
1

Top-Down Parsing
and

Intro to Bottom-Up Parsing

Lecture 7

2

Predictive Parsers

•  Like recursive-descent but parser can
“predict” which production to use

•  Predictive parsers are never wrong
–  Always able to guess correctly which production

will lead to a successful parse, provided a string is
in L(G).

•  Two strategies allow this:
–  By looking at next few tokens

•  Lookahead
–  By restricting the form of the grammar

3

Predictive Parsers

•  Advantage: No backtracking
–  So parsing is completely “deterministic”

•  Predictive parsers accept LL(k) grammars
–  L means “left-to-right” scan of input

•  We always do this, so all our techniques would have “L” in
first position

–  L means “leftmost derivation”
–  k means “predict based on k tokens of lookahead”

•  Theory is developed for arbitrary k, but…
–  In practice, LL(1) is used

4

LL(1) vs. Recursive Descent

•  In recursive-descent,
–  At each step, many choices of production to use
–  Backtracking used to undo bad choices

•  In LL(1),
–  At each step, only one choice of production
–  That is

•  When a non-terminal A is leftmost non-terminal in a derivation…
•  And the next input symbol is token t
•  There is a unique production A → α to use

–  Or no production to use (an error state)
–  Any other production is guaranteed to be incorrect…
–  But even the single production A → α might not end up

succeeding
–  Put another way, in LL(1), there is AT MOST one production to

be used in a given situation

5

LL(1) vs. Recursive Descent

•  In recursive-descent,
–  At each step, many choices of production to use
–  Backtracking used to undo bad choices

•  In LL(1),
–  At each step, only one choice of production
–  That is

•  When a non-terminal A is leftmost non-terminal in a derivation…
•  And the next input symbol is token t
•  There is a unique production A → α to use

–  Or no production to use (an error state)

•  LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

•  Recall our favorite grammar
 E → T + E | T
 T → int | int * T | (E)

•  Hard to predict because
–  For T two productions start with int

•  With lookahead 1, can’t choose which production
–  For E it is not clear how to predict

•  What’s more T is a non-terminal so how do we even do the
prediction?

•  Regardless T starts both productions of E, so with single
token of lookahead, not going to be easy to know what to do

7

Predictive Parsing and Left Factoring

•  Recall our favorite grammar
 E → T + E | T
 T → int | int * T | (E)

•  Hard to predict because
–  For T two productions start with int

•  With lookahead 1, can’t choose which production
–  For E it is not clear how to predict

•  What’s more T is a non-terminal so how do we even do the
prediction?

•  We need to left-factor the grammar

This grammar is
unacceptable for
LL(1) parsing

The Idea Behind Left Factoring

•  Eliminate the common prefixes of multiple
productions for a given non-terminal
–  In English: If for some non-terminal there are

multiple productions that have the same prefix, we
want to get rid of that (somehow)

•  Ex:
 E → T + E | T
 T → int | int * T | (E)

E has two productions with prefix T
T has two productions with prefix int

8

9

Left-Factoring Example

•  Recall the grammar
 E → T + E | T
 T → int | int * T | (E)

•  Factor out common prefixes of productions
•  So the prefix appears in only one production
 E → T X
 X → + E | ε
 T → (E) | int Y
 Y → * T | ε

But multiple suffixes!
New nonterminals X
and Y handle suffixes

10

Left-Factoring Example

•  Recall the grammar
 E → T + E | T
 T → int | int * T | (E)

•  Factor out common prefixes of productions
•  So the prefix appears in only one production
 E → T X
 X → + E | ε
 T → (E) | int Y
 Y → * T | ε

Effectively delays the
decision about which
production we’re using

11

LL(1) Parsing Table Example

•  Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

•  The LL(1) parsing table:
int * + () $

E T X T X
X + E ε ε
T int Y (E)
Y * T ε ε ε

leftmost non-terminal

next input token

rhs of production to use

12

LL(1) Parsing Table Example (Cont.)

•  Consider the [E, int] entry
–  “When current non-terminal is E and next input is

int, use production E → T X”
–  This can generate an int in the first position

•  Consider the [Y,+] entry
–  “When current non-terminal is Y and current token

is +, get rid of Y”
–  Y can be followed by + only if Y → ε

13

LL(1) Parsing Tables. Errors

•  Blank entries indicate error situations

•  Consider the [E,*] entry
–  “There is no way to derive a string starting with *

from non-terminal E”

14

Using Parsing Tables

•  Method similar to recursive descent, except
–  For the leftmost non-terminal S
–  We look at the next input token a
–  And choose the production shown at [S,a]

•  A stack records frontier of parse tree
–  Non-terminals that have yet to be expanded
–  Terminals that have yet to matched against the input
–  Top of stack = leftmost pending terminal or non-terminal

•  Reject on reaching error state
•  Accept on end of input & empty stack

15

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y1…Yn
 then stack ← <Y1… Yn rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
until stack == < >

16

LL(1) Parsing Algorithm $ marks bottom of stack

For non-terminal X on top of stack,
lookup production

Pop X, push
production
rhs on stack.
Note
leftmost
symbol of rhs
is on top of
the stack.

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y1…Yn
 then stack ← <Y1… Yn rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
until stack == < >

For terminal t on top of
stack, check t matches next
input token.

17

LL(1) Parsing Example

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

Our Short Term Goal

•  How do we construct LL(1) parse tables?

•  What are the conditions necessary for
constructing LL(1) parse tables?

18

19

Constructing Parsing Tables: The Intuition

•  Consider non-terminal A, production A → α, & token t

The question: Given A and t, under what conditions will
we make the move A → α ?

That is, under what conditions is T[A,t] = α ?

20

Constructing Parsing Tables: The Intuition

•  Consider non-terminal A, production A → α, & token t
•  T[A,t] = α in two cases:

•  If α →* t β
–  α can derive a t in the first position
–  We say that t ∈ First(α)

Note this is →*

Constructing Parsing Tables: The Intuition

•  Consider non-terminal A, production A → α, & token t
•  T[A,t] = α in two cases:

•  Now, assume t ∈ First(α)
–  Doesn’t sound very promising to use α
–  But it turns out it may not be hopeless to use A → α

•  If A → α and α →* ε and S →* β A t δ
–  Useful if stack has A, input is t, and A cannot derive t
–  In this case only option is to get rid of A (by deriving ε)

•  Can work only if t can follow A in at least one derivation
–  We say t ∈ Follow(A)
–  I.e., t is one of the things that can come after A in the

grammar

note β and δ
can be anything

Often A Point of Confusion

•  We are NOT talking about A deriving t
–  A does not produce t
–  We ARE talking about t appearing in a derivation

directly after A
–  So this has nothing to do with what A produces
–  Has to do with where A can appear in derivations

But for right now, let’s concentrate on First sets
(We’ll get to Follow sets in a bit)

22

Computing First Sets

Definition
 First(X) = { t | X →* tα} ∪ {ε | X →* ε}

•  Note: X can be a single terminal, it could be a single
non-terminal, or it could be a string of grammar
symbols

•  t however, must be a terminal
•  For technical reasons, ε needs to be in First(X) if it’s

the case that X can go to ε in zero or more steps
•  Need to keep track of this in order to compute all of the

terminals that are in the first set of a given grammar symbol

24

Computing First Sets

Definition
 First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch:
1.  For t a terminal, First(t) = { t }
2.  For X a non-terminal ε ∈ First(X)

•  if X → ε
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n
•  Note this can only happen if all of the Ai are non-terminals,

since if there are any terminals on the R.H.S. then it can
never completely go to ε

25

Computing First Sets

Definition
 First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch:
1.  For t a terminal, First(t) = { t }
2.  For X a non-terminal ε ∈ First(X)

•  if X → ε
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n

3.  First(α) ⊆ First(X) if X → A1 … An α and ε ∈ First(Ai)
for 1 ≤ i ≤ n

Make sure it’s clear to you why (3) is true

Computing First Sets

Definition
 First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch:
1.  For t a terminal, First(t) = { t }
2.  For X a non-terminal ε ∈ First(X)

•  if X → ε
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n

3.  First(α) ⊆ First(X) if X → A1 … An α and ε ∈ First(Ai)
for 1 ≤ i ≤ n

Note: Rule (1) covers terminals; (2) and (3) cover non-
terminals

27

First Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  First sets
 First(() = { (} First(T) = {int, (}
 First()) = {) } First(E) = {int, (}
 First(int) = { int } First(X) = {+, ε }
 First(+) = { + } First(Y) = {*, ε }
 First(*) = { * }

28

Computing Follow Sets

•  Definition:
 Follow(X) = { t | S →* β X t δ }

•  Recall that the definition of the Follow set for
a given symbol in the grammar is not about
what that symbol can generate, but on where
that symbol can appear

•  In words, t is in Follow(X) if there is some
derivation where terminal t can appear
immediately after the symbol X

Computing Follow Sets

•  Definition:
 Follow(X) = { t | S →* β X t δ }

•  Intuition
–  If X → A B then First(B) ⊆ Follow(A) and
 Follow(X) ⊆ Follow(B)

•  if B →* ε then Follow(X) ⊆ Follow(A)

–  If S is the start symbol then $ ∈ Follow(S)
Recall that $ is special symbol marking end of input

Computing Follow Sets

•  Definition:
 Follow(X) = { t | S →* β X t δ }

•  Intuition
–  If X → A B then First(B) ⊆ Follow(A) and
 Follow(X) ⊆ Follow(B)

•  if B →* ε then Follow(X) ⊆ Follow(A)

–  If S is the start symbol then $ ∈ Follow(S)
–  That is, $ is in the Follow of the start symbol

•  Always added as an initial condition

31

Computing Follow Sets (Cont.)

Algorithm sketch:
1.  $ ∈ Follow(S)
2.  First(β) - {ε} ⊆ Follow(X)

–  For each production A → α X β
3.  Follow(A) ⊆ Follow(X)

–  For each production A → α X β where ε ∈ First(β)

32

When is $ in Follow(α)?

Students are often confused about $, so let’s
discuss exactly when $ is in Follow(α)
 (This is important, since we’ll be using Follow
sets to build the parse table)

First, Some New Language

•  If S is the start symbol of a grammar G, and α
is such that S →* α, then α is a sentential
form of G
–  Note α may contain both terminals and non-

terminals
•  A sentence of G is a sentential form that

contains no nonterminals.
•  Technically speaking, the language of G, L(G),

is the set of sentences of G

33

So, the rule:

•  $ is in Follow(α) if and only if α can appear at
the end of a sentential form

•  EX: Consider the following grammar
E → TX
X → Ta | Cb
T → Tc | ε
C → a | b
•  Note that neither B nor C can end a

sentential form (why?), so $ is not in
Follow(B) or Follow(C). But $ is in Follow(X).

Follow Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  Follow sets
 Follow(+) = { int, (} Follow(*) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(X) = {$,) } Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}

Note, unlike with First sets, Follow sets for terminals
can actually be interesting.

Follow Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  Follow sets
 Follow(+) = { int, (} Follow(*) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(X) = {$,) } Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}

Note Follow((). It makes sense: what can follow an (in
the language? A nested (or an int

Follow Sets. Example

•  Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

•  Follow sets
 Follow(+) = { int, (} Follow(*) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(X) = {$,) } Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}

Similarly, Follow(+). What can follow + in
the language? A new (or an int. Can’t be $ (end input)

So Now

•  We’re going to pull together what we know
about first and follow sets to construct LL(1)
parsing tables.

•  This is done one production at a time,
eventually considering every production in the
grammar

Recall:
 First(X) = { t | X →* tα} ∪ {ε | X →* ε}
 Follow(X) = { t | S →* β X t δ }

38

39

Constructing LL(1) Parsing Tables

•  Construct a parsing table T for CFG G

•  For each production A → α in G do:
–  For each terminal t ∈ First(A) do

•  T[A, t] = α
–  If ε ∈ First(α), for each t ∈ Follow(A) do

•  T[A, t] = α
–  If ε ∈ First(α) and $ ∈ Follow(A) do

•  T[A, $] = α
•  (note this is a special case, since $ is technically

not a terminal symbol)

Constructing LL(1) Parsing Tables

•  Construct a parsing table T for CFG G

•  For each production A → α in G do:
–  For each terminal t ∈ First(A) do

•  T[A, t] = α
–  If ε ∈ First(α), for each t ∈ Follow(A) do

•  T[A, t] = α
–  If ε ∈ First(α) and $ ∈ Follow(A) do

•  T[A, $] = α
•  (note this is a special case, since $ is technically

not a terminal symbol)
 This is the algorithm for building LL(1) tables!

Note: α might be ε

41

LL(1) Parsing Table Example

•  Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

•  The LL(1) parsing table:
int * + () $

E T X T X
X + E ε ε
T int Y (E)
Y * T ε ε ε

leftmost non-terminal

next input token

rhs of production to use

Reference

 First(() = { (} First(T) = {int, (}
 First()) = {) } First(E) = {int, (}
 First(int) = { int } First(X) = {+, ε }
 First(+) = { + } First(Y) = {*, ε }
 First(*) = { * }

 Follow(+) = { int, (} Follow(*) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(X) = {$,) } Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}

43

Another Example

S → Sa | b

First(S) = {b}, Follow(S) = {$, a}

•  The LL(1) parsing table:
a b $

S b
Sa

ε

The problem: both productions
can produce a b in the first position,
giving entry with multiple moves

44

Notes on LL(1) Parsing Tables

•  If any entry is multiply defined then G is not
LL(1)
–  If G is ambiguous
–  If G is left recursive
–  If G is not left-factored
–  And in other cases as well
–  In fact, definition of LL(1) is that a grammar is

NOT LL(1) iff the built LL(1) table has a multiply
defined entry

•  Most programming language CFGs are not LL(1)

These amount to quick
checks for
 NOT LL(1)-ness

45

Bottom Line on LL(1) Parsing

•  Most programming language CFGs are not LL(1)
–  LL(1) grammars are just too weak to capture all of

the interesting and important structures in real-
world programming languages

•  There are more powerful formalisms for
describing practical grammars

•  So, why bother with LL(1)?
–  Well, it turns out that these formalisms build on

everything we’ve learned here for LL(1) grammars,
so our effort is not wasted.

–  Ideas just assembled in a more sophisticated way
to build more powerful parts

46

Bottom-Up Parsing

•  Bottom-up parsing is more general than
(deterministic) top-down parsing
–  And just as efficient
–  Builds on ideas in top-down parsing

•  Bottom-up is the preferred method
–  Used in most parser generator tools (including CUP)

•  Concepts today, algorithms next time

Recall where we are:

We talked about Recursive Descent parsing,
which is completely general but requires

backtracking.

Then we talked about LL(1), which
is not completely general, but requires no

backtracking.

We are now embarking on bottom-up parsing.

47

48

An Introductory Example

•  Bottom-up parsers don’t need left-factored
grammars
–  Recall what left-factored means: (no two

productions with the same prefix)
•  Revert to the “natural” grammar for our

example:
E → T + E | T
T → int * T | int | (E)

•  “natural” in quotes because we still have to
deal with precedence of + and *

49

An Introductory Example

•  Bottom-up parsers don’t need left-factored
grammars
–  Recall what left-factored means

•  Revert to the “natural” grammar for our
example:

E → T + E | T
T → int * T | int | (E)

•  Consider the string: int * int + int

50

The Idea

Bottom-up parsing reduces a string to the start
symbol by inverting productions (running them
backwards)

int * int + int T → int
int * T + int T → int * T
T + int T → int
T + T E → T
T + E E → T + E
E

Left column is a sequence of states.
right side is productions used.

51

Observation

•  Read the productions in reverse (from bottom
to top)
–  Read in the order we did them, called reductions

•  This is a rightmost derivation!

int * int + int T → int
int * T + int T → int * T
T + int T → int
T + T E → T
T + E E → T + E
E

52

Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost
derivation in reverse

If you’re ever having trouble with bottom-up

parsing, it’s good to come back to this basic
fact

The Idea

•  A top-down parser begins with the start
symbol and produces the tree incrementally by
expanding some non-terminal at the frontier

•  A bottom-up parser begins with all ALL the
leaves of the parse tree (the entire input) and
builds little trees on top of those
–  It pastes all the subtrees that it’s built so far

together to create the entire parse tree

53

54

A Bottom-up Parse

int * int + int

int * T + int

T + int

T + T

T + E

E

E

T E

+ int * int

T

int

T

55

A Bottom-up Parse in Detail (1)

+ int * int int

int * int + int

56

A Bottom-up Parse in Detail (2)

int * int + int

int * T + int

+ int * int int

T

57

A Bottom-up Parse in Detail (3)

int * int + int

int * T + int

T + int T

+ int * int int

T

58

A Bottom-up Parse in Detail (4)

int * int + int

int * T + int

T + int

T + T

T

+ int * int

T

int

T

59

A Bottom-up Parse in Detail (5)

int * int + int

int * T + int

T + int

T + T

T + E

T E

+ int * int

T

int

T

60

A Bottom-up Parse in Detail (6)

int * int + int

int * T + int

T + int

T + T

T + E

E

E

T E

+ int * int

T

int

T

61

A Trivial Bottom-Up Parsing Algorithm

Let I = input string
 repeat
 pick a non-empty substring β of I
 where X→ β is a production
 if no such β, backtrack
 replace one β by X in I
 until I = “S” (the start symbol) or all
possibilities are exhausted

62

Questions

•  Does this algorithm terminate?

•  How fast is the algorithm?

•  Does the algorithm handle all cases?

•  How do we choose the substring to reduce at
each step?

Where Do Reductions Happen?

Important Fact #1 has an interesting
consequence:
–  Let αβω be a step of a bottom-up parse
–  Assume the next reduction is by X→ β
–  Then ω is a string of terminals

Why? Because αXω → αβω is a step in a right-
most derivation

Recall Fact #1: Bottom-up parser traces a rightmost
derivation in reverse.

64

Notation

•  Idea: Split string into two substrings
–  Right substring is as yet unexamined by parsing

(a string of terminals)
•  Turns out terminal symbols to right of right most non-

terminal are exactly the unexamined input in bottom-up
parsing

–  Left substring has terminals and non-terminals
–  E.g., if we have αXω, and X is the rightmost non-

terminal, then ω is the input we have not read yet

65

Notation

•  The dividing point is marked by a |

–  The | is not part of the string
•  Initially, all input is unexamined |x1x2 . . . xn

•  After some input has been examined:
 x1x2x3|x4 . . . xn

 processed unprocessed

66

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of
actions:

Shift moves

Reduce moves

67

Shift

•  Shift: Move | one place to the right
–  Shifts a terminal to the left string
–  Equivalently reads one token of input
–  In example below, the shift indicates that token x

can now be considered as part of processing
–  y and z remain unprocessed and unread at this point

ABC|xyz ⇒ ABCx|yz

68

Reduce Move

•  Apply an inverse production at the right end
of the left string
–  If A → xy is a production, then

Cbxy|ijk ⇒ CbA|ijk

69

Previously Seen Example with Reductions Only

int * int | + int reduce T → int
int * T | + int reduce T → int * T

T + int | reduce T → int
T + T | reduce E → T
T + E | reduce E → T + E
E |

E → T + E | T
T → int * T | int | (E)

70

The Example with Shift-Reduce Parsing

|int * int + int shift
int | * int + int shift
int * | int + int shift
int * int | + int reduce T → int
int * T | + int reduce T → int * T
T | + int shift
T + | int shift
T + int | reduce T → int
T + T | reduce E → T
T + E | reduce E → T + E
E |

E → T + E | T
T → int * T | int | (E)

•  Note: In this derivation, and in the details of
it that follows, all I’m showing is that there
exists a sequence of shift and reduce moves
that can successfully parse the input string.

•  I do not (yet) explain how we choose whether
to perform a shift or reduce move.

71

72

A Shift-Reduce Parse in Detail (1)

+ int * int int
↑

|int * int + int

73

A Shift-Reduce Parse in Detail (2)

+ int * int int
↑

|int * int + int
int | * int + int

74

A Shift-Reduce Parse in Detail (3)

+ int * int int
↑

|int * int + int
int | * int + int
int * | int + int

75

A Shift-Reduce Parse in Detail (4)

+ int * int int
↑

|int * int + int
int | * int + int
int * | int + int
int * int | + int

76

A Shift-Reduce Parse in Detail (5)

+ int * int int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int

↑

77

A Shift-Reduce Parse in Detail (6)

T

+ int * int int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int

↑

78

A Shift-Reduce Parse in Detail (7)

T

+ int * int int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int

↑

79

A Shift-Reduce Parse in Detail (8)

T

+ int * int int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |

↑

80

A Shift-Reduce Parse in Detail (9)

T

+ int * int

T

int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |
T + T |

↑

81

A Shift-Reduce Parse in Detail (10)

T E

+ int * int

T

int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |
T + T |
T + E | ↑

82

A Shift-Reduce Parse in Detail (11)

E

T E

+ int * int

T

int

T

|int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |
T + T |
T + E |
E |

↑

83

The Stack

•  Left string can be implemented by a stack
–  Top of the stack is the |

•  Shift pushes a terminal on the stack

•  Reduce pops 0 or more symbols off of the
stack (production rhs) and pushes a non-
terminal on the stack (production lhs)

84

Conflicts

•  In a given state, more than one action (shift or
reduce) may lead to a valid parse

•  If both a shift and a reduce are possible at some
juncture, there is a shift-reduce conflict

•  If it is legal to reduce by two different productions,
there is a reduce-reduce conflict

•  You will see such conflicts in your project!
–  More next time . . .

