactic scope (could be anywhere)  
–  Question: what is the value of a when used in f? 

•  More about dynamic scope later in the course 
–  After we know more about language implementation 
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Scope in Cool 

•  Cool identifier bindings are introduced by 
several mechanisms… 
–  Class declarations (introduce class names) 
–  Method definitions (introduce method names) 
–  Let expressions (introduce object ids) 
–  Formal parameters (introduce object ids) 
–  Attribute definitions (introduce object ids) 
–  Case expressions (introduce object ids) 
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Scope in Cool (Cont.) 

•  Not all kinds of identifiers follow the most-
closely nested rule 

•  For example, a rather large exception to this 
rule is class definitions in Cool 
–  Cannot be nested 
–  Are globally visible throughout the program 

•  Available for use anywhere in the program 

•  In fact, a class name can be used before it is 
defined 



Example: Use Before Definition 

Class Foo { 
 . . . let y: Bar in . . . 

}; 
 
Class Bar { 

 . . .  
}; 

Bar is used before it is defined, and this is perfectly OK 
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More Scope in Cool 

Similarly, attribute names are global within the 
class in which they are defined 

 
Class Foo { 

 f(): Int { a }; 
 a: Int ← 0; 

} 
 method f uses a before it is defined, and again 

this is perfectly OK 
Normally, we list attribute definitions before method  
definitions, but that is not required 
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More Scope (Cont.) 

•  Method/attribute names have quite complex 
rules 

•  Ex. A method need not be defined in the class 
in which it is used, but in some parent class 

•  Methods may also be redefined (overridden) 
–  Gives method a new definition, even though it has 

been defined before 
•  We don’t yet have the language to talk about 

these rules with any precision (but we will) 



Shortly…   

•  We will begin talking about symbol tables.   
•  But first, we introduce an algorithm that we 

will use over and over for the rest of the 
course 
–  And that, as it turns out, helps us a bit with scoping 

rules 
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Implementing the Most-Closely Nested Rule 

•  Much of semantic analysis (and a lot of code 
generation) can be expressed as a recursive 
descent of an AST.  At each step, we are 
processing a node in the AST: 

–  Before: Begin processing an AST node n 
–  Recurse: Process the children of n 
–  After: Finish processing the AST node n 

•  When performing semantic analysis on a 
portion of the the AST, we need to know 
which identifiers are defined 
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Implementing . . . (Cont.) 

•  An example of this recursive descent strategy 
is how we process let bindings to track the set 
of variables that are in scope.  

•  let binding is one subtree of the AST: 

let x: Int ← 0 in e 

•  x is defined in subtree e 

let x 

  e init 



Implementing . . . (Cont.) 

•  We are processing our AST, when we come to the let 
node 

•  Some information about symbols (the symbol table) is 
passed to the let node 

•  That info is passed to init node 
•  init node processes x: Int ← 0  
•  Sym table plus info about x 
    passed to e node 
•  When done  
    processing e node, 
    Sym table returned 
    to original state 

let x 

  e init 
Sym + x 

Sym 

Sym 



Implementing . . . (Cont.) 

•  So note that when we are done processing this 
portion of the AST, we leave with the Sym 
table being in exactly the same state it was 
when we entered this subtree. 

let x 

  e init 
Sym + x 

Sym 

Sym 
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Symbol Tables (in terminology of 3 part alg.) 

•  Consider again: let x: Int ← 0 in e 
•  Idea: 

–  Before processing e, add definition of x to current 
definitions, overriding any other definition of x 

–  Recurse 
–  After processing e, remove definition of x and 

restore old definition of x 

•  A symbol table is a data structure that tracks 
the current bindings of identifiers  
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A Simple Symbol Table Implementation 

•  Structure is a stack 

•  Operations 
–  add_symbol(x)  push x and associated info, such as 

x’s type, on the stack 
–  find_symbol(x)  search stack, starting from top, 

for x. Return first x found or NULL if none found 
•  Note that this takes care of hiding of old definitions 

–  remove_symbol()  pop the stack 
•  Leaves stack in same state it was before processing node 

•  Why does this work? 
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Limitations 

•  The simple symbol table works for let 
–  Because symbols added one at a time 
–  Because declarations are perfectly nested 

•  This is really the whole reason we can use a stack for let 

•  What doesn’t it work for? 



Limitations 

•  The simple symbol table works for let 
–  Because symbols added one at a time 
–  Because declarations are perfectly nested 

•  This is really the whole reason we can use a stack for let 

•  What doesn’t it work for?  Well, consider the 
following (illegal) piece of code 

f(x : Int, x: Int) { } 
 

•  Detecting this would be difficult with stack 
–  Because functions introduce multiple names at once 

into the same scope, while stack adds one at a time 



Limitations 

•  The simple symbol table works for let 
–  Because symbols added one at a time 
–  Because declarations are perfectly nested 

•  This is really the whole reason we can use a stack for let 

•  What doesn’t it work for?  Well, consider the 
following (illegal) piece of code 

f(x : Int, x: Int) { } 
 

•  Detecting this would be difficult with stack 
–  So both instances would be pushed on stack, one 

after the other, with no indication that there is an 
error 



A Fancier Symbol Table (Solves the problem) 

•  enter_scope()     start a new nested scope 
•  find_symbol(x)   finds current x (or null) 
•  add_symbol(x)    add a symbol x to the table 
•  check_scope(x)  true if x defined in current scope 
•  exit_scope()        exit current scope 
•  Biggest change here is explicit enter and exit scope 

functions.  
•  New structure is a stack of scopes 

•   each entry in stack is an entire scope 
•  What’s in a scope is all the variables that are defined at the same 

level, within that single scope 



A Fancier Symbol Table (Solves the problem) 

•  enter_scope()     start a new nested scope 
•  find_symbol(x)   finds current x (or null) 
•  add_symbol(x)    add a symbol x to the table 
•  check_scope(x)  true if x defined in current scope 
•  exit_scope()        exit current scope 

•  Note that check_scope() allows us to detect the kind of 
errors where x is defined twice in the same scope 
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A Fancier Symbol Table (Solves the problem) 

•  enter_scope()     start a new nested scope 
•  find_symbol(x)   finds current x (or null) 
•  add_symbol(x)    add a symbol x to the table 
•  check_scope(x)  true if x defined in current scope 
•  exit_scope()        exit current scope 
 
    I supply a symbol table manager for your project (using 

this same structure, with the interface already provided if 
you don’t want to write your own). 
 (I’m sure that thought warms you.) 



37 

Class Definitions   

•  Class names behave differently than variables 
introduced in let bindings and in function parameters 
–  Class names can be used before being defined 

•  As a consequence, we can’t check class names 
–  using a symbol table 
–  or even in one pass (because we can’t know if all of the used 

classes are defined until we’ve seen the entire file) 
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Class Definitions   

•  Solution: Two passes over the program 
–  Pass 1: Gather all class names 
–  Pass 2: Do the checking 

•  Lesson: Semantic analysis requires multiple passes 
–  Probably more than two 
–  So don’t be afraid to write a compiler that makes multiple 

simple passes if this makes your life easier 
–  Better than one very complicated pass with entangled code 
–  Often much easier to debug your compiler if you’re willing to 

make multiple passes over the input 



 
 
 

Let us now begin our introduction to types. 
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Types 

•  What is a type? 
–  The notion varies from language to language 

•  Consensus 
–  A set of values 
–  A set of operations on those values 

•  Or perhaps unique to those values 
•  Often this issue of operations is important 

•  Classes are one instantiation of the modern 
notion of type 
–  But this is just one way that modern programming 

languages express the notion of type  
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Type Examples 

•  int  
–  Operations include +, -, *, /, >, <, … 

•  String 
–  Operations include concatenation, test whether 

string is empty, string length, charAt, indexOf, … 

•  Operations on these are different, and we’d 
like to avoid mixing them up 

•  In Cool, class names are all the types 
–  With the exception of self-type 



Types (cont.) 

•  In Cool, class names are all the types 
–  With the exception of self-type 

•  Note that this need not be the case for all 
programming languages 
–  Though it’s often convenient in OO languages to 

equate class names with types, this need not be the 
case 

–  There are other designs where class names are not 
the only types 

–  And in other languages, whether there is no notion 
of class, types are completely different things 

•  But be aware that even for OO languages, equating classes 
and types is not the only possible design 
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Why Do We Need Type Systems? 

Consider the assembly language fragment 

add  $r1, $r2, $r3 
(adds $r2 to $r3 and puts result in $r1) 

 
 
What are the types of $r1, $r2, $r3? 

  



Why Do We Need Type Systems? 

Consider the assembly language fragment 

add  $r1, $r2, $r3 
(adds $r2 to $r3 and puts result in $r1) 

 
What are the types of $r1, $r2, $r3? 
   Trick question: We might hope they are integers, but 

at assembly level, we can’t tell.  Moreover, regardless 
of what type they are intended to represent, to 
assembly they are just bit patterns, which can always 
be added, even if doing so makes no sense whatsoever! 
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Types and Operations 

•  It’s useful to think about which operations are 
legal for values of each type 

–  It doesn’t make sense to add a function pointer and 
an integer in C 

•  Makes no sense to add a bit pattern representing a 
function pointer to one that represents an integer 

–  It does make sense to add two integers 
•  Makes sense to add two bit patterns that represent 

integers to get a bit pattern representing sum 
–  The problem: both situations have the same 

assembly language implementation! 
•  So can’t tell at assembly level which one you’re doing 



Bottom Line 

•  If we want to be sure that we only perform 
operations that ``make sense’’, then we need 

1.  Some sort of type description 

2.  Some sort of type system to enforce these 
distinctions 
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And to Perhaps Belabor the Point: Type 
Systems 

•  A language’s type system specifies which 
operations are valid for which types 

•  The goal of type checking is to ensure that 
operations are used only with the correct 
types 
–  Enforces intended interpretation of values, 

because nothing else will! 
–  Once we get down to the machine code level, it’s all 

just 0s and 1s, and the machine is happy to perform 
whatever operation we want on these, whether or 
not the operations make sense 
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Type Checking Overview 

•  Today, programming languages fall into three 
categories, with respect to how they treat 
types: 
–  Statically typed: All or almost all checking of types 

is done as part of compilation (C, Java, Cool) 

–  Dynamically typed: Almost all checking of types is 
done as part of program execution (Scheme, Lisp, 
Python, Perl) 

–  Untyped: No type checking (machine code, some 
would say C) 
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The Type Wars (Ongoing for Decades) 

•  Competing views on relative merits of static vs. dynamic 
typing 

•  Static typing proponents say: 
–  Static checking catches many programming errors at compile time 

•  Allows you to prove that some errors can never happen at runtime 
–  Avoids overhead of runtime type checks (so faster) 

•  Which would have to happen on every operation during execution 
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The Type Wars (Ongoing for Decades) 

•  Competing views on relative merits of static vs. dynamic 
typing 
 

•  Dynamic typing proponents say: 
–  Static type systems are restrictive 

•  Because you have to prove that the program is well-typed, which is 
accomplished by restricting the kinds of programs you can write 

•  Some programs are more difficult to write in a static type system because the 
compiler has a hard time proving them correct 

–  Rapid prototyping difficult within a static type system 
•  The belief being that if you’re exploring some idea, you may not know what all 

the types are at that point in time, and having to commit to something that is 
going to work in all cases (having a type correct program) is constraining and 
makes the work go slower 



The Type Wars (Cont.) 

•  In practice, code written in statically typed 
languages usually has an “escape” mechanism 
–  Unsafe casts in C, C++, Java 

•  In C, results in runtime crash, in Java results in uncaught 
exception 

•  People who code in dynamically typed 
languages often end up retrofitting their code 
to a statically typed language  
–  For optimization, debugging: If a dynamically typed language 

becomes popular enough, the first thing people want is an 
optimizing compiler, and the first thing such a compiler needs 
is type information since it helps generate much better code. 
So people try to harvest as many “types” here as they can. 



The Type Wars (Cont.) 

•  In practice, code written in statically typed 
languages usually has an “escape” mechanism 
–  Unsafe casts in C, C++, Java 

•  In C, results in runtime crash, in Java results in uncaught 
exception 

•  People who code in dynamically typed 
languages often end up retrofitting their code 
to a statically typed language  
–  For optimization, debugging 

•  It’s debatable whether this compromise 
represents the best or worst of both worlds 
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Types Outline 

•  Type concepts in COOL 

•  Notation for type rules 
–  Logical rules of inference 

•  COOL type rules 

•  General properties of type systems 
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Cool Types (Cool is statically typed) 

•  The types are: 
–  Class Names 

•  So defining a class defines a new type 
–  SELF_TYPE 

•  More on this later 

•  The user declares types for identifiers 

•  The compiler infers types for expressions 
–  Infers a type for every expression 

•  Goes through AST and, using declared type, calculates 
type for every expression and subexpression  
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Terminology: Type Checking vs. Type Inference 

•  Type Checking is the process of verifying fully 
typed programs 
–  Simpler: we have a fully typed program (AST with 

all types filled in) 
•  Type Inference is the process of filling in 

missing type information 
–  Have an AST with no type info or missing type info 

and we have to fill in missing types 
•  The two are different (in many languages very 

different), but the terms are often used 
interchangeably 
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Rules of Inference 

•  We have seen two examples of formal notation 
specifying parts of a compiler 
–  Regular expressions 
–  Context-free grammars 

•  The appropriate formalism for type checking 
is logical rules of inference 
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Why Rules of Inference? 

•  Inference rules have the form 
If Hypothesis is true, then Conclusion is true 
I.e., implication statement that some hypothesis implies some 

conclusion 
 

•  Type checking computes via reasoning 
If E1 and E2 have certain types, then E3 has a 

certain type 

•  Rules of inference are a compact notation for 
“If-Then” statements 
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From English to an Inference Rule 

•  The notation is easy to read with practice 

•  We’ll start with a simplified system and 
gradually add features 

•  Building blocks 
–  Symbol ∧  is “and” 
–  Symbol ⇒ is “if-then” 
–  x:T is “x has type T” 
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From English to an Inference Rule (2) 

If e1 has type Int and e2 has type Int,           
then e1 + e2 has type Int 

 
(e1 has type Int) ∧ (e2 has type Int)  ⇒               

e1 + e2 has type Int 
 
(e1: Int ∧ e2: Int)  ⇒  (e1 + e2): Int 
 

Notice that we’ve gone from English to a purely  
mathematical notation 
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From English to an Inference Rule (3) 

The statement  
(e1: Int ∧ e2: Int)  ⇒  e1 + e2: Int 

 
is a special case of an inference rule: 
 

Hypothesis1 ∧ . . . ∧ Hypothesisn ⇒ Conclusion 
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Notation for Inference Rules 

•  By tradition, inference rules are written: 
├ Hypothesis … ├ Hypothesis 

├ Conclusion 
 

•  Cool type rules have hypotheses and 
conclusions 

 ├ e:T 
•    ├  means “it is provable that . . .” 

 
 

Means exactly same thing as the previous slide 

“turnstile” is new notation 

“it is provable that e 
has type T” 
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Notation for Inference Rules 

•  By tradition, inference rules are written: 
├ Hypothesis … ├ Hypothesis 

├ Conclusion 
 

•  So read: “If it is provable that Hypothesis1 is 
true, and it is provable that Hypothesis2 is 
true,…, then it is provable that Conclusion is 
true” 

 
 



Some Simple Type Rules 

 
i is an integer literal 

├ i : Int 
 
 

├ e1: Int     ├ e2: Int   
├ e1 + e2 : Int 
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[Int] 

[Add] 
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Two Rules (Cont.) 

•  These rules give templates describing how to 
type integers and + expressions 

•  By filling in the templates, we can produce 
complete typings for expressions 



Example: Show 1 + 2 has type Int 

 
 
 

1 is an int literal     2 is an int literal 
├ 1 : Int                   ├ 2: Int   

├ 1 + 2 : Int 

65 



Example: Show 1 + 2 has type Int 

 
 
 

1 is an int literal     2 is an int literal 
├ 1 : Int                   ├ 2: Int   

├ 1 + 2 : Int 
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proof of the type of number 1 proof of the type of number 2 
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Soundness 

•  A type system is sound if 
–  Whenever ├ e: T 
–  Then e evaluates to a value of type T 

•  We only want sound rules 
–  But  some sound rules are better than others: 

i is an integer literal 
├ i : Object 

Though true, not all that useful, since it  
doesn’t let us perform integer operations on i  
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Type Checking Proofs 

•  Type checking proves facts e: T 
–  Proof is on the structure of the AST 
–  Proof has the shape of the AST 
–  One type rule is used for each AST node 

•  In the type rule used for a node e: 
–  Hypotheses are the proofs of types of e’s 

subexpressions 
–  Conclusion is the type of e 

•  Types are computed in a bottom-up pass over 
the AST 



Rules for Constants 

 
 

├ false : Bool 
 
 

s is a string literal 
├ s: String 
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[False] 

[String] 



70 

Rule for New 

new T produces an object of type T 
–  Ignore SELF_TYPE for now . . .(again, we’ll deal 

with this one later) 

 
├ new T : T 

[New] 



Two More Rules 

 
├ e:  Bool 
├ !e : Bool 

 
 

├ e1: Bool 
├ e2:T 

├ while e1 loop e2 pool:Object 
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[Not] 

[Loop] 

e2 has to have some type 
here, but we don’t care 
what it is 



The Type of a While Loop 
 

That a while loop has type Object is something 
of a design decision 

Could have designed a language where the type of the 
loop is T and the value of the loop is the last value of 
the loop that was executed.  Problem: if e1 is false, 
you never evaluate e2, so type of loop is void.  
Dereferencing a void gives a runtime error.  So to 
discourage programmers from relying on the loop 
returning a meaningful value, it is just typed as 
Object. 
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So far, straightforward.  Now, a Problem 

•  What is the type of a variable reference? 

x is a variable 
├ x: ? 

 
•  Looking at x by itself, this local, structural 

rule does not carry enough information to give 
x a type. 

 
 

[Var] 
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So far, straightforward.  Now, a Problem 
 
•  Looking at x by itself, this local, structural 

rule does not carry enough information to give 
x a type. 
–  Inference rules have property that all information 

needs to be local 
•  Everything we need to know to carry out the function of 

the rule needs to be contained in the rule itself 
•  There are no external data structures 
•  Nothing being passing around here on the side 
•  Everything must be encoded in the rule 
•  So far, we just don’t know enough to say what the type of 

a variable should be 
–  Solution: Put more information in the rules… 
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A Solution 

•  Put more information in the rules! 

•  A type environment gives types for free 
variables 
–  A type environment is a function from 

ObjectIdentifiers to Types 
–  A variable is free in an expression if it is not 

defined within the expression 
•  Ex: in expression x by itself, x is free 
•  Ex: in x + y, x and y are free 
•  Ex: in let y     … in x + y, x is free, but y is not 

–  We say y is a bound variable in this expression 



76 

The Intuition 

•  If you have an expression with free variables, 
and you want to type check it, you have know 
what the types of those variables are. 
–  You can type check x if you know the type of x  
–  You can type check x + y if you know the types of x 

and y 
–  You can type check the let statement if you know the 

type of x (type of y is provided in statement) 
•  So the free variables are those variables where 

you need to know the type in order to carry out 
the type checking 
–  A type environment encodes this information 
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Type Environments 

Let O be a function from ObjectIdentifiers to 
Types 
 We are going to extend the kinds of logical 
statements that we can prove: 

The sentence 
  O ├ e: T 

is read: ``Under the assumption that free 
variables have the types given by O, it is 
provable that the expression e has the type T’’ 
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Type Environments 

Let O be a function from ObjectIdentifiers to 
Types 
 We are going to extend the kinds of logical 
statements that we can prove: 

The sentence 
  O ├ e: T 

 
 
Notation very nicely separates what we are 

assuming from what we are proving 
 

assumptions what we wish to prove 
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Modified Rules 

The type environment must be added to all the 
earlier rules: 

i is an integer literal 
O ├ i : Int 

 
 

O ├ e1: Int   O ├ e2: Int   
O ├ e1 + e2 : Int 

 

[Int] 

[Add] 

note this doesn’t change anything here  
because i is an integer literal 

but this does effect change, since it potentially 
gives type information about free variables  
in the expressions 

note: same  
set of 
assumptions 
O 
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New Rules 

And we can write new rules (this one fixing our 
earlier problem) 

 
O(x) = T 
O├ x: T 

 
 
 
 
 

[Var] 



Now let’s look at a rule that does something 
interesting with the variables from the point of 
view of the environments… 
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Let 
 

O[T0/x] ├ e1: T1 
O ├ let x:T0 in e1 : T1 

 
O[T/y] means O modified at the single point y, to 

return T  
(O is a function.  O[T/y] is also a function.  It is a 

function that has the same value as O for every 
input except y, at which it has value T) 

I.e., O[T/y](y) = T 
       O[T/y](x) = O(x) for x ≠ y 
 
 
 
 

[Let-No-Init] 



Let 

 
O[T0/x] ├ e1: T1 

O ├ let x:T0 in e1 : T1 

 
   So, this says we’re going to type check e1 in 

the same environment O except that at point 
x, it’s going to have type T0, since that is the 
type of the new identifier that’s bound at e1. 

  
Note that the let-rule enforces variable scope 
 
 
 

[Let-No-Init] 



Let 

 
O[T0/x] ├ e1: T1 

O ├ let x:T0 in e1 : T1 

 
So, the statement below: We modify our type 
environment to include a new assumption about x (since 
the type of x has been determined in the let statement).  
Once we are out of the let statement, however, this 
assumption is removed, as we are back in the original 
type environment. 
Note that the let-rule enforces variable scope 
 
 
 

[Let-No-Init] 
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Notes 

•  The type environment gives types to the free 
identifiers in the current scope 
–  And is implemented by the symbol table 

•  The type environment is passed down the AST 
from the root towards the leaves 

•  Types are computed up the AST from the 
leaves towards the root 



Let with Initialization 

Now consider let with initialization: 
 
 

O ├ e0: T0 

O[T0/x] ├ e1: T1 
O ├ let x:T0 ←e0 in e1 : T1 

 
Note that we don’t use the modified environment for 

type checking e0, since the new definition of x is not 
available in e0, so if there is a declaration of x in e0, it 
must be using an older definition of x. 

[Let-Init] 
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Let with Initialization 

Now consider let with initialization: 
 
 

O ├ e0: T0 

O[T0/x] ├ e1: T1 
O ├ let x:T0 ←e0 in e1 : T1 

This rule is weak.  Why?  Because there really is no 
problem if e0 has a type that is a subtype of T0.  But 
the rule limits only to initializer with same type as x. 
So we can do better if we introduce subtyping 
relations on classes. 

 

[Let-Init] 

note this says that  
e0 has to have same  
type as x 
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Subtyping 

•  Define a relation ≤ on classes (subclass relation) 
–  X ≤ X 
–  X ≤ Y if X inherits from Y 
–  X ≤ Z if X ≤ Y and Y ≤ Z 

•  An improvement 
O ├ e0: T0 

O[T/x] ├ e1: T1 
T0 ≤ T  

O ├ let x:T ←e0 in e1 : T1 

[Let-Init] 
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Assignment 

•  Both let rules are sound, but more programs 
typecheck with the second one 

•  More uses of subtyping: 

O(x) = T0 

O ├ e1: T1 
T1 ≤ T0  

O ├ x ← e1 : T1 

[Assign] 
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Assignment 

•  Both let rules are sound, but more programs 
typecheck with the second one 

•  More uses of subtyping: 

O(x) = T0 

O ├ e1: T1 
T1 ≤ T0  

O ├ x ← e1 : T1 

[Assign] 

In all of these, look at the hypotheses and the conclusions 
being drawn.  See why the conclusions are reasonable. 
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Initialized Attributes 

•  Let OC(x) = T for all attributes x:T in class C 
–  Basically, Oc is the type environment inside class C 

•  Attribute initialization is similar to let, except 
for the scope of names 

OC(x) = T0 

OC ├ e1: T1 
T1 ≤ T0  

OC  ├ x:T0 ← e1: T1 
[Attr-Init] 
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If-Then-Else 

•  Consider: 
if e0 then e1 else e2 fi 

•  The result can be either e1 or e2 
 

•  The type is either e1’s type of e2’s type 

•  At compile time, the best we can do is the 
smallest supertype larger than the type of e1 
or e2 
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Least Upper Bounds 

•  lub(X,Y), the least upper bound of X and Y, is 
Z if 
–  X ≤ Z ∧ Y ≤ Z 

Z is an upper bound 
 

–  X ≤ Z’ ∧ Y ≤ Z’ ⇒ Z ≤ Z’ 
Z is least among upper bounds 
 

•  In COOL (and in most OO languages), the least 
upper bound of two types is their least 
common ancestor in the inheritance tree 
(think back to algorithms course) 



If-Then-Else Revisited 

 
 

O ├ e0: Bool 
O ├ e1: T1 

O ├ e2: T2 

O ├ if e0 then e1 else e2 fi: lub(T1,T2) 
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[If-Then-Else] 
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Case 

•  The rule for case expressions takes a lub over 
all branches 

O ├ e0: T0 

O[T1/x1] ├ e1: T1’ 
. . . 

O[Tn/xn] ├ en: Tn’ 

O ├ case e0 of x1:T1 → e1; …; xn:Tn → en; esac : lub(T1’,…,Tn’) 

[Case] 
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Method Dispatch 

•  There is a problem with type checking method 
calls: 

O ├ e0: T0 

O ├ e1: T1 

. . . 
O ├ en: Tn 

O ├ e0.f(e1, … ,en): ? 

•  We need information about the formal 
parameters and return type of f 

[Dispatch] 

Problem is similar to type checking variable references:  
we know nothing here about type of f (what does it return?)  
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Notes on Dispatch 

•  Added wrinkle in Cool: method and object 
identifiers live in different name spaces 
–  A method foo and an object foo can coexist in the 

same scope 
•  So two environments: one for objects, one for methods 

•  In the type rules, this is reflected by a 
separate mapping M for method signatures 

M(C,f) = (T1,. . .Tn,Tn+1) 
means in class C there is a method f 

f(x1:T1,. . .,xn:Tn): Tn+1 

Note argument types vs. result type 



The Dispatch Rule Revisited 

O, M ├ e0: T0 
O, M ├ e1: T1 

. . . 
O, M ├ en: Tn 

M(T0,f) = (T1’,. . .Tn’,Tn+1) 
Ti ≤ Ti’  for 1 ≤ i ≤ n 

O, M ├ e0.f(e1, … ,en): Tn+1 
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[Dispatch] 

` Note the use of T0, which is a type where we 
would expect a class.  What gives here?  
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Static Dispatch 

•  Static dispatch is a variation on normal 
dispatch 

•  The method is found in the class explicitly 
named by the programmer 
–  Recall from Project 2: This is the dispatch method 

that uses the @ symbol 

•  The inferred type of the dispatch expression 
must conform to the specified type 



Static Dispatch (Cont.) 

O, M ├ e0: T0 
O, M ├ e1: T1 

. . . 
O, M ├ en: Tn 

T0 ≤ T 
M(T,f) = (T1’,. . .Tn’,Tn+1) 

Ti ≤ Ti’  for 1 ≤ i ≤ n 
O, M ├ e0@T.f(e1, … ,en): Tn+1 
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[StaticDispatch] 

Run the method not from class of e0, but 
from some ancestor class T of class of e0 
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The Method Environment 

•  The method environment must be added to all 
rules 

•  In most cases, M is passed down but not 
actually used 
–  Only the dispatch rules use M 

 
O,M ├ e1: Int   O,M ├ e2: Int   

O,M ├ e1 + e2 : Int 
[Add] 
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More Environments 

•  For some cases involving SELF_TYPE, we need 
to know the class in which an expression 
appears 
–  More on this later 

•  The full type environment for COOL: 
–  A mapping O giving types to object id’s 
–  A mapping M giving types to methods 
–  The current class C 
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Sentences 

The form of a sentence in the logic is 
O,M,C ├ e: T 

 
Example: 

 
O,M,C ├ e1: Int   O,M,C ├ e2: Int   

O,M,C ├ e1 + e2 : Int [Add] 
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Type Systems 

•  The rules in this lecture are COOL-specific 
–  More info on rules for self next time 
–  Other languages have very different rules 

•  General themes 
–  Type rules are defined on the structure of 

expressions 
–  Types of variables are modeled by an environment 

•  Warning: Type rules are very compact! 
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One-Pass Type Checking 

•  COOL type checking can be implemented in a 
single traversal over the AST 
–  Though we work down the AST to the leaves, then 

back up to the root 

•  Type environment is passed down the tree 
–  From parent to child 

•  Types are passed up the tree 
–  From child to parent 
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Implementing Type Systems 

 
O,M,C ├ e1: Int   O,M,C ├ e2: Int   

O,M,C ├ e1 + e2 : Int 
 
TypeCheck(Environment, e1 + e2) = { 

 T1 = TypeCheck(Environment, e1); 
 T2 = TypeCheck(Environment, e2); 
 Check T1 == T2 == Int; 
 return Int; } 

[Add] 

Note TypeCheck() function is recursive 

record containing O,M, C 



Let Init 

O,M,C ├ e0: T0 
O[T/x],M,C ├ e1: T1 

T0 ≤ T 
O,M,C ├ let x:T ← e0 in e1 : T1 
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[Let-Init] 

TypeCheck(Environment, let x:T ← e0  in e1) = { 
 T0 = TypeCheck(Environment, e0); 
 T1 = TypeCheck(Environment.add(x:T), e1); 
 Check subtype(T0,T1 ); 
 return T1 } 


