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Top-Down Parsing 
and 

Intro to Bottom-Up Parsing 

Lecture 7 
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Predictive Parsers 

•  Like recursive-descent but parser can 
“predict” which production to use 
 

•  Predictive parsers are never wrong 
–  Always able to guess correctly which production 

will lead to a successful parse, provided a string is 
in L(G). 

•  Two strategies allow this:  
–  By looking at next few tokens 

•  Lookahead  
–  By restricting the form of the grammar 
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Predictive Parsers 

•  Advantage: No backtracking  
–  So parsing is completely “deterministic” 

•  Predictive parsers accept LL(k) grammars 
–  L means “left-to-right” scan of input 

•  We always do this, so all our techniques would have “L” in 
first position 

–  L means “leftmost derivation” 
–  k means “predict based on k tokens of lookahead” 

•  Theory is developed for arbitrary k, but… 
–  In practice, LL(1) is used 



4 

LL(1) vs. Recursive Descent 

•  In recursive-descent,  
–  At each step, many choices of production to use 
–  Backtracking used to undo bad choices 

•  In LL(1),  
–  At each step, only one choice of production 
–  That is 

•  When a non-terminal A is leftmost non-terminal in a derivation… 
•  And the next input symbol is token t 
•  There is a unique production A → α to use 

–  Or no production to use (an error state) 
–  Any other production is guaranteed to be incorrect… 
–  But even the single production A → α might not end up 

succeeding 
–  Put another way, in LL(1), there is AT MOST one production to 

be used in a given situation 
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LL(1) vs. Recursive Descent 

•  In recursive-descent,  
–  At each step, many choices of production to use 
–  Backtracking used to undo bad choices 

•  In LL(1),  
–  At each step, only one choice of production 
–  That is 

•  When a non-terminal A is leftmost non-terminal in a derivation… 
•  And the next input symbol is token t 
•  There is a unique production A → α to use 

–  Or no production to use (an error state) 

•  LL(1) is a recursive descent variant without backtracking 



Predictive Parsing and Left Factoring 

•  Recall our favorite grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Hard to predict because 
–  For T two productions start with int 

•  With lookahead 1, can’t choose which production 
–  For E it is not clear how to predict 

•  What’s more T is a non-terminal so how do we even do the 
prediction? 

•  Regardless T starts both productions of E, so with single 
token of lookahead, not going to be easy to know what to do 
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Predictive Parsing and Left Factoring 

•  Recall our favorite grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Hard to predict because 
–  For T two productions start with int 

•  With lookahead 1, can’t choose which production 
–  For E it is not clear how to predict 

•  What’s more T is a non-terminal so how do we even do the 
prediction? 

•  We need to left-factor the grammar 

This grammar is  
unacceptable for 
LL(1) parsing 
  



The Idea Behind Left Factoring 

•  Eliminate the common prefixes of multiple 
productions for a given non-terminal 
–  In English: If for some non-terminal there are 

multiple productions that have the same prefix, we 
want to get rid of that (somehow) 

•  Ex:  
 E → T + E | T 
 T → int  | int * T | ( E ) 
 
E has two productions with prefix T 
T has two productions with prefix int 
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Left-Factoring Example 

•  Recall the grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Factor out common prefixes of productions 
•  So the prefix appears in only one production 
     E → T X 
     X → + E | ε  
     T → ( E ) | int Y 
     Y → * T | ε  

But multiple suffixes! 
New nonterminals X  
and Y handle suffixes 
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Left-Factoring Example 

•  Recall the grammar 
      E → T + E | T 
      T → int  | int * T | ( E ) 
 

•  Factor out common prefixes of productions 
•  So the prefix appears in only one production 
     E → T X 
     X → + E | ε  
     T → ( E ) | int Y 
     Y → * T | ε  

Effectively delays the 
decision about which  
production we’re using  
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LL(1) Parsing Table Example 

•  Left-factored grammar 
E → T X                               X → + E | ε  
T → ( E ) | int Y                   Y → * T | ε  

•  The LL(1) parsing table: 
int * + ( ) $ 

E T X T X 
X + E ε ε 
T int Y ( E ) 
Y * T  ε ε ε 

leftmost non-terminal 

next input token 

rhs of production to use 
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LL(1) Parsing Table Example (Cont.) 

•  Consider the [E, int] entry 
–  “When current non-terminal is E and next input is 

int, use production  E →  T X” 
–  This can generate an int in the first position 

•  Consider the [Y,+] entry 
–  “When current non-terminal is Y and current token 

is +, get rid of Y” 
–  Y can be followed by + only if Y →  ε 
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LL(1) Parsing Tables. Errors 

•  Blank entries indicate error situations 

•  Consider the [E,*] entry 
–  “There is no way to derive a string starting with * 

from non-terminal E” 
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Using Parsing Tables 

•  Method similar to recursive descent, except 
–  For the leftmost non-terminal S 
–  We look at the next input token a 
–  And choose the production shown at [S,a] 

•  A stack records frontier of parse tree 
–  Non-terminals that have yet to be expanded 
–  Terminals that have yet to matched against the input 
–  Top of stack = leftmost pending terminal or non-terminal 

•  Reject on reaching error state 
•  Accept on end of input & empty stack   
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LL(1) Parsing Algorithm 

initialize stack = <S $> and next  
repeat 
   case stack of 
      <X, rest>  : if T[X,*next] = Y1…Yn 
                            then stack ← <Y1… Yn rest>; 
                            else  error ();    
      <t, rest>   : if t == *next ++  
                            then  stack ← <rest>; 
                            else error (); 
until stack == < > 
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LL(1) Parsing Algorithm $ marks bottom of stack 

For non-terminal X on top of stack, 
lookup production 

Pop X, push 
production 
rhs on stack.  
Note 
leftmost 
symbol of rhs 
is on top of 
the stack. 

initialize stack = <S $> and next  
repeat 
   case stack of 
      <X, rest>  : if T[X,*next] = Y1…Yn 
                            then stack ← <Y1… Yn rest>; 
                            else  error ();    
      <t, rest>   : if t == *next ++  
                            then  stack ← <rest>; 
                            else error (); 
until stack == < > 

For terminal t on top of 
stack, check t matches next 
input token. 
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LL(1) Parsing Example 

Stack                        Input                            Action 
E $                            int * int $                     T X 
T X $                        int * int $                      int Y 
int Y X $                   int * int $                      terminal 
Y X $                        * int $                            * T 
* T X $                     * int $                            terminal 
T X $                        int $                               int Y 
int Y X $                   int $                               terminal 
Y X $                        $                                     ε 
X $                           $                                     ε 
$                              $                                     ACCEPT 



Our Short Term Goal   

•  How do we construct LL(1) parse tables? 

•  What are the conditions necessary for 
constructing LL(1) parse tables? 
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Constructing Parsing Tables: The Intuition 

•  Consider non-terminal A, production A → α, & token t 

The question: Given A and t, under what conditions will 
we make the move A → α ? 
 
That is, under what conditions is T[A,t] = α ? 
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Constructing Parsing Tables: The Intuition 

•  Consider non-terminal A, production A → α, & token t 
•  T[A,t] = α in two cases: 

•  If α →* t β 
–  α can derive a t in the first position 
–  We say that t ∈ First(α) 
 

Note this is →*  



Constructing Parsing Tables: The Intuition 

•  Consider non-terminal A, production A → α, & token t 
•  T[A,t] = α in two cases: 

•  Now, assume t ∈ First(α) 
–  Doesn’t sound very promising to use α  
–  But it turns out it may not be hopeless to use A → α 

•  If A → α and α →* ε and S →* β A t δ  
–  Useful if stack has A, input is t, and A cannot derive t 
–  In this case only option is to get rid of A (by deriving ε) 

•  Can work only if t can follow A in at least one derivation 
–  We say t ∈ Follow(A) 
–  I.e., t is one of the things that can come after A in the 

grammar 

note β and δ 
can be anything 



Often A Point of Confusion 

•  We are NOT talking about A deriving t 
–  A does not produce t 
–  We ARE talking about t appearing in a derivation 

directly after A  
–  So this has nothing to do with what A produces 
–  Has to do with where A can appear in derivations 

But for right now, let’s concentrate on First sets 
(We’ll get to Follow sets in a bit) 
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Computing First Sets 

Definition 
          First(X) = { t | X →* tα} ∪ {ε | X →* ε} 

•  Note: X can be a single terminal, it could be a single 
non-terminal, or it could be a string of grammar 
symbols 

•  t however, must be a terminal 
•  For technical reasons, ε needs to be in First(X) if it’s 

the case that X can go to ε in zero or more steps 
•  Need to keep track of this in order to compute all of the 

terminals that are in the first set of a given grammar symbol 
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Computing First Sets 

Definition 
          First(X) = { t | X →* tα} ∪ {ε | X →* ε} 
 
Algorithm sketch: 
1.  For t a terminal, First(t) = { t } 
2.  For X a non-terminal ε ∈ First(X)    

•  if X → ε 
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n 
•  Note this can only happen if all of the Ai are non-terminals, 

since if there are any terminals on the R.H.S. then it can 
never completely go to ε 
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Computing First Sets 

Definition 
          First(X) = { t | X →* tα} ∪ {ε | X →* ε} 
 
Algorithm sketch: 
1.  For t a terminal, First(t) = { t } 
2.  For X a non-terminal ε ∈ First(X)    

•  if X → ε 
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n 

3.  First(α) ⊆ First(X) if X → A1 … An α and ε ∈ First(Ai) 
for 1 ≤ i ≤ n 

Make sure it’s clear to you why (3) is true 



Computing First Sets 

Definition 
          First(X) = { t | X →* tα} ∪ {ε | X →* ε} 
 
Algorithm sketch: 
1.  For t a terminal, First(t) = { t } 
2.  For X a non-terminal ε ∈ First(X)    

•  if X → ε 
•  if X → A1 … An and ε ∈ First(Ai) for 1 ≤ i ≤ n 

3.  First(α) ⊆ First(X) if X → A1 … An α and ε ∈ First(Ai) 
for 1 ≤ i ≤ n 

Note: Rule (1) covers terminals; (2) and (3) cover non-
terminals 
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First Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 
 

•  First sets 
       First( ( ) = { ( }            First( T ) = {int, ( } 
       First( ) ) = { ) }            First( E ) = {int, ( } 
       First( int) = { int }       First( X ) = {+, ε } 
       First( + ) = { + }            First( Y ) = {*, ε } 
       First( * ) = { * }   
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Computing Follow Sets 

•  Definition: 
          Follow(X) = { t | S →* β X t δ } 

•  Recall that the definition of the Follow set for 
a given symbol in the grammar is not about 
what that symbol can generate, but on where 
that symbol can appear 

•  In words, t is in Follow(X) if there is some 
derivation where terminal t can appear 
immediately after the symbol X 



Computing Follow Sets 

•  Definition: 
          Follow(X) = { t | S →* β X t δ } 

•  Intuition 
–  If X → A B then First(B) ⊆ Follow(A) and  
                              Follow(X) ⊆ Follow(B) 

•  if B →* ε then Follow(X) ⊆ Follow(A) 

–  If S is the start symbol then $ ∈ Follow(S) 
Recall that $ is special symbol marking end of input  



Computing Follow Sets 

•  Definition: 
          Follow(X) = { t | S →* β X t δ } 

•  Intuition 
–  If X → A B then First(B) ⊆ Follow(A) and  
                              Follow(X) ⊆ Follow(B) 

•  if B →* ε then Follow(X) ⊆ Follow(A) 

–  If S is the start symbol then $ ∈ Follow(S) 
–  That is, $ is in the Follow of the start symbol 

•  Always added as an initial condition 
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Computing Follow Sets (Cont.) 

Algorithm sketch: 
1.   $ ∈ Follow(S) 
2.  First(β) - {ε} ⊆ Follow(X)  

–  For each production A → α X β 
3.  Follow(A) ⊆ Follow(X)  

–  For each production A → α X β where ε ∈ First(β)  
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When is $ in Follow(α)? 

Students are often confused about $, so let’s 
discuss exactly when $ is in Follow(α) 
 (This is important, since we’ll be using Follow 
sets to build the parse table) 



First, Some New Language 

•  If S is the start symbol of a grammar G, and α 
is such that S →* α, then α is a sentential 
form of G 
–  Note α may contain both terminals and non-

terminals 
•  A sentence of G is a sentential form that 

contains no nonterminals. 
•  Technically speaking, the language of G, L(G), 

is the set of sentences of G 
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So, the rule: 

•  $ is in Follow(α) if and only if α can appear at 
the end of a sentential form 

•  EX: Consider the following grammar 
E → TX 
X → Ta | Cb 
T → Tc | ε 
C → a | b  
•  Note that neither B nor C can end a 

sentential form (why?), so $ is not in 
Follow(B) or Follow(C).  But $ is in Follow(X). 

     



Follow Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 
 

•  Follow sets 
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   

Note, unlike with First sets, Follow sets for terminals 
can actually be interesting.  



Follow Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 
 

•  Follow sets 
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   

Note Follow( ( ).  It makes sense: what can follow an ( in 
the language?  A nested ( or an int 



Follow Sets. Example 

•  Recall the grammar  
    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 
 

•  Follow sets 
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   

Similarly, Follow( + ).  What can follow + in 
the language?  A new ( or an int.  Can’t be $ (end input) 



So Now 

•  We’re going to pull together what we know 
about first and follow sets to construct LL(1) 
parsing tables. 

•  This is done one production at a time, 
eventually considering every production in the 
grammar 

 
Recall: 
          First(X) = { t | X →* tα} ∪ {ε | X →* ε} 
          Follow(X) = { t | S →* β X t δ } 
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Constructing LL(1) Parsing Tables 

•  Construct a parsing table T for CFG G 

•  For each production  A → α in G do: 
–  For each terminal t ∈ First(A) do 

•  T[A, t] = α  
–  If ε ∈ First(α), for each t ∈ Follow(A) do 

•  T[A, t] = α 
–  If ε ∈ First(α) and $ ∈ Follow(A) do 

•  T[A, $] = α  
•  (note this is a special case, since $ is technically 

not a terminal symbol) 
  



Constructing LL(1) Parsing Tables 

•  Construct a parsing table T for CFG G 

•  For each production  A → α in G do: 
–  For each terminal t ∈ First(A) do 

•  T[A, t] = α  
–  If ε ∈ First(α), for each t ∈ Follow(A) do 

•  T[A, t] = α 
–  If ε ∈ First(α) and $ ∈ Follow(A) do 

•  T[A, $] = α  
•  (note this is a special case, since $ is technically 

not a terminal symbol) 
  This is the algorithm for building LL(1) tables!  

Note: α might be ε   
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LL(1) Parsing Table Example 

•  Left-factored grammar 
E → T X                               X → + E | ε  
T → ( E ) | int Y                   Y → * T | ε  

•  The LL(1) parsing table: 
int * + ( ) $ 

E T X T X 
X + E ε ε 
T int Y ( E ) 
Y * T  ε ε ε 

leftmost non-terminal 

next input token 

rhs of production to use 



Reference 
 
       First( ( ) = { ( }            First( T ) = {int, ( } 
       First( ) ) = { ) }            First( E ) = {int, ( } 
       First( int) = { int }       First( X ) = {+, ε } 
       First( + ) = { + }            First( Y ) = {*, ε } 
       First( * ) = { * } 

  
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   
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Another Example 

S → Sa | b     
 
First(S) = {b}, Follow(S) = {$, a}                         
 

•  The LL(1) parsing table: 
a b $ 

S b 
Sa 

ε 

The problem: both productions 
can produce a b in the first position,  
giving entry with multiple moves 
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Notes on LL(1) Parsing Tables 

•  If any entry is multiply defined then G is not 
LL(1) 
–  If G is ambiguous 
–  If G is left recursive 
–  If G is not left-factored 
–  And in other cases as well 
–  In fact, definition of LL(1) is that a grammar is 

NOT LL(1) iff the built LL(1) table has a multiply 
defined entry 

•  Most programming language CFGs are not LL(1) 

These amount to quick 
checks for 
 NOT LL(1)-ness 
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Bottom Line on LL(1) Parsing 

•  Most programming language CFGs are not LL(1) 
–  LL(1) grammars are just too weak to capture all of 

the interesting and important structures in real-
world programming languages 

•  There are more powerful formalisms for 
describing practical grammars  

•  So, why bother with LL(1)? 
–  Well, it turns out that these formalisms build on 

everything we’ve learned here for LL(1) grammars, 
so our effort is not wasted.  

–  Ideas just assembled in a more sophisticated way 
to build more powerful parts 
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Bottom-Up Parsing 

•  Bottom-up parsing is more general than 
(deterministic) top-down parsing 
–  And just as efficient 
–  Builds on ideas in top-down parsing 

•  Bottom-up is the preferred method 
–  Used in most parser generator tools (including CUP) 
 

•  Concepts today, algorithms next time 



Recall where we are:  
 

We talked about Recursive Descent parsing, 
which is completely general but requires 

backtracking.  
 

Then we talked about LL(1), which 
is not completely general, but requires no 

backtracking. 
 

We are now embarking on bottom-up parsing.   
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An Introductory Example 

•  Bottom-up parsers don’t need left-factored 
grammars 
–  Recall what left-factored means: (no two 

productions with the same prefix) 
•  Revert to the “natural” grammar for our 

example: 
E → T + E | T 
T → int * T | int | (E) 

•  “natural” in quotes because we still have to 
deal with precedence of + and * 
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An Introductory Example 

•  Bottom-up parsers don’t need left-factored 
grammars 
–  Recall what left-factored means 

•  Revert to the “natural” grammar for our 
example: 

E → T + E | T 
T → int * T | int | (E) 

•  Consider the string: int * int + int 
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The Idea 

Bottom-up parsing reduces a string to the start 
symbol by inverting productions (running them 
backwards) 

 
 

 

int * int + int T → int 
int * T  + int T → int * T 
T + int T → int 
T + T E → T 
T + E E → T + E 
E 

Left column is a sequence of states. 
right side is productions used. 
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Observation 

•  Read the productions in reverse (from bottom 
to top) 
–  Read in the order we did them, called reductions 

•  This is a rightmost derivation! 

int * int + int T → int 
int * T  + int T → int * T 
T + int T → int 
T + T E → T 
T + E E → T + E 
E 
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Important Fact #1 

 
Important Fact #1 about bottom-up parsing: 
 

A bottom-up parser traces a rightmost 
derivation in reverse 

 
If you’re ever having trouble with bottom-up 

parsing, it’s good to come back to this basic 
fact 



The Idea   

•  A top-down parser begins with the start 
symbol and produces the tree incrementally by 
expanding some non-terminal at the frontier 

•  A bottom-up parser begins with all ALL the 
leaves of the parse tree (the entire input) and 
builds little trees on top of those 
–  It pastes all the subtrees that it’s built so far 

together to create the entire parse tree 
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A Bottom-up Parse 

int * int + int 

int * T  + int 

T + int 

T + T 

T + E 

E 

E 

T E 

+ int * int 

T 

int 

T 
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A Bottom-up Parse in Detail (1) 

+ int * int int 

int * int + int 
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A Bottom-up Parse in Detail (2) 

int * int + int 

int * T  + int 

+ int * int int 

T 
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A Bottom-up Parse in Detail (3) 

int * int + int 

int * T  + int 

T + int T 

+ int * int int 

T 
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A Bottom-up Parse in Detail (4) 

int * int + int 

int * T  + int 

T + int 

T + T 

T 

+ int * int 

T 

int 

T 
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A Bottom-up Parse in Detail (5) 

int * int + int 

int * T  + int 

T + int 

T + T 

T + E 

T E 

+ int * int 

T 

int 

T 
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A Bottom-up Parse in Detail (6) 

int * int + int 

int * T  + int 

T + int 

T + T 

T + E 

E 

E 

T E 

+ int * int 

T 

int 

T 
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A Trivial Bottom-Up Parsing Algorithm 

Let I = input string 
 repeat 
  pick a non-empty substring β of I 
   where X→ β is a production 
  if no such β, backtrack 
  replace one β by X in I 
 until I = “S” (the start symbol) or all 
possibilities are exhausted 
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Questions 

•  Does this algorithm terminate? 

•  How fast is the algorithm? 

•  Does the algorithm handle all cases? 

•  How do we choose the substring to reduce at 
each step? 



Where Do Reductions Happen? 

Important Fact #1 has an interesting 
consequence: 
–  Let αβω be a step of a bottom-up parse 
–  Assume the next reduction is by X→ β 
–  Then ω is a string of terminals 

Why? Because αXω → αβω is a step in a right-
most derivation  

Recall Fact #1: Bottom-up parser traces a rightmost 
derivation in reverse. 
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Notation 

•  Idea: Split string into two substrings 
–  Right substring is as yet unexamined by parsing         

(a string of terminals) 
•  Turns out terminal symbols to right of right most non-

terminal are exactly the unexamined input in bottom-up 
parsing 

–  Left substring has terminals and non-terminals 
–  E.g., if we have αXω, and X is the rightmost non-

terminal, then ω is the input we have not read yet 
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Notation 

 
•  The dividing point is marked by a | 

–  The | is not part of the string 
•  Initially, all input is unexamined |x1x2 . . . xn 

•  After some input has been examined: 
           x1x2x3|x4 . . . xn 

 
 processed unprocessed 
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Shift-Reduce Parsing 

Bottom-up parsing uses only two kinds of 
actions: 

 
Shift moves 

 
Reduce moves 
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Shift 

•  Shift: Move | one place to the right 
–  Shifts a terminal to the left string 
–  Equivalently reads one token of input 
–  In example below, the shift indicates that token x 

can now be considered as part of processing  
–  y and z remain unprocessed and unread at this point  

ABC|xyz  ⇒ ABCx|yz  
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Reduce Move 

•  Apply an inverse production at the right end 
of the left string 
–  If A → xy is a production, then 

Cbxy|ijk  ⇒ CbA|ijk  
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Previously Seen Example with Reductions Only 

int * int | + int reduce T → int 
int * T | + int reduce T → int * T 

T + int |  reduce T → int 
T + T | reduce E → T 
T + E | reduce E → T + E 
E | 

E → T + E | T 
T → int * T | int | (E) 
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The Example with Shift-Reduce Parsing 

|int * int + int shift 
int | * int + int shift 
int  * | int + int shift 
int * int | + int reduce T → int 
int * T | + int reduce T → int * T 
T | + int shift 
T + | int shift 
T + int |  reduce T → int 
T + T | reduce E → T 
T + E | reduce E → T + E 
E | 

E → T + E | T 
T → int * T | int | (E) 

 



•  Note: In this derivation, and in the details of 
it that follows, all I’m showing is that there 
exists a sequence of shift and reduce moves 
that can successfully parse the input string. 

•  I do not (yet) explain how we choose whether 
to perform a shift or reduce move. 
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A Shift-Reduce Parse in Detail (1) 

+ int * int int 
↑ 

|int * int + int 
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A Shift-Reduce Parse in Detail (2) 

+ int * int int 
↑ 

|int * int + int 
int | * int + int 



74 

A Shift-Reduce Parse in Detail (3) 

+ int * int int 
↑ 

|int * int + int 
int | * int + int 
int  * | int + int 
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A Shift-Reduce Parse in Detail (4) 

+ int * int int 
↑ 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
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A Shift-Reduce Parse in Detail (5) 

+ int * int int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 

↑ 
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A Shift-Reduce Parse in Detail (6) 

T 

+ int * int int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 

↑ 
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A Shift-Reduce Parse in Detail (7) 

T 

+ int * int int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 
T + | int 

↑ 
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A Shift-Reduce Parse in Detail (8) 

T 

+ int * int int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 
T + | int 
T + int |  

↑ 
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A Shift-Reduce Parse in Detail (9) 

T 

+ int * int 

T 

int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 
T + | int 
T + int |  
T + T | 

↑ 
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A Shift-Reduce Parse in Detail (10) 

T E 

+ int * int 

T 

int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 
T + | int 
T + int |  
T + T | 
T + E | ↑ 
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A Shift-Reduce Parse in Detail (11) 

E 

T E 

+ int * int 

T 

int 

T 

|int * int + int 
int | * int + int 
int  * | int + int 
int * int | + int 
int * T | + int 
T | + int 
T + | int 
T + int |  
T + T | 
T + E | 
E | 

↑ 
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The Stack 

•  Left string can be implemented by a stack 
–  Top of the stack is the | 

•  Shift pushes a terminal on the stack 

•  Reduce pops 0 or more symbols off of the 
stack (production rhs) and pushes a non-
terminal on the stack (production lhs) 
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Conflicts 

•  In a given state, more than one action (shift or 
reduce) may lead to a valid parse 

•  If both a shift and a reduce are possible at some 
juncture, there is a shift-reduce conflict 

•  If it is legal to reduce by two different productions, 
there is a reduce-reduce conflict 

•  You will see such conflicts in your project! 
–  More next time . . . 


