
1

Overview of Semantic Analysis

Lecture 9

2

Midterm Thursday

•  In class
–  SCPD students come to campus for the exam

•  Material through lecture 8

•  Open note

–  Laptops OK, but no internet or computation

3

Outline

•  The role of semantic analysis in a compiler
–  A laundry list of tasks

•  Scope
–  Implementation: symbol tables

•  Types

4

The Compiler So Far

•  Lexical analysis
–  Detects inputs with illegal tokens

•  Parsing
–  Detects inputs with ill-formed parse trees

•  Semantic analysis
–  Last “front end” phase
–  Catches all remaining errors – last line of defense

•  So in a sense, these are filters that reject
input strings, leaving only valid programs

5

Why a Separate Semantic Analysis?

•  Parsing cannot catch some errors

•  Some language constructs not context-free

•  Situation is very similar to moving from lexical
analysis to parsing phases: some things cannot
be expressed by CFGs, so we need something
more to catch these

6

What Does Semantic Analysis Do?

•  Checks of many kinds (this is typical).
•  coolc checks

1.  All identifiers are declared (and scope restrictions
observed)

2.  Type Checking (major functions of semantic
analyzer for cool)

7

What Does Semantic Analysis Do?

•  coolc checks:
3.  Inheritance relationships (this and next two are

common issues due to object-oriented nature of
language)

4.  Classes defined only once
5.  Methods in a class defined only once
6.  Reserved identifiers are not misused (common

issue for most languages)
And others (which we will also be discussing. . .)

•  Main message: semantic analyzers do quite a
few checks

–  The requirements depend on the language

Caveat:

•  Checks listed in the previous slides are
common for statically typed languages, but
other classes of languages will have other
kinds of checks

8

9

Scope

•  Motivating problem for scope is that we want
to match identifier declarations with uses of
those identifiers
–  Want to know which variable X we’re talking about

if variable X might have more than one definition
–  Important static analysis step in most languages
–  Including COOL!

10

What’s Wrong?

•  Example 1
Let y: String ← “abc” in y + 3

Note that declaration will be matched with use, so this

will generate an error, since trying to add a string to a
number

11

What’s Wrong?

•  Example 2
Let y: Int in x + 3

Here’s a declaration of y, but no use of y (which is not an

error – though we might want to generate a warning).
But there is use of x, with no declaration here.
Where is the definition? If no outer declaration of x,
then we should generate an undeclared variable error.

Note: An example property that is not context

free.

12

What’s Wrong?

•  Example 2
Let y: Int in x + 3

Here’s a declaration of y, but no use of y (which is not an

error – though we might want to generate a warning).
But there is use of x, with no declaration here.
Where is the definition? If no outer declaration of x,
then we should generate an undeclared variable error.

•  Specifically, whether this statement generates an
error depends on whether there is an outer
declaration of x. In other words, it depends on
context, so it’s not context free!

.

13

Scope (Cont.)

•  The scope of an identifier is the portion of a
program in which that identifier is accessible

•  The same identifier may refer to different
things in different parts of the program
–  Different scopes for same name can’t overlap
–  So a given variable x can only refer to one thing in a

given part of the program
•  An identifier may have restricted scope

–  Think of examples where scope of variable is less
than the entire program

14

Static vs. Dynamic Scope

•  Most languages have static scope
–  Scope depends only on the program text, not run-

time behavior
–  Cool has static scope
–  Though probably every language you have used to

this point is statically scoped, it may come as a
surprise that there are alternatives to static
scoping…

15

Static vs. Dynamic Scope

•  A few languages are dynamically scoped
–  For a while there was some argument over which

type of scoping was better. It would seem that
static scoping has won that argument.

–  Lisp, SNOBOL
–  Lisp has changed (a long time ago) to mostly static

scoping
–  Dynamic scope depends on execution of the

program

16

Static Scoping Example

let x: Int <- 0 in
 {
 x;
 let x: Int <- 1 in
 x;
 x;
 }

Three uses of x. Which refer to which definition?

17

Static Scoping Example (Cont.)

let x: Int <- 0 in
 {
 x;
 let x: Int <- 1 in
 x;
 x;
 }

Uses of x refer to closest enclosing definition
 Most closely nested rule: variable binds to definition
(of same name) that is most closely enclosing it.

Dynamic Scope

•  A dynamically-scoped variable refers to the
closest enclosing binding in the execution of
the program (the most recent binding of the
variable)

•  Example
g(y) = let a ← 4 in f(3);
f(x) = a;
–  Note a defined in some function g. f isn’t in same

syntactic scope (could be anywhere)
–  Question: what is the value of a when used in f?

•  More about dynamic scope later in the course
–  After we know more about language implementation

19

Scope in Cool

•  Cool identifier bindings are introduced by
several mechanisms…
–  Class declarations (introduce class names)
–  Method definitions (introduce method names)
–  Let expressions (introduce object ids)
–  Formal parameters (introduce object ids)
–  Attribute definitions (introduce object ids)
–  Case expressions (introduce object ids)

20

Scope in Cool (Cont.)

•  Not all kinds of identifiers follow the most-
closely nested rule

•  For example, a rather large exception to this
rule is class definitions in Cool
–  Cannot be nested
–  Are globally visible throughout the program

•  Available for use anywhere in the program

•  In fact, a class name can be used before it is
defined

Example: Use Before Definition

Class Foo {
 . . . let y: Bar in . . .

};

Class Bar {

 . . .
};

Bar is used before it is defined, and this is perfectly OK

22

More Scope in Cool

Similarly, attribute names are global within the
class in which they are defined

Class Foo {

 f(): Int { a };
 a: Int ← 0;

}
 method f uses a before it is defined, and again

this is perfectly OK
Normally, we list attribute definitions before method
definitions, but that is not required

23

More Scope (Cont.)

•  Method/attribute names have quite complex
rules

•  Ex. A method need not be defined in the class
in which it is used, but in some parent class

•  Methods may also be redefined (overridden)
–  Gives method a new definition, even though it has

been defined before
•  We don’t yet have the language to talk about

these rules with any precision (but we will)

Shortly…

•  We will begin talking about symbol tables.
•  But first, we introduce an algorithm that we

will use over and over for the rest of the
course
–  And that, as it turns out, helps us a bit with scoping

rules

24

25

Implementing the Most-Closely Nested Rule

•  Much of semantic analysis (and a lot of code
generation) can be expressed as a recursive
descent of an AST. At each step, we are
processing a node in the AST:

–  Before: Begin processing an AST node n
–  Recurse: Process the children of n
–  After: Finish processing the AST node n

•  When performing semantic analysis on a
portion of the the AST, we need to know
which identifiers are defined

26

Implementing . . . (Cont.)

•  An example of this recursive descent strategy
is how we process let bindings to track the set
of variables that are in scope.

•  let binding is one subtree of the AST:

let x: Int ← 0 in e

•  x is defined in subtree e

let x

 e init

Implementing . . . (Cont.)

•  We are processing our AST, when we come to the let
node

•  Some information about symbols (the symbol table) is
passed to the let node

•  That info is passed to init node
•  init node processes x: Int ← 0
•  Sym table plus info about x
 passed to e node
•  When done
 processing e node,
 Sym table returned
 to original state

let x

 e init
Sym + x

Sym

Sym

Implementing . . . (Cont.)

•  So note that when we are done processing this
portion of the AST, we leave with the Sym
table being in exactly the same state it was
when we entered this subtree.

let x

 e init
Sym + x

Sym

Sym

29

Symbol Tables (in terminology of 3 part alg.)

•  Consider again: let x: Int ← 0 in e
•  Idea:

–  Before processing e, add definition of x to current
definitions, overriding any other definition of x

–  Recurse
–  After processing e, remove definition of x and

restore old definition of x

•  A symbol table is a data structure that tracks
the current bindings of identifiers

30

A Simple Symbol Table Implementation

•  Structure is a stack

•  Operations
–  add_symbol(x) push x and associated info, such as

x’s type, on the stack
–  find_symbol(x) search stack, starting from top,

for x. Return first x found or NULL if none found
•  Note that this takes care of hiding of old definitions

–  remove_symbol() pop the stack
•  Leaves stack in same state it was before processing node

•  Why does this work?

31

Limitations

•  The simple symbol table works for let
–  Because symbols added one at a time
–  Because declarations are perfectly nested

•  This is really the whole reason we can use a stack for let

•  What doesn’t it work for?

Limitations

•  The simple symbol table works for let
–  Because symbols added one at a time
–  Because declarations are perfectly nested

•  This is really the whole reason we can use a stack for let

•  What doesn’t it work for? Well, consider the
following (illegal) piece of code

f(x : Int, x: Int) { }

•  Detecting this would be difficult with stack
–  Because functions introduce multiple names at once

into the same scope, while stack adds one at a time

Limitations

•  The simple symbol table works for let
–  Because symbols added one at a time
–  Because declarations are perfectly nested

•  This is really the whole reason we can use a stack for let

•  What doesn’t it work for? Well, consider the
following (illegal) piece of code

f(x : Int, x: Int) { }

•  Detecting this would be difficult with stack
–  So both instances would be pushed on stack, one

after the other, with no indication that there is an
error

A Fancier Symbol Table (Solves the problem)

•  enter_scope() start a new nested scope
•  find_symbol(x) finds current x (or null)
•  add_symbol(x) add a symbol x to the table
•  check_scope(x) true if x defined in current scope
•  exit_scope() exit current scope
•  Biggest change here is explicit enter and exit scope

functions.
•  New structure is a stack of scopes

•  each entry in stack is an entire scope
•  What’s in a scope is all the variables that are defined at the same

level, within that single scope

A Fancier Symbol Table (Solves the problem)

•  enter_scope() start a new nested scope
•  find_symbol(x) finds current x (or null)
•  add_symbol(x) add a symbol x to the table
•  check_scope(x) true if x defined in current scope
•  exit_scope() exit current scope

•  Note that check_scope() allows us to detect the kind of
errors where x is defined twice in the same scope

36

A Fancier Symbol Table (Solves the problem)

•  enter_scope() start a new nested scope
•  find_symbol(x) finds current x (or null)
•  add_symbol(x) add a symbol x to the table
•  check_scope(x) true if x defined in current scope
•  exit_scope() exit current scope

 I supply a symbol table manager for your project (using

this same structure, with the interface already provided if
you don’t want to write your own).
 (I’m sure that thought warms you.)

37

Class Definitions

•  Class names behave differently than variables
introduced in let bindings and in function parameters
–  Class names can be used before being defined

•  As a consequence, we can’t check class names
–  using a symbol table
–  or even in one pass (because we can’t know if all of the used

classes are defined until we’ve seen the entire file)

38

Class Definitions

•  Solution: Two passes over the program
–  Pass 1: Gather all class names
–  Pass 2: Do the checking

•  Lesson: Semantic analysis requires multiple passes
–  Probably more than two
–  So don’t be afraid to write a compiler that makes multiple

simple passes if this makes your life easier
–  Better than one very complicated pass with entangled code
–  Often much easier to debug your compiler if you’re willing to

make multiple passes over the input

Let us now begin our introduction to types.

39

40

Types

•  What is a type?
–  The notion varies from language to language

•  Consensus
–  A set of values
–  A set of operations on those values

•  Or perhaps unique to those values
•  Often this issue of operations is important

•  Classes are one instantiation of the modern
notion of type
–  But this is just one way that modern programming

languages express the notion of type

41

Type Examples

•  int
–  Operations include +, -, *, /, >, <, …

•  String
–  Operations include concatenation, test whether

string is empty, string length, charAt, indexOf, …

•  Operations on these are different, and we’d
like to avoid mixing them up

•  In Cool, class names are all the types
–  With the exception of self-type

Types (cont.)

•  In Cool, class names are all the types
–  With the exception of self-type

•  Note that this need not be the case for all
programming languages
–  Though it’s often convenient in OO languages to

equate class names with types, this need not be the
case

–  There are other designs where class names are not
the only types

–  And in other languages, whether there is no notion
of class, types are completely different things

•  But be aware that even for OO languages, equating classes
and types is not the only possible design

43

Why Do We Need Type Systems?

Consider the assembly language fragment

add $r1, $r2, $r3
(adds $r2 to $r3 and puts result in $r1)

What are the types of $r1, $r2, $r3?

Why Do We Need Type Systems?

Consider the assembly language fragment

add $r1, $r2, $r3
(adds $r2 to $r3 and puts result in $r1)

What are the types of $r1, $r2, $r3?
 Trick question: We might hope they are integers, but

at assembly level, we can’t tell. Moreover, regardless
of what type they are intended to represent, to
assembly they are just bit patterns, which can always
be added, even if doing so makes no sense whatsoever!

45

Types and Operations

•  It’s useful to think about which operations are
legal for values of each type

–  It doesn’t make sense to add a function pointer and
an integer in C

•  Makes no sense to add a bit pattern representing a
function pointer to one that represents an integer

–  It does make sense to add two integers
•  Makes sense to add two bit patterns that represent

integers to get a bit pattern representing sum
–  The problem: both situations have the same

assembly language implementation!
•  So can’t tell at assembly level which one you’re doing

Bottom Line

•  If we want to be sure that we only perform
operations that ``make sense’’, then we need

1.  Some sort of type description

2.  Some sort of type system to enforce these
distinctions

46

And to Perhaps Belabor the Point: Type
Systems

•  A language’s type system specifies which
operations are valid for which types

•  The goal of type checking is to ensure that
operations are used only with the correct
types
–  Enforces intended interpretation of values,

because nothing else will!
–  Once we get down to the machine code level, it’s all

just 0s and 1s, and the machine is happy to perform
whatever operation we want on these, whether or
not the operations make sense

48

Type Checking Overview

•  Today, programming languages fall into three
categories, with respect to how they treat
types:
–  Statically typed: All or almost all checking of types

is done as part of compilation (C, Java, Cool)

–  Dynamically typed: Almost all checking of types is
done as part of program execution (Scheme, Lisp,
Python, Perl)

–  Untyped: No type checking (machine code, some
would say C)

49

The Type Wars (Ongoing for Decades)

•  Competing views on relative merits of static vs. dynamic
typing

•  Static typing proponents say:
–  Static checking catches many programming errors at compile time

•  Allows you to prove that some errors can never happen at runtime
–  Avoids overhead of runtime type checks (so faster)

•  Which would have to happen on every operation during execution

50

The Type Wars (Ongoing for Decades)

•  Competing views on relative merits of static vs. dynamic
typing

•  Dynamic typing proponents say:
–  Static type systems are restrictive

•  Because you have to prove that the program is well-typed, which is
accomplished by restricting the kinds of programs you can write

•  Some programs are more difficult to write in a static type system because the
compiler has a hard time proving them correct

–  Rapid prototyping difficult within a static type system
•  The belief being that if you’re exploring some idea, you may not know what all

the types are at that point in time, and having to commit to something that is
going to work in all cases (having a type correct program) is constraining and
makes the work go slower

The Type Wars (Cont.)

•  In practice, code written in statically typed
languages usually has an “escape” mechanism
–  Unsafe casts in C, C++, Java

•  In C, results in runtime crash, in Java results in uncaught
exception

•  People who code in dynamically typed
languages often end up retrofitting their code
to a statically typed language
–  For optimization, debugging: If a dynamically typed language

becomes popular enough, the first thing people want is an
optimizing compiler, and the first thing such a compiler needs
is type information since it helps generate much better code.
So people try to harvest as many “types” here as they can.

The Type Wars (Cont.)

•  In practice, code written in statically typed
languages usually has an “escape” mechanism
–  Unsafe casts in C, C++, Java

•  In C, results in runtime crash, in Java results in uncaught
exception

•  People who code in dynamically typed
languages often end up retrofitting their code
to a statically typed language
–  For optimization, debugging

•  It’s debatable whether this compromise
represents the best or worst of both worlds

53

Types Outline

•  Type concepts in COOL

•  Notation for type rules
–  Logical rules of inference

•  COOL type rules

•  General properties of type systems

54

Cool Types (Cool is statically typed)

•  The types are:
–  Class Names

•  So defining a class defines a new type
–  SELF_TYPE

•  More on this later

•  The user declares types for identifiers

•  The compiler infers types for expressions
–  Infers a type for every expression

•  Goes through AST and, using declared type, calculates
type for every expression and subexpression

55

Terminology: Type Checking vs. Type Inference

•  Type Checking is the process of verifying fully
typed programs
–  Simpler: we have a fully typed program (AST with

all types filled in)
•  Type Inference is the process of filling in

missing type information
–  Have an AST with no type info or missing type info

and we have to fill in missing types
•  The two are different (in many languages very

different), but the terms are often used
interchangeably

56

Rules of Inference

•  We have seen two examples of formal notation
specifying parts of a compiler
–  Regular expressions
–  Context-free grammars

•  The appropriate formalism for type checking
is logical rules of inference

57

Why Rules of Inference?

•  Inference rules have the form
If Hypothesis is true, then Conclusion is true
I.e., implication statement that some hypothesis implies some

conclusion

•  Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a

certain type

•  Rules of inference are a compact notation for
“If-Then” statements

58

From English to an Inference Rule

•  The notation is easy to read with practice

•  We’ll start with a simplified system and
gradually add features

•  Building blocks
–  Symbol ∧ is “and”
–  Symbol ⇒ is “if-then”
–  x:T is “x has type T”

59

From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int,
then e1 + e2 has type Int

(e1 has type Int) ∧ (e2 has type Int) ⇒

e1 + e2 has type Int

(e1: Int ∧ e2: Int) ⇒ (e1 + e2): Int

Notice that we’ve gone from English to a purely
mathematical notation

60

From English to an Inference Rule (3)

The statement
(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

is a special case of an inference rule:

Hypothesis1 ∧ . . . ∧ Hypothesisn ⇒ Conclusion

61

Notation for Inference Rules

•  By tradition, inference rules are written:
├ Hypothesis … ├ Hypothesis

├ Conclusion

•  Cool type rules have hypotheses and
conclusions

 ├ e:T
•  ├ means “it is provable that . . .”

Means exactly same thing as the previous slide

“turnstile” is new notation

“it is provable that e
has type T”

62

Notation for Inference Rules

•  By tradition, inference rules are written:
├ Hypothesis … ├ Hypothesis

├ Conclusion

•  So read: “If it is provable that Hypothesis1 is
true, and it is provable that Hypothesis2 is
true,…, then it is provable that Conclusion is
true”

Some Simple Type Rules

i is an integer literal

├ i : Int

├ e1: Int ├ e2: Int
├ e1 + e2 : Int

63

[Int]

[Add]

64

Two Rules (Cont.)

•  These rules give templates describing how to
type integers and + expressions

•  By filling in the templates, we can produce
complete typings for expressions

Example: Show 1 + 2 has type Int

1 is an int literal 2 is an int literal
├ 1 : Int ├ 2: Int

├ 1 + 2 : Int

65

Example: Show 1 + 2 has type Int

1 is an int literal 2 is an int literal
├ 1 : Int ├ 2: Int

├ 1 + 2 : Int

66

proof of the type of number 1 proof of the type of number 2

67

Soundness

•  A type system is sound if
–  Whenever ├ e: T
–  Then e evaluates to a value of type T

•  We only want sound rules
–  But some sound rules are better than others:

i is an integer literal
├ i : Object

Though true, not all that useful, since it
doesn’t let us perform integer operations on i

68

Type Checking Proofs

•  Type checking proves facts e: T
–  Proof is on the structure of the AST
–  Proof has the shape of the AST
–  One type rule is used for each AST node

•  In the type rule used for a node e:
–  Hypotheses are the proofs of types of e’s

subexpressions
–  Conclusion is the type of e

•  Types are computed in a bottom-up pass over
the AST

Rules for Constants

├ false : Bool

s is a string literal
├ s: String

69

[False]

[String]

70

Rule for New

new T produces an object of type T
–  Ignore SELF_TYPE for now . . .(again, we’ll deal

with this one later)

├ new T : T

[New]

Two More Rules

├ e: Bool
├ !e : Bool

├ e1: Bool
├ e2:T

├ while e1 loop e2 pool:Object

71

[Not]

[Loop]

e2 has to have some type
here, but we don’t care
what it is

The Type of a While Loop

That a while loop has type Object is something
of a design decision

Could have designed a language where the type of the
loop is T and the value of the loop is the last value of
the loop that was executed. Problem: if e1 is false,
you never evaluate e2, so type of loop is void.
Dereferencing a void gives a runtime error. So to
discourage programmers from relying on the loop
returning a meaningful value, it is just typed as
Object.

72

73

So far, straightforward. Now, a Problem

•  What is the type of a variable reference?

x is a variable
├ x: ?

•  Looking at x by itself, this local, structural

rule does not carry enough information to give
x a type.

[Var]

74

So far, straightforward. Now, a Problem

•  Looking at x by itself, this local, structural

rule does not carry enough information to give
x a type.
–  Inference rules have property that all information

needs to be local
•  Everything we need to know to carry out the function of

the rule needs to be contained in the rule itself
•  There are no external data structures
•  Nothing being passing around here on the side
•  Everything must be encoded in the rule
•  So far, we just don’t know enough to say what the type of

a variable should be
–  Solution: Put more information in the rules…

75

A Solution

•  Put more information in the rules!

•  A type environment gives types for free
variables
–  A type environment is a function from

ObjectIdentifiers to Types
–  A variable is free in an expression if it is not

defined within the expression
•  Ex: in expression x by itself, x is free
•  Ex: in x + y, x and y are free
•  Ex: in let y … in x + y, x is free, but y is not

–  We say y is a bound variable in this expression

76

The Intuition

•  If you have an expression with free variables,
and you want to type check it, you have know
what the types of those variables are.
–  You can type check x if you know the type of x
–  You can type check x + y if you know the types of x

and y
–  You can type check the let statement if you know the

type of x (type of y is provided in statement)
•  So the free variables are those variables where

you need to know the type in order to carry out
the type checking
–  A type environment encodes this information

77

Type Environments

Let O be a function from ObjectIdentifiers to
Types
 We are going to extend the kinds of logical
statements that we can prove:

The sentence
 O ├ e: T

is read: ``Under the assumption that free
variables have the types given by O, it is
provable that the expression e has the type T’’

78

Type Environments

Let O be a function from ObjectIdentifiers to
Types
 We are going to extend the kinds of logical
statements that we can prove:

The sentence
 O ├ e: T

Notation very nicely separates what we are

assuming from what we are proving

assumptions what we wish to prove

79

Modified Rules

The type environment must be added to all the
earlier rules:

i is an integer literal
O ├ i : Int

O ├ e1: Int O ├ e2: Int
O ├ e1 + e2 : Int

[Int]

[Add]

note this doesn’t change anything here
because i is an integer literal

but this does effect change, since it potentially
gives type information about free variables
in the expressions

note: same
set of
assumptions
O

80

New Rules

And we can write new rules (this one fixing our
earlier problem)

O(x) = T
O├ x: T

[Var]

Now let’s look at a rule that does something
interesting with the variables from the point of
view of the environments…

81

Let

O[T0/x] ├ e1: T1
O ├ let x:T0 in e1 : T1

O[T/y] means O modified at the single point y, to

return T
(O is a function. O[T/y] is also a function. It is a

function that has the same value as O for every
input except y, at which it has value T)

I.e., O[T/y](y) = T
 O[T/y](x) = O(x) for x ≠ y

[Let-No-Init]

Let

O[T0/x] ├ e1: T1

O ├ let x:T0 in e1 : T1

 So, this says we’re going to type check e1 in

the same environment O except that at point
x, it’s going to have type T0, since that is the
type of the new identifier that’s bound at e1.

Note that the let-rule enforces variable scope

[Let-No-Init]

Let

O[T0/x] ├ e1: T1

O ├ let x:T0 in e1 : T1

So, the statement below: We modify our type
environment to include a new assumption about x (since
the type of x has been determined in the let statement).
Once we are out of the let statement, however, this
assumption is removed, as we are back in the original
type environment.
Note that the let-rule enforces variable scope

[Let-No-Init]

85

Notes

•  The type environment gives types to the free
identifiers in the current scope
–  And is implemented by the symbol table

•  The type environment is passed down the AST
from the root towards the leaves

•  Types are computed up the AST from the
leaves towards the root

Let with Initialization

Now consider let with initialization:

O ├ e0: T0

O[T0/x] ├ e1: T1
O ├ let x:T0 ←e0 in e1 : T1

Note that we don’t use the modified environment for

type checking e0, since the new definition of x is not
available in e0, so if there is a declaration of x in e0, it
must be using an older definition of x.

[Let-Init]

87

Let with Initialization

Now consider let with initialization:

O ├ e0: T0

O[T0/x] ├ e1: T1
O ├ let x:T0 ←e0 in e1 : T1

This rule is weak. Why? Because there really is no
problem if e0 has a type that is a subtype of T0. But
the rule limits only to initializer with same type as x.
So we can do better if we introduce subtyping
relations on classes.

[Let-Init]

note this says that
e0 has to have same
type as x

88

Subtyping

•  Define a relation ≤ on classes (subclass relation)
–  X ≤ X
–  X ≤ Y if X inherits from Y
–  X ≤ Z if X ≤ Y and Y ≤ Z

•  An improvement
O ├ e0: T0

O[T/x] ├ e1: T1
T0 ≤ T

O ├ let x:T ←e0 in e1 : T1

[Let-Init]

89

Assignment

•  Both let rules are sound, but more programs
typecheck with the second one

•  More uses of subtyping:

O(x) = T0

O ├ e1: T1
T1 ≤ T0

O ├ x ← e1 : T1

[Assign]

90

Assignment

•  Both let rules are sound, but more programs
typecheck with the second one

•  More uses of subtyping:

O(x) = T0

O ├ e1: T1
T1 ≤ T0

O ├ x ← e1 : T1

[Assign]

In all of these, look at the hypotheses and the conclusions
being drawn. See why the conclusions are reasonable.

91

Initialized Attributes

•  Let OC(x) = T for all attributes x:T in class C
–  Basically, Oc is the type environment inside class C

•  Attribute initialization is similar to let, except
for the scope of names

OC(x) = T0

OC ├ e1: T1
T1 ≤ T0

OC ├ x:T0 ← e1: T1
[Attr-Init]

92

If-Then-Else

•  Consider:
if e0 then e1 else e2 fi

•  The result can be either e1 or e2

•  The type is either e1’s type of e2’s type

•  At compile time, the best we can do is the
smallest supertype larger than the type of e1
or e2

93

Least Upper Bounds

•  lub(X,Y), the least upper bound of X and Y, is
Z if
–  X ≤ Z ∧ Y ≤ Z

Z is an upper bound

–  X ≤ Z’ ∧ Y ≤ Z’ ⇒ Z ≤ Z’
Z is least among upper bounds

•  In COOL (and in most OO languages), the least
upper bound of two types is their least
common ancestor in the inheritance tree
(think back to algorithms course)

If-Then-Else Revisited

O ├ e0: Bool
O ├ e1: T1

O ├ e2: T2

O ├ if e0 then e1 else e2 fi: lub(T1,T2)

94

[If-Then-Else]

95

Case

•  The rule for case expressions takes a lub over
all branches

O ├ e0: T0

O[T1/x1] ├ e1: T1’
. . .

O[Tn/xn] ├ en: Tn’

O ├ case e0 of x1:T1 → e1; …; xn:Tn → en; esac : lub(T1’,…,Tn’)

[Case]

96

Method Dispatch

•  There is a problem with type checking method
calls:

O ├ e0: T0

O ├ e1: T1

. . .
O ├ en: Tn

O ├ e0.f(e1, … ,en): ?

•  We need information about the formal
parameters and return type of f

[Dispatch]

Problem is similar to type checking variable references:
we know nothing here about type of f (what does it return?)

97

Notes on Dispatch

•  Added wrinkle in Cool: method and object
identifiers live in different name spaces
–  A method foo and an object foo can coexist in the

same scope
•  So two environments: one for objects, one for methods

•  In the type rules, this is reflected by a
separate mapping M for method signatures

M(C,f) = (T1,. . .Tn,Tn+1)
means in class C there is a method f

f(x1:T1,. . .,xn:Tn): Tn+1

Note argument types vs. result type

The Dispatch Rule Revisited

O, M ├ e0: T0
O, M ├ e1: T1

. . .
O, M ├ en: Tn

M(T0,f) = (T1’,. . .Tn’,Tn+1)
Ti ≤ Ti’ for 1 ≤ i ≤ n

O, M ├ e0.f(e1, … ,en): Tn+1

98

[Dispatch]

` Note the use of T0, which is a type where we
would expect a class. What gives here?

99

Static Dispatch

•  Static dispatch is a variation on normal
dispatch

•  The method is found in the class explicitly
named by the programmer
–  Recall from Project 2: This is the dispatch method

that uses the @ symbol

•  The inferred type of the dispatch expression
must conform to the specified type

Static Dispatch (Cont.)

O, M ├ e0: T0
O, M ├ e1: T1

. . .
O, M ├ en: Tn

T0 ≤ T
M(T,f) = (T1’,. . .Tn’,Tn+1)

Ti ≤ Ti’ for 1 ≤ i ≤ n
O, M ├ e0@T.f(e1, … ,en): Tn+1

100

[StaticDispatch]

Run the method not from class of e0, but
from some ancestor class T of class of e0

101

The Method Environment

•  The method environment must be added to all
rules

•  In most cases, M is passed down but not
actually used
–  Only the dispatch rules use M

O,M ├ e1: Int O,M ├ e2: Int

O,M ├ e1 + e2 : Int
[Add]

102

More Environments

•  For some cases involving SELF_TYPE, we need
to know the class in which an expression
appears
–  More on this later

•  The full type environment for COOL:
–  A mapping O giving types to object id’s
–  A mapping M giving types to methods
–  The current class C

103

Sentences

The form of a sentence in the logic is
O,M,C ├ e: T

Example:

O,M,C ├ e1: Int O,M,C ├ e2: Int

O,M,C ├ e1 + e2 : Int [Add]

104

Type Systems

•  The rules in this lecture are COOL-specific
–  More info on rules for self next time
–  Other languages have very different rules

•  General themes
–  Type rules are defined on the structure of

expressions
–  Types of variables are modeled by an environment

•  Warning: Type rules are very compact!

105

One-Pass Type Checking

•  COOL type checking can be implemented in a
single traversal over the AST
–  Though we work down the AST to the leaves, then

back up to the root

•  Type environment is passed down the tree
–  From parent to child

•  Types are passed up the tree
–  From child to parent

106

Implementing Type Systems

O,M,C ├ e1: Int O,M,C ├ e2: Int

O,M,C ├ e1 + e2 : Int

TypeCheck(Environment, e1 + e2) = {

 T1 = TypeCheck(Environment, e1);
 T2 = TypeCheck(Environment, e2);
 Check T1 == T2 == Int;
 return Int; }

[Add]

Note TypeCheck() function is recursive

record containing O,M, C

Let Init

O,M,C ├ e0: T0
O[T/x],M,C ├ e1: T1

T0 ≤ T
O,M,C ├ let x:T ← e0 in e1 : T1

107

[Let-Init]

TypeCheck(Environment, let x:T ← e0 in e1) = {
 T0 = TypeCheck(Environment, e0);
 T1 = TypeCheck(Environment.add(x:T), e1);
 Check subtype(T0,T1);
 return T1 }

