Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use

• Predictive parsers are never wrong
 - Always able to guess correctly which production will lead to a successful parse, provided a string is in $L(G)$.

• Two strategies allow this:
 - By looking at next few tokens
 • Lookahead
 - By restricting the form of the grammar
Predictive Parsers

• Advantage: No backtracking
 - So parsing is completely “deterministic”

• Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 • We always do this, so all our techniques would have “L” in first position
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
 • Theory is developed for arbitrary k, but...
 - In practice, LL(1) is used
LL(1) vs. Recursive Descent

• In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices

• In LL(1),
 - At each step, only one choice of production
 - That is
 • When a non-terminal A is leftmost non-terminal in a derivation...
 • And the next input symbol is token t
 • There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
 - Any other production is guaranteed to be incorrect...
 - But even the single production $A \rightarrow \alpha$ might not end up succeeding
 - Put another way, in LL(1), there is AT MOST one production to be used in a given situation
LL(1) vs. Recursive Descent

• In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices

• In LL(1),
 - At each step, only one choice of production
 - That is
 • When a non-terminal A is leftmost non-terminal in a derivation...
 • And the next input symbol is token t
 • There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)

• LL(1) is a recursive descent variant without backtracking
Predictive Parsing and Left Factoring

- Recall our favorite grammar
 \[E \rightarrow T + E | T \]
 \[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

- Hard to predict because
 - For \(T \) two productions start with \text{int}
 - With lookahead 1, can't choose which production
 - For \(E \) it is not clear how to predict
 - What's more \(T \) is a non-terminal so how do we even do the prediction?
 - Regardless \(T \) starts both productions of \(E \), so with single token of lookahead, not going to be easy to know what to do
Predictive Parsing and Left Factoring

• Recall our favorite grammar

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]

This grammar is unacceptable for LL(1) parsing

• Hard to predict because
 - For \(T \) two productions start with \(\text{int} \)
 • With lookahead 1, can’t choose which production
 - For \(E \) it is not clear how to predict
 • What’s more \(T \) is a non-terminal so how do we even do the prediction?

• We need to **left-factor** the grammar
The Idea Behind Left Factoring

• Eliminate the common prefixes of multiple productions for a given non-terminal
 - In English: If for some non-terminal there are multiple productions that have the same prefix, we want to get rid of that (somehow)

• Ex:

 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

 \(E \) has two productions with prefix \(T \)
 \(T \) has two productions with prefix \(\text{int} \)
Left-Factoring Example

• Recall the grammar

\[
E \rightarrow T + E | T \\
T \rightarrow \text{int} | \text{int} \ast T | (E)
\]

• Factor out common prefixes of productions
 • So the prefix appears in only one production

\[
E \rightarrow TX \\
X \rightarrow + E | \varepsilon \\
T \rightarrow (E) | \text{int} Y \\
Y \rightarrow \ast T | \varepsilon
\]

But multiple suffixes!
New nonterminals \(X\) and \(Y\) handle suffixes
Left-Factoring Example

• Recall the grammar
 \[E \rightarrow T + E | T \]
 \[T \rightarrow \text{int} | \text{int} * T | (E) \]

• Factor out common prefixes of productions
 • So the prefix appears in only one production
 \[E \rightarrow T X \]
 \[X \rightarrow + E | \varepsilon \]
 \[T \rightarrow (E) | \text{int} Y \]
 \[Y \rightarrow * T | \varepsilon \]

Effectively delays the decision about which production we’re using
LL(1) Parsing Table Example

- Left-factored grammar

 \[
 E \rightarrow T X \\
 T \rightarrow (E) | \text{int} \ Y \\
 X \rightarrow + E | \varepsilon \\
 Y \rightarrow * T | \varepsilon
 \]

- The LL(1) parsing table:

<table>
<thead>
<tr>
<th>symbol</th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+ E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>* T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- leftmost non-terminal
- right-hand side of production to use
- next input token
• Consider the \([E, \text{int}]\) entry
 – “When current non-terminal is \(E\) and next input is \(\text{int}\), use production \(E \rightarrow T X\)”
 – This can generate an \(\text{int}\) in the first position

• Consider the \([Y,+]\) entry
 – “When current non-terminal is \(Y\) and current token is +, get rid of \(Y\)”
 – \(Y\) can be followed by + only if \(Y \rightarrow \varepsilon\)
LL(1) Parsing Tables. Errors

• Blank entries indicate error situations

• Consider the \([E,*]\) entry
 - “There is no way to derive a string starting with * from non-terminal E”
Using Parsing Tables

- **Method similar to recursive descent, except**
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at $[S,a]$

- **A stack records frontier of parse tree**
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or non-terminal

- Reject on reaching error state
- Accept on end of input & empty stack
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y₁...Yₙ
 then stack ← <Y₁... Yₙ rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
 until stack == < >
LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] = Y_1...Y_n
 then stack ← <Y_1... Y_n rest>;
 else error ();
 <t, rest> : if t == *next ++
 then stack ← <rest>;
 else error ();
 until stack == < >

$ marks bottom of stack

For non-terminal X on top of stack, lookup production

Pop X, push production rhs on stack. Note leftmost symbol of rhs is on top of the stack.
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Our Short Term Goal

• How do we construct LL(1) parse tables?

• What are the conditions necessary for constructing LL(1) parse tables?
Constructing Parsing Tables: The Intuition

• Consider non-terminal A, production $A \rightarrow \alpha$, & token t

The question: Given A and t, under what conditions will we make the move $A \rightarrow \alpha$?

That is, under what conditions is $T[A,t] = \alpha$?
Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production $A \rightarrow \alpha$, & token t
- $T[A, t] = \alpha$ in two cases:
 - If $\alpha \rightarrow^{*} t \beta$
 - α can derive a t in the first position
 - We say that $t \in \text{First}(\alpha)$

Note this is \rightarrow^{*}
Constructing Parsing Tables: The Intuition

• Consider non-terminal A, production $A \rightarrow \alpha$, & token t
• $T[A,t] = \alpha$ in two cases:

• Now, assume $t \notin \text{First}(\alpha)$
 - Doesn’t sound very promising to use α
 - But it turns out it may not be hopeless to use $A \rightarrow \alpha$

• If $A \rightarrow \alpha$ and $\alpha \rightarrow^* \varepsilon$ and $S \rightarrow^* \beta \ A \ t \ \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 • Can work only if t can follow A in at least one derivation
 - We say $t \in \text{Follow}(A)$
 - I.e., t is one of the things that can come after A in the grammar

note β and δ can be anything
Often A Point of Confusion

• We are NOT talking about A deriving \uparrow
 - A does not produce \uparrow
 - We ARE talking about \uparrow appearing in a derivation directly after A
 - So this has nothing to do with what A produces
 - Has to do with where A can appear in derivations

But for right now, let's concentrate on First sets
(We'll get to Follow sets in a bit)
Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

- Note: \(X \) can be a single terminal, it could be a single non-terminal, or it could be a string of grammar symbols
- \(t \) however, must be a terminal
- For technical reasons, \(\varepsilon \) needs to be in \(\text{First}(X) \) if it's the case that \(X \) can go to \(\varepsilon \) in zero or more steps
 - Need to keep track of this in order to compute all of the terminals that are in the first set of a given grammar symbol
Computing First Sets

Definition
\[
\text{First}(X) = \{ t \mid X \to^* t\alpha \} \cup \{ \varepsilon \mid X \to^* \varepsilon \}
\]

Algorithm sketch:
1. For \(t \) a terminal, \(\text{First}(t) = \{ t \} \)
2. For \(X \) a non-terminal \(\varepsilon \in \text{First}(X) \)
 - if \(X \to \varepsilon \)
 - if \(X \to A_1 \ldots A_n \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)
 - Note this can only happen if all of the \(A_i \) are non-terminals, since if there are any terminals on the R.H.S. then it can never completely go to \(\varepsilon \)
Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch:
1. For \(t \) a terminal, \(\text{First}(t) = \{ t \} \)
2. For \(X \) a non-terminal \(\varepsilon \in \text{First}(X) \)
 - if \(X \rightarrow \varepsilon \)
 - if \(X \rightarrow A_1 \ldots A_n \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)
3. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)

Make sure it’s clear to you why (3) is true
Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch:

1. For \(t \) a terminal, \(\text{First}(t) = \{ t \} \)
2. For \(X \) a non-terminal \(\varepsilon \in \text{First}(X) \)
 - if \(X \rightarrow \varepsilon \)
 - if \(X \rightarrow A_1 \ldots A_n \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)
3. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)

Note: Rule (1) covers terminals; (2) and (3) cover non-terminals
First Sets. Example

• Recall the grammar

\[
E \rightarrow TX \\
T \rightarrow (E) \mid \text{int}Y \\
X \rightarrow +E \mid \varepsilon \\
Y \rightarrow *T \mid \varepsilon
\]

• First sets

\[
\begin{align*}
\text{First}() &= \{ () \} \\
\text{First}() &= \{ () \} \\
\text{First}(\text{int}) &= \{ \text{int} \} \\
\text{First}(+) &= \{ + \} \\
\text{First}(\ast) &= \{ \ast \}
\end{align*}
\]

\[
\begin{align*}
\text{First}() &= \{ () \} \\
\text{First}(\text{int}) &= \{ \text{int} \} \\
\text{First}(+) &= \{ + \} \\
\text{First}(\ast) &= \{ \ast \}
\end{align*}
\]
Computing Follow Sets

• Definition:

\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X t \delta \} \]

• Recall that the definition of the Follow set for a given symbol in the grammar is not about what that symbol can generate, but on where that symbol can appear.

• In words, \(t \) is in \(\text{Follow}(X) \) if there is some derivation where terminal \(t \) can appear immediately after the symbol \(X \).
Computing Follow Sets

• Definition:
 \[\text{Follow}(X) = \{ \dagger \mid S \rightarrow^* \beta \, X \, \dagger \delta \} \]

• Intuition
 - If \(X \rightarrow A \, B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
 - if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \($ \in \text{Follow}(S) \)

Recall that $ is special symbol marking end of input
Computing Follow Sets

• Definition:
 \[\text{Follow}(X) = \{ \dollar | S \rightarrow^* \beta \ X \dollar \} \]

• Intuition
 - If \(X \rightarrow A \ B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and
 \[\text{Follow}(X) \subseteq \text{Follow}(B) \]
 - if \(B \rightarrow^* \epsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\dollar \in \text{Follow}(S) \)
 - That is, \(\dollar \) is in the Follow of the start symbol
 • Always added as an initial condition
Computing Follow Sets (Cont.)

Algorithm sketch:
1. $\$ \in \text{Follow}(S)$
2. $\text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$
3. $\text{Follow}(A) \subseteq \text{Follow}(X)$
 - For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
When is $ in $\text{Follow}(\alpha)$?

Students are often confused about $\$$, so let’s discuss exactly when $\$$ is in $\text{Follow}(\alpha)$ (This is important, since we’ll be using Follow sets to build the parse table)
First, Some New Language

- If S is the start symbol of a grammar G, and α is such that $S \rightarrow^* \alpha$, then α is a sentential form of G
 - Note α may contain both terminals and non-terminals
- A sentence of G is a sentential form that contains no nonterminals.
- Technically speaking, the language of G, $L(G)$, is the set of sentences of G
So, the rule:

• $ is in \text{Follow}(\alpha)$ if and only if α can appear at the end of a sentential form
• EX: Consider the following grammar

 \[
 \begin{align*}
 &E \rightarrow TX \\
 &X \rightarrow Ta \mid Cb \\
 &T \rightarrow Tc \mid \varepsilon \\
 &C \rightarrow a \mid b
 \end{align*}
 \]

• Note that neither B nor C can end a sentential form (why?), so $\$ \text{ is not in } \text{Follow}(B) \text{ or Follow}(C)$. But $\$ \text{ is in } \text{Follow}(X)$.
Follow Sets. Example

• Recall the grammar

\[
\begin{align*}
E & \rightarrow T \, X \\
T & \rightarrow (\, E \,) \mid \text{int} \, Y \\
X & \rightarrow + \, E \mid \varepsilon \\
Y & \rightarrow * \, T \mid \varepsilon
\end{align*}
\]

• Follow sets

\[
\begin{align*}
\text{Follow(} +) & = \{ \text{int, (} \} \quad \text{Follow(} *) = \{ \text{int, (} \} \\
\text{Follow(} () & = \{ \text{int, (} \} \quad \text{Follow(E)} = \{ \}, \$ \} \\
\text{Follow(X)} & = \{ \$, \} \quad \text{Follow(T)} = \{ +, \}, \$ \} \\
\text{Follow()} & = \{ +, \}, \$ \} \quad \text{Follow(Y)} = \{ +, \}, \$ \} \\
\text{Follow(int)} & = \{ *, +, \}, \$ \}
\end{align*}
\]

Note, unlike with First sets, Follow sets for terminals can actually be interesting.
Follow Sets. Example

Recall the grammar

\[
E \rightarrow TX \\
T \rightarrow (E) \mid \text{int} \ Y \\
X \rightarrow +E \mid \varepsilon \\
Y \rightarrow *T \mid \varepsilon
\]

Follow sets

Follow(+) = \{ \text{int}, () \}
Follow(*) = \{ \text{int}, () \}
Follow(() = \{ \text{int}, () \}
Follow(E) = \{ () , $ \}
Follow(X) = \{ $, () \}
Follow(T) = \{ +, () , $ \}
Follow() = \{ +, () , $ \}
Follow(\text{int}) = \{ *, +, () , $ \}

Note Follow((). It makes sense: what can follow an (in the language? A nested (or an int
Follow Sets. Example

- Recall the grammar
 \[
 \begin{align*}
 E & \rightarrow T \ X \\
 T & \rightarrow (\ E) \mid \text{int} \ Y \\
 X & \rightarrow + \ E \mid \epsilon \\
 Y & \rightarrow * \ T \mid \epsilon
 \end{align*}
 \]

- Follow sets
 \[
 \begin{align*}
 \text{Follow(+)} & = \{ \text{int}, () \} \\
 \text{Follow(*)} & = \{ \text{int}, () \} \\
 \text{Follow(())} & = \{ \text{int}, () \} \\
 \text{Follow(E)} & = \{ (), $ \} \\
 \text{Follow(X)} & = \{ $, () \} \\
 \text{Follow(T)} & = \{ +, () \}, $ \} \\
 \text{Follow(Y)} & = \{ +, () \}, $ \} \\
 \text{Follow(int)} & = \{ *, +, () \}, $ \}
 \end{align*}
 \]

 Similarly, Follow(+). What can follow + in the language? A new (or an int. Can't be $ (end input)
So Now

• We’re going to pull together what we know about first and follow sets to construct LL(1) parsing tables.
• This is done one production at a time, eventually considering every production in the grammar.

Recall:

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}
\]

\[
\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \ X \rightarrow^* \delta \}
\]
Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(A)$ do
 • $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 • $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do
 • $T[A, \$] = \alpha$
 • (note this is a special case, since $\$ is technically not a terminal symbol)
Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(A)$ do
 • $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 • $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do
 • $T[A, \$] = \alpha$
 • (note this is a special case, since $\$ is technically not a terminal symbol)

This is the algorithm for building LL(1) tables!
LL(1) Parsing Table Example

- **Left-factored grammar**

 $E \rightarrow TX$

 $T \rightarrow (E) \mid \text{int} \ Y$

 $X \rightarrow +E \mid \varepsilon$

 $Y \rightarrow *T \mid \varepsilon$

- **The LL(1) parsing table:**

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T X</td>
<td></td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td></td>
<td></td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>

- **leftmost non-terminal**
- **rhs of production to use**
- **next input token**
<table>
<thead>
<tr>
<th>Symbol</th>
<th>First</th>
<th></th>
<th>Symbol</th>
<th>First</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>(</td>
<td>(</td>
<td>)</td>
<td>)</td>
</tr>
<tr>
<td>)</td>
<td>)</td>
<td>)</td>
<td>int</td>
<td>int, (</td>
</tr>
<tr>
<td>int</td>
<td>int</td>
<td></td>
<td>X</td>
<td>+, ε</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
<td>Y</td>
<td>*, ε</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td></td>
<td>E</td>
<td>int, (</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
<td>T</td>
<td>+, (, $</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td></td>
<td>X</td>
<td>$,)</td>
</tr>
<tr>
<td>(</td>
<td>+, (, $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>*, +, (, $</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Follow</th>
<th></th>
<th>Symbol</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>int, (</td>
<td>(</td>
<td>)</td>
<td>)</td>
</tr>
<tr>
<td>)</td>
<td>int, (</td>
<td>)</td>
<td>E</td>
<td>(), $</td>
</tr>
<tr>
<td>X</td>
<td>$,)</td>
<td></td>
<td>T</td>
<td>+,), $</td>
</tr>
<tr>
<td>)</td>
<td>+,), $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>*, +, (, $</td>
<td></td>
<td>Y</td>
<td>+,), $</td>
</tr>
<tr>
<td>int</td>
<td>*, +, (, $</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Another Example

\[S \rightarrow Sa \mid b \]

First(S) = \{b\}, Follow(S) = \{\$, a\}

• The LL(1) parsing table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>b</td>
<td>ε</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sa</td>
<td></td>
</tr>
</tbody>
</table>

The problem: both productions can produce a b in the first position, giving entry with multiple moves.
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
 - In fact, definition of LL(1) is that a grammar is NOT LL(1) iff the built LL(1) table has a multiply defined entry

• Most programming language CFGs are not LL(1)

These amount to quick checks for NOT LL(1)-ness
Bottom Line on LL(1) Parsing

• Most programming language CFGs are not LL(1)
 - LL(1) grammars are just too weak to capture all of the interesting and important structures in real-world programming languages

• There are more powerful formalisms for describing practical grammars

• So, why bother with LL(1)?
 - Well, it turns out that these formalisms build on everything we’ve learned here for LL(1) grammars, so our effort is not wasted.
 - Ideas just assembled in a more sophisticated way to build more powerful parts
Bottom-Up Parsing

• Bottom-up parsing is more general than (deterministic) top-down parsing
 - And just as efficient
 - Builds on ideas in top-down parsing

• Bottom-up is the preferred method
 - Used in most parser generator tools (including CUP)

• Concepts today, algorithms next time
Recall where we are:

We talked about Recursive Descent parsing, which is completely general but requires backtracking.

Then we talked about LL(1), which is not completely general, but requires no backtracking.

We are now embarking on bottom-up parsing.
An Introductory Example

• Bottom-up parsers don’t need left-factored grammars
 - Recall what left-factored means: (no two productions with the same prefix)

• Revert to the “natural” grammar for our example:
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
 \]

• “natural” in quotes because we still have to deal with precedence of + and *
An Introductory Example

• Bottom-up parsers don’t need left-factored grammars
 - Recall what left-factored means

• Revert to the “natural” grammar for our example:
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
 \]

• Consider the string: int \ast int + int
The Idea

Bottom-up parsing reduces a string to the start symbol by inverting productions (running them backwards)

\[
\begin{align*}
\text{int} & \times \text{int} + \text{int} & T & \rightarrow \text{int} \\
\text{int} & \times T + \text{int} & T & \rightarrow \text{int} \times T \\
T & + \text{int} & T & \rightarrow \text{int} \\
T & + T & E & \rightarrow T \\
T & + E & E & \rightarrow T + E \\
E & & & \\
\end{align*}
\]

Left column is a sequence of states. right side is productions used.
Observation

• Read the productions in reverse (from bottom to top)
 - Read in the order we did them, called *reductions*
• This is a rightmost derivation!

\[
\begin{align*}
\text{int} &\times \text{int} + \text{int} \\
\text{int} &\times \text{T} + \text{int} \\
\text{T} &+ \text{int} \\
\text{T} &+ \text{T} \\
\text{T} &+ \text{E} \\
\text{E} &
\end{align*}
\]

\[
\begin{align*}
\text{T} &\rightarrow \text{int} \\
\text{T} &\rightarrow \text{int} \times \text{T} \\
\text{T} &\rightarrow \text{int} \\
\text{E} &\rightarrow \text{T} \\
\text{E} &\rightarrow \text{T} + \text{E}
\end{align*}
\]
Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost derivation in reverse

If you’re ever having trouble with bottom-up parsing, it’s good to come back to this basic fact
The Idea

• A top-down parser begins with the start symbol and produces the tree incrementally by expanding some non-terminal at the frontier.

• A bottom-up parser begins with all ALL the leaves of the parse tree (the entire input) and builds little trees on top of those.
 - It pastes all the subtrees that it’s built so far together to create the entire parse tree.
A Bottom-up Parse

\[\text{int} \times \text{int} + \text{int} \]
\[\text{int} \times T + \text{int} \]
\[T + \text{int} \]
\[T + T \]
\[T + E \]
\[E \]
A Bottom-up Parse in Detail (1)

\[\text{int} * \text{int} + \text{int} \]
A Bottom-up Parse in Detail (2)

\[\text{int} \times \text{int} + \text{int} \]

\[\text{int} \times T + \text{int} \]
A Bottom-up Parse in Detail (3)

`int * int + int`

`int * T + int`

`T + int`

```
T
/  
/   
/    
/     
int * int + int
```

57
A Bottom-up Parse in Detail (4)

\[\text{int} * \text{int} + \text{int} \]

\[\text{int} * \text{T} + \text{int} \]

\[\text{T} + \text{int} \]

\[\text{T} + \text{T} \]
A Bottom-up Parse in Detail (5)

\[
\text{int} \times \text{int} + \text{int}
\]
\[
\text{int} \times T + \text{int}
\]
\[
T + \text{int}
\]
\[
T + T
\]
\[
T + E
\]
A Bottom-up Parse in Detail (6)

\[
\begin{align*}
\text{int} \times \text{int} + \text{int} \\
\text{int} \times T + \text{int} \\
T + \text{int} \\
T + T \\
T + E \\
E
\end{align*}
\]
A Trivial Bottom-Up Parsing Algorithm

Let $I =$ input string

repeat

pick a non-empty substring β of I

where $X \rightarrow \beta$ is a production

if no such β, backtrack

replace one β by X in I

until $I = \text{"S"}$ (the start symbol) or all possibilities are exhausted
Questions

• Does this algorithm terminate?

• How fast is the algorithm?

• Does the algorithm handle all cases?

• How do we choose the substring to reduce at each step?
Where Do Reductions Happen?

Important Fact #1 has an interesting consequence:
- Let $\alpha \beta \omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then ω is a string of terminals

Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a rightmost derivation

Recall Fact #1: Bottom-up parser traces a rightmost derivation in reverse.
Notation

• Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 • Turns out terminal symbols to right of right most non-terminal are exactly the unexamined input in bottom-up parsing
 - Left substring has terminals and non-terminals
 - E.g., if we have $aX\omega$, and X is the rightmost non-terminal, then ω is the input we have not read yet
Notation

• The dividing point is marked by a $|$
 - The $|$ is not part of the string
• Initially, all input is unexamined $|x_1x_2 \ldots x_n$

• After some input has been examined:
 \[
 x_1x_2x_3|x_4 \ldots x_n
 \]
 \[
 \begin{align*}
 \text{processed} & \quad \text{unprocessed}
 \end{align*}
 \]
Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift moves

Reduce moves
Shift

- **Shift:** Move one place to the right
 - Shifts a terminal to the left string
 - Equivalently reads one token of input
 - In example below, the shift indicates that token x can now be considered as part of processing
 - y and z remain unprocessed and unread at this point

$$ABC|xyz \Rightarrow ABCx|yz$$
Reduce Move

• Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

 $$Cbxy|ijk \Rightarrow CbA|ijk$$
Previously Seen Example with Reductions Only

\[
\begin{align*}
E & \rightarrow T + E \mid T \\
T & \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\end{align*}
\]

- \text{int} \ast \text{int} \mid + \text{int} \quad \text{reduce } T \rightarrow \text{int}
- \text{int} \ast T \mid + \text{int} \quad \text{reduce } T \rightarrow \text{int} \ast T
- \text{T + int} \mid \quad \text{reduce } T \rightarrow \text{int}
- \text{T + T} \mid \quad \text{reduce } E \rightarrow T
- \text{T + E} \mid \quad \text{reduce } E \rightarrow T + E
- \text{E} \mid
\]
The Example with Shift-Reduce Parsing

\text{int * int + int}	\text{shift}	\text{E \rightarrow T + E \mid T}
\text{int \mid * int + int}	\text{shift}	\text{T \rightarrow int * T \mid int \mid (E)}
\text{int * int \mid int + int}	\text{shift}	
\text{int * int + int}	\text{reduce T \rightarrow int}	
\text{int * T \mid int + int}	\text{reduce T \rightarrow int * T}	
\text{T \mid + int}	\text{shift}	
\text{T + \mid int}	\text{shift}	
\text{T + int \mid}	\text{reduce T \rightarrow int}	
\text{T + T \mid}	\text{reduce E \rightarrow T}	
\text{T + E \mid}	\text{reduce E \rightarrow T + E}	
\text{E \mid}		
• Note: In this derivation, and in the details of it that follows, all I’m showing is that there exists a sequence of shift and reduce moves that can successfully parse the input string.

• I do not (yet) explain how we choose whether to perform a shift or reduce move.
A Shift-Reduce Parse in Detail (1)

|int*int+int

int * int + int

↑
A Shift-Reduce Parse in Detail (2)

<table>
<thead>
<tr>
<th>int * int + int</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
</tr>
</tbody>
</table>

int * int + int

↑
A Shift-Reduce Parse in Detail (3)

\[
\begin{align*}
\text{int} & \mid \text{int} \times \text{int} + \text{int} \\
\text{int} & \mid * \text{int} + \text{int} \\
\text{int} \times & \mid \text{int} + \text{int}
\end{align*}
\]
A Shift-Reduce Parse in Detail (4)

\[
\begin{align*}
\text{int} & \quad \ast \quad \text{int} \quad + \quad \text{int} \\
\text{int} & \quad \ast \quad \text{int} \quad + \quad \text{int} \\
\text{int} & \quad \ast \quad \text{int} \quad + \quad \text{int} \\
\text{int} & \quad \ast \quad \text{int} \quad + \quad \text{int} \\
\text{int} & \quad \ast \quad \text{int} \quad + \quad \text{int} \\
\end{align*}
\]
A Shift-Reduce Parse in Detail (5)

| int * int + int
| int | * int + int
| int * | int + int
| int * int | + int
| int * T | + int

```
T

int * int + int

↑
```
A Shift-Reduce Parse in Detail (6)

\[
\begin{align*}
\text{int} & \mid \text{int} + \text{int} \\
T & \mid \text{int} + \text{int} \\
T & \mid + \text{int}
\end{align*}
\]
A Shift-Reduce Parse in Detail (7)

| \text{int} * \text{int} + \text{int} \\
| \text{int} | * \text{int} + \text{int} \\
| \text{int} * \text{int} | + \text{int} \\
| \text{int} * \text{T} | + \text{int} \\
| \text{T} | + \text{int} \\
| \text{T} + | \text{int} \\

\[
\text{int} \quad \ast \quad \text{int} \quad + \quad \text{int}
\]

\[
\text{T} \quad \text{T} \\
\text{int} \\
\]

↑
A Shift-Reduce Parse in Detail (8)

| int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |
A Shift-Reduce Parse in Detail (9)

```
| int * int + int
int | * int + int
int * | int + int
int * int | + int
int * T | + int
T | + int
T + | int
T + int |
T + T |
```
A Shift-Reduce Parse in Detail (10)

<table>
<thead>
<tr>
<th>int * int + int</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int + int</td>
</tr>
<tr>
<td>int * int + int</td>
</tr>
<tr>
<td>int * int + int</td>
</tr>
<tr>
<td>int * T + int</td>
</tr>
<tr>
<td>T + int</td>
</tr>
<tr>
<td>T + int</td>
</tr>
<tr>
<td>T + T</td>
</tr>
<tr>
<td>T + E</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
</tr>
<tr>
<td>int</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>int</td>
</tr>
</tbody>
</table>

E

↑
A Shift-Reduce Parse in Detail (11)

| int * int + int
| int | * int + int
| int * | int + int
| int * int | + int
| int * T | + int
| T | + int
| T + | int
| T + int |
| T + T |
| T + E |
| E |
The Stack

• Left string can be implemented by a stack
 - Top of the stack is the |

• Shift pushes a terminal on the stack

• Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-terminal on the stack (production lhs)
Conflicts

• In a given state, more than one action (shift or reduce) may lead to a valid parse

• If both a shift and a reduce are possible at some juncture, there is a shift-reduce conflict

• If it is legal to reduce by two different productions, there is a reduce-reduce conflict

• You will see such conflicts in your project!
 - More next time . . .