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Error Handling 
Syntax-Directed Translation 
Recursive Descent Parsing 

Lecture 6 
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Outline 

•  Extensions of CFG for parsing 
–  Precedence declarations (previous slide set) 
–  Error handling (slight digression) 

•  I.e., what kind of error handling is available in parsers 
–  Semantic actions 

•  Constructing a parse tree 

•  Recursive descent 
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Error Handling 

•  Purpose of the compiler is 
–  To detect non-valid programs 

•  And provide good feedback 
–  To translate the valid ones 

•  Many kinds of possible errors (e.g. in C) 
 

 Error kind       Example                Detected by … 
Lexical              … $ …  (not used in C)   Lexer 
Syntax              … x *% …                      Parser 
Semantic          … int x; y = x(3); …        Type checker 
Correctness      your favorite program       Tester/User 
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Syntax Error Handling 

•  Error handler should 
–  Report errors accurately and clearly 

•  Want to identify problem quickly and fix it 
–  Recover from an error quickly 

•  Compiler shouldn’t take a long time to figure out what to 
do when it hits an error 

–  Not slow down compilation of valid code 
•  I.e., don’t force good programs to pay the price for error 

handling 

 
•  Good error handling is not easy to achieve 
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Approaches to Syntax Error Recovery 

•  Three approaches, from simple to complex 
–  Panic mode (used today) 
–  Error productions (used today) 
–  Automatic local or global correction 

•  Idea that was pursued quite a bit in past 
•  historically interesting contrast to what is done now 

 
•  Not all are supported by all parser generators 
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Error Recovery: Panic Mode 

•  Simplest, most popular method 

•  When an error is detected: 
–  Discard tokens until one with a clear role is found 
–  Continue from there 

•  Such tokens are called synchronizing tokens 
–  Just tokens that have a well-known role in the 

language 
–  Typically the statement or expression terminators 



 A Typical Strategy  

Skip to the end of a statement or the end of a 
function if an error is found in a statement or 
function and then begin parsing either the next 
statement or the next function.  

8 
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Syntax Error Recovery: Panic Mode (Cont.) 

•  Consider the erroneous expression 
             (1 + + 2) + 3 

•  Panic-mode recovery: 
–  Policy (for this particular kind of error) might be: 

Skip ahead to next integer and then continue 
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Syntax Error Recovery: Panic Mode (Cont.) 
 
•  Bison: use the special terminal error to 

describe how much input to skip 
       E → int | E + E | ( E ) | error int | ( error ) 
 
Blue are “normal” options.   
Red are error options 
Parser is attempting to parse something (haven’t seen 
how that works yet) and reaches a state where it 
expects an int, or a + or a parenthesized expression 
but if that isn’t working out and it gets stuck, it hits 
panic button: throw out everything up to the next int 
error matches all input up to next integer 
 



Syntax Error Recovery: Panic Mode (Cont.) 
 
•  Bison: use the special terminal error to 

describe how much input to skip 
       E → int | E + E | ( E ) | error int | ( error ) 
 
Blue are “normal” options.   
Red are error options 
Similarly, if it encounters an error somewhere inside a 
pair of matched parentheses, just throw away the 
whole thing and continue parsing after the closing 
parenthesis.  
Can have these productions that involve the error 
token for as many different kinds of errors as you like 
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Syntax Error Recovery: Error Productions 

•  Idea: specify in the grammar known common mistakes 

•  Example:  
–  Writing a compiler for language used by lots of 

mathematicians 
–  They often write 5 x instead of 5 * x and complain that this 

generates parse errors 
•  Which state that the former is not a well-formed expression 

–  Solution: Add the production E → … | E E 
•  This makes the expression well formed 
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Syntax Error Recovery: Error Productions 
 
•  Essentially promotes common errors to alternative 

syntax 

•  Disadvantage 
–  Complicates the grammar 
–  If it’s used a lot grammar is going to be a lot harder to 

understand 
•  But it is used in practice! 

–  E.g. gcc and other production C compilers will often warn you 
about things you’re not supposed to do but they’ll accept them 
anyway 

–  Error productions is usually the mechanism by which this is 
done 



•  Previous mechanisms are primarily for 
detection.  Following method actually tries to 
do correction! 

14 
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Error Recovery: Local and Global Correction 

•  Idea: find a correct “nearby” program 

–  I.e., programs that aren’t too “different” from the 
original program  

–  Try token insertions and deletions 
•  E.g., Minimize the edit distance from bad token to newly 

inserted token 

–  Exhaustive search (within some specified bounds) 
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Error Recovery: Local and Global Correction 
 
•  Disadvantages:  

–  Hard to implement 
•  It’s actually quite complex 

–  Slows down parsing of correct programs 
•  Because you need to keep enough state around to manage 

the search or the editing  

–  “Nearby” is not necessarily “the intended” program 
•  Not really all that clear what “nearby” means 
•  “Nearby” is not necessarily “the intended” program  
•  Not all tools support it 
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Error Recovery: Local and Global Correction 
 
•  Best example: The PL/C compiler 

–  PL: Because it’s a PL1 compiler 
–  C: Either “correction” or “Cornell” (where the 

compiler was built) 
–  Well known for being willing to compile absolutely 

anything 
•  Phone book 
•  Speech from a Hamlet soliloquy 
•  It would give lots of error messages 

–  Many quite funny 
•  But in the end it always produced a valid working PL1 

program 

•  But, why bother? 
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Syntax Error Recovery: Past and Present 

•  When this was done (in the 1970s) 
–  Slow recompilation cycle (even once a day) 

•  Submit program in morning, get compiler output in the 
afternoon 

•  With that kind of turnaround, even a single syntax error 
could be devastating: could lose a whole day just because 
of typo in a keyword 

•  So having a compiler that can correct the program for you 
if it’s a small error could save you a whole day 

–  So want to find as many errors in one cycle as 
possible 

•  And then check whether the corrections were right 
•  Allow even more debugging before next round 

–  Researchers could not let go of the topic 
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Syntax Error Recovery: Past and Present 

 
•  Present 

–  Quick recompilation cycle 
–  Users tend to correct one error/cycle 

•  Usually the first error, since that tends to be the most 
reliable report from the compiler (and it needs to be fixed 
before others can be fixed) 

–  Complex error recovery is less compelling than it 
was a few decades ago 

–  Panic-mode seems enough 
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Abstract Syntax Trees 

•  So far a parser traces the derivation of a 
sequence of tokens 
–  Not all that useful to the compiler because… 

•  The rest of the compiler needs a structural 
representation of the program 
–  Data structure that tells it what the operations are 

in the program and how they’re put together 

•  So for various reasons a parse tree isn’t what 
we want to work on  
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Abstract Syntax Trees 
 
•  Abstract syntax trees 

–  Like parse trees but ignore some details 
•  Abstracted away some of the details 

–  Abbreviated as AST 
–  The core data structure used in compilers 

•  To be clear: We could do compilation perfectly 
well using a parse tree.   
–  Since it is a faithful representation of program 

structure 
–  Just inconvenient to use because of unnecessary 

details 
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Abstract Syntax Tree. (Cont.) 

•  Consider the grammar 
        E → int | ( E ) | E + E  
 

•  And the string 
       5 + (2 + 3) 
 

•  After lexical analysis (a list of tokens) 
          int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’ 
 
•  During parsing we build a parse tree … 
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Example of Parse Tree 

E 

E E 

( E ) 

+ 

E + 

int5 

int2 

E 

int3 

•  Traces the operation 
of the parser 

•  Does capture the 
nesting structure 

•  But too much info 
–  Parentheses 
–  Single-successor 

nodes 



Example of Parse Tree 

E 

E E 

( E ) 

+ 

E + 

int5 

int2 

E 

int3 

•  Traces the operation 
of the parser 

•  Does capture the 
nesting structure 

•  But too much info 
–  Parentheses 
–  Single-successor 

nodes 

AST compresses out all the “junk” in the parse tree 



Example of Abstract Syntax Tree 

•  Also captures the nesting structure 
–  via which plus node nested inside the other 

•  But abstracts from the concrete syntax 
=> more compact and easier to use 

•  An important data structure in a compiler 

PLUS 

PLUS 

  2   5   3 
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Example of Abstract Syntax Tree 

•  Consider designing algorithms to traverse 
this as opposed to the parse tree 
–  Quite a bit easier 

PLUS 

PLUS 

  2   5   3 
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Semantic Actions 

•  Semantic actions are program fragments 
embedded within production bodies 
–  This is what we’ll use to construct ASTs 
–  These actions become part of the AST 

•  Ex:         E → E + T  {print(‘+’)} 
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Semantic Actions 

•  Ex:         E → E + T {print(‘+’)} 

–  Interpretation of this particular production: When 
building the parse tree, any time you use this 
production, you end up with E having 4 children: E, 
+, T, and {print(‘+’)} 

–  Once AST built, perform left to right depth-first 
traversal and execute each action when we 
encounter it’s leaf node  

•  See example on p. 59 of text 
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Semantic Actions 

•  This is what we’ll use to construct ASTs 
–  Semantic actions are program fragments embedded 

within production bodies 
•  Each grammar symbol may have attributes 

–  For terminal symbols (lexical tokens) attributes can 
be calculated by the lexer 

•  Each production may have an action 
–  Written as:     X → Y1 …  Yn       { action } 
–  That can refer to or compute symbol attributes 
–  Basically, you are associating rules or program 

fragments to productions in a grammar 
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Semantic Actions: An Example 

•  Consider the grammar 
                         E → int | E + E | ( E ) 
 

•  For each symbol X define an attribute X.val 
–  For terminals, val is the associated lexeme 
–  For non-terminals, val is the expression’s value (and is 

computed from values of subexpressions) 

•  We annotate the grammar with actions: 
E → int                 { E.val = int.val } 
    | E1 + E2            { E.val = E1.val + E2.val } 
    | ( E1 )               { E.val = E1.val } 
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Semantic Actions: An Example (Cont.) 

      Productions                 Equations 
E  → E1 + E2                                E.val  = E1.val + E2.val 
E1 → int5                          E1.val = int5.val  = 5 
E2 → ( E3)                        E2.val = E3.val 
E3  → E4 + E5                    E3.val = E4.val + E5.val 
E4 → int2                          E4.val = int2.val = 2 
E5 → int3                          E5.val = int3.val  = 3 

•  String:    5 + (2 + 3) 
•  Tokens:   int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’ 
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Semantic Actions: Notes 

•  Semantic actions specify a system of 
equations 
–  Order of resolution is not specified 

•  Example: 
        E3.val = E4.val + E5.val 
–  Must compute E4.val and E5.val before E3.val  
–  We say that E3.val depends on E4.val and E5.val 

•  The parser must find the order of evaluation 
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Dependency Graph 

E 

E1 E2 

( E3 ) 

+ 

E4 
+ 

int5 

int2 

E5 

int3 

    +  

   +  

           

          

  2  

  5  

•  Each node labeled E 
has one slot for the val 
attribute 

•  Note the dependencies 

  3 
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Evaluating Attributes 

•  An attribute must be computed after all its 
successors in the dependency graph have been 
computed  
–  In previous example attributes can be computed 

bottom-up 

•  Such an order exists when there are no cycles 
–  Cyclically defined attributes are not legal 
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Dependency Graph 

E 

E1 E2 

( E3 ) 

+ 

E4 
+ 

int5 

int2 

E5 

int3 

   10  

   5  

  5    5 

  3  2 

  2  

  5  

  3 
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Semantic Actions: Notes (Cont.) 

•  Synthesized attributes 
–  Calculated from attributes of descendents in the 

parse tree 
–  E.val is a synthesized attribute 
–  Can always be calculated in a bottom-up order 

•  Grammars with only synthesized attributes 
are called S-attributed grammars 
–  Most common case 
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Inherited Attributes 

•  Another kind of attribute 

•  Calculated from attributes of parent, and/or 
siblings, and/or self in the parse tree 

•  Example: a line calculator 
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A Line Calculator 

•  Each line contains an expression 
        E → int  |  E + E 
•  Each line is terminated with the = sign 
        L → E =  |  + E = 
 
•  In second form the value of previous line is 

used as starting value 
•  A program is a sequence of lines 
        P →  ε | P L 
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Attributes for the Line Calculator 

•  Each E has a synthesized attribute val  
–  Calculated as before 

•  Each L has an attribute val  
L → E =        { L.val = E.val } 
    |  + E =     { L.val = E.val + L.prev }  
 

•  We need the value of the previous line  
•  We use an inherited attribute L.prev 
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Attributes for the Line Calculator (Cont.) 

•  Each P has a synthesized attribute val  
–  The value of its last line 
   P → ε               { P.val = 0 } 
      |  P1 L            { P.val = L.val;  
                             L.prev = P1.val } 
–  Each L has an inherited attribute prev 
–  L.prev is inherited from sibling P1.val 

•  Example … 
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Example of Inherited Attributes 

•  val  synthesized 

•  prev inherited 

•  All can be 
computed in 
depth-first 
order  

P 

ε 

L 

+ E3 
= 

E4 
+ 

int2 

E5 

int3 

      

   +  

         +   

          

  2  

  0  

  3 

     P 
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Example of Inherited Attributes 

•  val  synthesized 

•  prev inherited 

•  All can be 
computed in 
depth-first 
order  

P 

ε 

L 

+ E3 
= 

E4 
+ 

int2 

E5 

int3 

  5 

   5  

  0     5   

  3   2  

  2  

  0  

  3 

  0 P 
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Semantic Actions: Notes (Cont.) 

•  Semantic actions can be used to build ASTs 

•  And many other things as well 
–  Also used for type checking, code generation, … 

•  Process is called syntax-directed translation 
–  Substantial generalization over CFGs 
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Constructing An AST 

•  We first define the AST data type 
–  Supplied by us for the project 

•  Consider an abstract tree type with two 
constructors: 

mkleaf(n)  

mkplus( 

T1 

)    = , 

T2 

= 

PLUS 

T1 T2 

  n 
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Constructing a Parse Tree 

•  We define a synthesized attribute ast  
–  Values of ast attribute are ASTs 
–  We assume that int.lexval is the value of the 

integer lexeme 
–  Computed using semantic actions 

 
E → int              E.ast = mkleaf(int.lexval)      
    | E1 + E2         E.ast = mkplus(E1.ast, E2.ast) 
    | ( E1 )            E.ast = E1.ast 



46 

Parse Tree Example 

•  Consider the string int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’ 
•  A bottom-up evaluation of the ast attribute: 
         E.ast = mkplus(mkleaf(5), 
                                 mkplus(mkleaf(2), mkleaf(3)) 

PLUS 

PLUS 

  2   5 3
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Summary 

•  We can specify language syntax using CFG 

•  A parser will answer whether s ∈ L(G) 
–  … and will build a parse tree 
–  … which we convert to an AST 
–  … and pass on to the rest of the compiler 

 



•  Now, on to the actual parsing algorithms 
(there are a few) 

48 



Intro to Top-Down Parsing: The Idea 

•  The parse tree is constructed 
–  From the top (i.e., starting with 

root node) 
–  From left to right 

•  Terminals are seen in order of 
appearance in the token 
stream:  

             t2  t5  t6  t8  t9 

1 

t2 3 

4 

t5 

7 

t6 

t9 

t8 

Numbers correspond to order in which nodes constructed 



Intro to Top-Down Parsing: The Idea 

•  The parse tree is constructed 
–  From the top (i.e., starting with 

root node) 
–  From left to right 

•  Terminals are seen in order of 
appearance in the token 
stream:  

             t2  t5  t6  t8  t9 

1 

t2 3 

4 

t5 

7 

t6 

t9 

t8 

And yes, there are also bottom-up parsing algorithms  



Recursive Descent Parsing 

•  Consider the grammar (for int expressions) 
      E → T |T + E 
      T → int  | int * T | ( E ) 
 

•  Token stream is:   ( int5 ) 

•  Start with top-level non-terminal E 
–  Try the rules for E in order 
–  There is trial-and-error involved 
And note I’m not giving pseudocode, but instead walk 
through the algorithm for this particular grammar 



Recursive Descent: Three Components 

•  Grammar that we’re using 

•  Parse tree that we’re building 
–  Initially just the root of the parse tree 

•  Input that we’re processing 
–  Indicated by the red arrow 
–  Always points to the next terminal symbol to be 

read 

52 



To Repeat 

•  Top to bottom 
•  Left to Right 
•  As we’re building the parse tree, whenever we 

get to a leaf (i.e., a terminal), we check 
whether it matches the current terminal in 
the input 
–  If yes, then continue 
–  If no, then backtrack 

•  But: while we are at a non-terminal, we have no 
way of knowing whether current track will 
succeed! 53 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

( int5 ) 

Highlighting indicates which  
production we’re going to try 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

( int5 ) 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

int 

( int5 ) 

E 

T 

Mismatch: int is not “(“  
Backtrack … 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

int * T
Mismatch: int is not “(“ 
Backtrack … 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 
Match!  Advance input. 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 

T 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 

T 

int 

Match!  Advance input. 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 

T 

int 

Match!  Advance input. 
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Recursive Descent Parsing 

E → T |T + E       
T → int  | int * T | ( E ) 

 

E 

T 

( int5 ) 

( E ) 

T 

int 

End of input, accept. 



Now for the general algorithm 
But first… 

67 
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A Recursive Descent Parser. Preliminaries 

•  Let TOKEN be the type of tokens 
–  Special tokens INT, OPEN, CLOSE, PLUS, TIMES 
–  E.g., TOKEN is a type, and the list above are 

examples of instances of that type 

•  Let the global next point to the next token 
–  I.e., next plays the same role as the red cursor 

arrow 
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A (Limited) Recursive Descent Parser (2) 

•  Define boolean functions that check the token 
string for a match of 
–  A given token terminal 
      bool term(TOKEN tok) { return *next++ == tok; } 
–  Read: Is what next is pointing to equal to tok? 

(That is, is tok equal to the thing that next is 
currently pointing to in the input stream?) 

•  If so, return true 
•  Note: as a side effect, next is incremented regardless of 

whether the match succeeded or failed! 
        

true or false 
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A (Limited) Recursive Descent Parser (2) 

•  Define boolean functions that check the token 
string for a match of 
–  The nth production of S: (note: a particular 

production of a particular nonterminal S) 
       bool Sn() { … } 
 
•  Again, returns a bool, and only checks for the 

success of only one production of S 
•  We’ll look at “code” for that in a minute 
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A (Limited) Recursive Descent Parser (2) 

•  Define boolean functions that check the token 
string for a match of 
–  Try all productions of S:                          
       bool S() { … } 
 
Succeeds if there is ANY production of S can match 
the input 
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A (Limited) Recursive Descent Parser (2) 

•  So, there are two classes of functions for 
each nonterminal 

–  One class where there is one function per 
production, each function able to check whether 
the corresponding production matches the input 

–  One class that combines all the productions for a 
particular nonterminal and checks whether any of 
them can match the input 



Embedded term() calls 

•  Note that in both of the previously mentioned 
classes, there are embedded term() calls. 

•  Why? 
–  The input attempting to be matched consists of 

terminals 
–  So only way to know if a production for a non-terminal 

CAN match a portion of the input is to call the term() 
function (on some terminal(s) in the input) 

–  Thus code of both Sn and S must call term() 

73 



Who Cares? 

•  You should: As mentioned term() has a side 
effect! 
–  Moves the input pointer (whether or not there is a 

match) 

•  Bottom line: When either Sn or S are called, the 
input pointer has been incremented (via 
embedded term() calls) so that it is pointing at 
the first terminal that was NOT matched.  

74 Now let’s see this work 
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A (Limited) Recursive Descent Parser (3) 

•  For production E → T  
       bool E1() { return T(); } 
•  Why?  

–  E1() is the function that deals with the first 
production for nonterminal E 

–  It is supposed to return true if this first 
production can matches a given input 

–  How can this production match an input? 
•  Only if some production of T matches the input 
•  And we have a name for the function that tries all the 

productions of T.  It’s called T().  
–  So, E1() succeeds exactly when T() succeeds 
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A (Limited) Recursive Descent Parser (3) 

•  For production E → T + E  
       bool E2() { return T() && term(PLUS) && E(); } 
•  Little more work here: Succeeds if T + E can 

match some input.  How does this happen? 
–  Some production of T has to match a portion of the 

input AND 
–  We have to find a + in the input following whatever 

T matched AND 
–  If + has been matched, some production of E needs 

to match a portion of the input 
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A (Limited) Recursive Descent Parser (3) 

•  For production E → T + E  
       bool E2() { return T() && term(PLUS) && E(); } 
•  Little more work here: Succeeds if T + E can 

match some input.  How does this happen? 
–  Some production of T has to match a portion of the 

input AND 
–  We have to find a + in the input following whatever 

T matched AND 
–  If + has been matched, some production of E needs 

to match a portion of the input 

Note use of short circuiting && here 



A (Limited) Recursive Descent Parser (3) 

•  For production E → T + E  
       bool E2() { return T() && term(PLUS) && E(); } 
•  Little more work here: Succeeds if T + E can 

match some input.  How does this happen? 
–  Some production of T has to match a portion of the 

input AND 
–  We have to find a + in the input following whatever 

T matched AND 
–  If + has been matched, some production of E needs 

to match a portion of the input 

Note also how the side-effecting moves pointer 
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A (Limited) Recursive Descent Parser (3) 

•  For all productions of E (with backtracking)  
–  Only state that we have to worry about is the next pointer, 
–  Needs to be restored if we have to “undo” decisions 

  bool E() { 
    TOKEN *save = next; 
    return    (next = save, E1())  
              || (next = save,  E2());   }  
 

Note that if E1() matches, then the next pointer 
will have been advanced to point to the token following 
the portion matched by E1(). 
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A (Limited) Recursive Descent Parser (3) 

•  For all productions of E (with backtracking)  
–  Only state that we have to worry about is the next pointer, 
–  Needs to be restored if we have to “undo” decisions 

  bool E() { 
    TOKEN *save = next; 
    return    (next = save, E1())  
              || (next = save,  E2());   }  
 

Note saved next ptr before 
any other “code” 

Note restoring next ptr before 
trying E2() 
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A (Limited) Recursive Descent Parser (3) 

•  For all productions of E (with backtracking)  
–  Only state that we have to worry about is the next pointer, 
–  Needs to be restored if we have to “undo” decisions 

  bool E() { 
    TOKEN *save = next; 
    return    (next = save, E1())  
              || (next = save,  E2());   }  
 

But what about this saved ptr here? Not needed, 
but done for uniformity 
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Recall Our Grammar 

E → T |T + E       
T → int  | int * T | ( E ) 
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A (Limited) Recursive Descent Parser (4) 

•  Functions for non-terminal T 
bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
 

bool T() { 
   TOKEN *save = next; 
   return    (next = save, T1())  
             || (next = save,  T2())  
             || (next = save,  T3()); }  
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Recursive Descent Parsing. Notes. 

•  To start the parser  
–  Initialize next to point to first token 
–  Invoke E() 

•  Notice how this simulates the example parse 

•  Easy to implement by hand (and people often do this) 
–  But not completely general 
–  Cannot backtrack once a production is successful 
–  Works for grammars where at most one production can 

succeed for a non-terminal 



Complete Example 

E → T |T + E                                                           ( int ) 
T → int  | int * T | ( E ) 

 
bool term(TOKEN tok) { return *next++ == tok; } 
 
bool E1() { return T(); } 
bool E2() { return T() && term(PLUS) && E(); } 
 
bool E()  {TOKEN *save = next; return     (next = save, E1())  

                                                     || (next = save,  E2());   } 
bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
 
bool T() { TOKEN *save = next;  return    (next = save, T1())  

                                                     || (next = save,  T2())  
                                                     || (next = save,  T3()); }  
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Another Example (Same Grammar) 

E → T |T + E                                                           int  
T → int  | int * T | ( E ) 

 
bool term(TOKEN tok) { return *next++ == tok; } 
 
bool E1() { return T(); } 
bool E2() { return T() && term(PLUS) && E(); } 
 
bool E()  {TOKEN *save = next; return     (next = save, E1())  

                                                     || (next = save,  E2());   } 
bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
 
bool T() { TOKEN *save = next;  return    (next = save, T1())  

                                                     || (next = save,  T2())  
                                                     || (next = save,  T3()); }  
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Still Another Example (Same Grammar) 

E → T |T + E                                                       int * int 
T → int  | int * T | ( E ) 

 
bool term(TOKEN tok) { return *next++ == tok; } 
 
bool E1() { return T(); } 
bool E2() { return T() && term(PLUS) && E(); } 
 
bool E()  {TOKEN *save = next; return     (next = save, E1())  

                                                     || (next = save,  E2());   } 
bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
 
bool T() { TOKEN *save = next;  return    (next = save, T1())  

                                                     || (next = save,  T2())  
                                                     || (next = save,  T3()); }  
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Still Another Example (Same Grammar) 

E → T |T + E                                                       int * int 
T → int  | int * T | ( E ) 

 
bool term(TOKEN tok) { return *next++ == tok; } 
 
bool E1() { return T(); } 
bool E2() { return T() && term(PLUS) && E(); } 
 
bool E()  {TOKEN *save = next; return     (next = save, E1())  

                                                     || (next = save,  E2());   } 
bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
 
bool T() { TOKEN *save = next;  return    (next = save, T1())  

                                                     || (next = save,  T2())  
                                                     || (next = save,  T3()); }  
  

 
 
 

88 

rejected!  So what 
happened? 



So What Happened? 

•  When int matched the first production for T, we said 
that T() was done, had matched the input. 

•  This caused the parse to fail because the rest of the 
string was not consumed.  

•  Once the call to T() had succeeded, there was no way to 
backtrack and try alternative production for T. 

•  To succeed, would have to be able to say that even 
though we found a part that matched, since the overall 
parse failed, that must not have been the right 
production to choose for T 
–  Note here trying T2() would have resulted in success 
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So, the Problem 

•  The problem is that while there is 
backtracking while trying to find a production 
that works for a given non-terminal,  there is 
no backtracking once we have found a 
production that succeeds for that non-
terminal. 

•  So once a non-terminal function commits and 
returns and says “I have found a way to parse 
part of the input using one of my productions”, 
there is no way in this algorithm to go back 
and revisit that decision. 90 



Bottom Line   

•  The Recursive Descent algorithm we’ve seen 
thus far is not completely general  
–  It fails on some inputs on which it should succeed 

•  BUT, recursive descent IS a general technique 
–  There are algorithms for Recursive Descent 

parsing that can parse any grammar (implement full 
language of any grammar) 

–  Such algorithms have more sophisticated 
backtracking mechanisms than does the algorithm 
I’ve presented thus far. 
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So Why Show This Algorithm? 

•  Well, as we’ve seen, it’s easy to implement by 
hand 

•  Also, it works on a large class of grammars 
–  Any grammar where for any non-terminal at most 

one production can succeed. 
•  So, if you know by the way that you’ve built 

your grammar that the RD algorithm is only in 
situations where for any terminal at most one 
production can succeed, you’re good! 

•  The example grammar can be rewritten to 
work with this algorithm via left-factoring 
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Recursive Descent: Another Issue 

•  Consider a simple grammar with a single 
production S → S a 

          bool S1() { return S() && term(a); }  
          bool S() { return  S1(); } 
 
•  S() always goes into an infinite loop 

•  A left-recursive grammar has a non-terminal S 
           S →+ Sα   for some α 

•  Recursive descent does not work in such cases 

Recall: non-empty sequence of rewrites 



A Major Problem? 

•  Well, though it might seem so at first, the 
answer is that no, it’s not. 
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Elimination of Left Recursion 

•  Consider the left-recursive grammar 
                       S → S α | β 

•  S generates all strings starting with a β and 
followed by a number of α 
–  Note that it produces strings right to left 
–  Very last thing it produces is first thing in input 

•  This is why it causes issues for recursive 
descent parsing 
–  Which wants to process first part of the string 

first (left to right) 
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Elimination of Left Recursion 

•  Consider the left-recursive grammar 
                       S → S α | β 

•  This gives us the idea on how to fix it: replace 
left-recursion with right-recursion 
–  Create exactly same language 

 
•  Can rewrite using right-recursion 
                 S → β S’ 
                 S’ → α S’ | ε 
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More Elimination of Left-Recursion 

•  In general 
                  S → S α1 | … | S αn | β1 | … | βm 
•  All strings derived from S start with one of 
β1,…,βm and continue with several instances of 
α1,…,αn  

•  Rewrite as 
             S → β1 S’ | … | βm S’ 

             S’ → α1 S’ | … | αn S’ | ε  
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General Left Recursion 

•  The grammar  
         S → A α | δ 
         A → S β 
 is also left-recursive because 

            S →+ S β α 

•  This left-recursion can also be eliminated 
–  In fact, automatically – does not require human intervention 

•  See Dragon Book for general algorithm 
–  Section 4.3 
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Summary of Recursive Descent 

•  Simple and general parsing strategy 
–  Left-recursion must be eliminated first 
–  … but that can be done automatically 

•  Unpopular because of backtracking 
–  Thought to be too inefficient 

•  In practice, backtracking is eliminated by 
restricting the grammar 


