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Tips on Building Large Systems 

•  KISS (Keep It Simple, Stupid!) 

•  Don’t optimize prematurely 

•  Design systems that can be tested 

•  It is easier to modify a working system than 
to get a system working 
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Outline 

•  Specifying lexical structure using regular 
expressions 

•  Finite automata 
–  Deterministic Finite Automata (DFAs) 
–  Non-deterministic Finite Automata (NFAs) 

•  Implementation of regular expressions 
              RegExp => NFA => DFA => Tables  
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Notation 

•  There is variation in regular expression 
notation 

•  Union:    A | B                          ≡   A + B 
•  Option:  A + ε                           ≡   A? 
•  Range:    ‘a’+’b’+…+’z’           ≡   [a-z] 
•  At least one: A+  (A-Abdullah)  ≡   AA* 

•  Excluded range: 
             complement of [a-z]   ≡   [^a-z] 
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Regular Expressions in Lexical Specification 

•  Last lecture: a specification for the predicate    
                              s ∈ L(R)  
  
•  But a yes/no answer is not enough! 

–  Because we need to know not just whether the 
string is a valid program, but also… 

•  How to partition the input into tokens 

•  We adapt regular expressions to this goal 
–  I.e., there are some small required extensions 

Note: we can do this just by looking at reg. exp. R 
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Regular Expressions => Lexical Spec. (1) 

1.  Write a regexp for the lexemes of each 
token class 
•  Number = digit + 
•  Keyword = ‘if’ + ‘else’ + … 
•  Identifier = letter (letter + digit)* 
•  OpenPar = ‘(‘ 
•  … 

•  So, we write down a whole list of regular 
expressions, one for each syntactic category 
in language 6 



Regular Expressions => Lexical Spec. (2) 

2.  Construct R, matching all lexemes for all 
token classes 

 
     R = Keyword + Identifier + Number + … 
        = R1 + R2 + …  
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•  What follows is the key to how we use the 
regular expression specification to perform 
lexical analysis 
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Regular Expressions => Lexical Spec. (3) 

3.  Let input be x1…xn 
For 1 ≤ i ≤ n check whether the prefix 

             x1…xi ∈ L(R)  

4.  If success, then we know that 
 x1…xi ∈ L(Rj) for some j 

5.  Remove x1…xi from input and go to (3) 

Continue removing pieces until we have tokenized 

the entire string 9 



Ambiguities (1) 

•  There are ambiguities in the algorithm 
–  Some things are under specified (and these turn 

out to be interesting) 
•   How much input is used? What if 

•   x1…xi ∈ L(R) and also 
•   x1…xK ∈ L(R)       (of course i ≠ k) 
•  Ex. We’ve got == 

•  Rule: Pick longest possible string in L(R)  
–  The “maximal munch” 

•  Yes, this is really what this rule is called 
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Ambiguities (1) 

•  There are ambiguities in the algorithm 
–  Some things are under specified (and these turn out 

to be interesting) 
•   How much input is used? What if 

•   x1…xi ∈ L(R) and also       
•   x1…xK ∈ L(R)       (of course i ≠ k) 
•  Ex. We’ve got == 

•  Rule: Pick longest possible string in L(R)  
–  The “maximal munch” 

•  Reason is that this is the way humans read things 
•  So tools work this way as well (which usually does right thing) 

Do we see “How” or H-o-w? 
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Ambiguities (2) 

•  Which token is used? What if 
•   x1…xi ∈ L(Rj) and also 
•   x1…xi ∈ L(Rk)  

•  Ex. Recall our specifications for 
keywords and identifiers 
•  Keyword = ‘if’ + ‘else’ + … 
•  Identifier = letter (letter + digit)* 
–  ‘if’ satisfies both 
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Ambiguities (2) 

•  Which token is used? What if 
•   x1…xi ∈ L(Rj) and also 
•   x1…xi ∈ L(Rk)  

•  Note: in most languages, if it’s a 
keyword, it’s not an identifier 
–  But: changing RE for Identifier to explicitly 

exclude keywords is a real pain (current rule much 
more natural) 
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Ambiguities (2) 

•  Which token is used? What if 
•   x1…xi ∈ L(Rj) and also 
•   x1…xi ∈ L(Rk)  

•  Rule: use rule listed first (j if j < k) 
–  Treats “if” as a keyword, not an identifier 
–  Bottom line: in file defining our lexical 

specification, put Keywords before the 
Identifiers   
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Error Handling 

•  What if 
 No rule matches a prefix of input ? 
Note: This comes up quite a bit 

•  Problem: Can’t just get stuck … 
–  I.e., Important for compiler to do good error 

handling (can’t simply crash) 
–  Need to provide feedback as to where the error is 

and what kind of error it is 
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Error Handling 

•  What if 
 No rule matches a prefix of input ? 
Note: This comes up quite a bit 

•  Solution: 
–  Don’t let it ever happen that a string isn’t in L(R)  
–  ???!!! 
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Error Handling 

•  What if 
 No rule matches a prefix of input ? 
Note: This comes up quite a bit 

•  Solution: 
–  Don’t let it ever happen that a string isn’t in L(R)  
–  Write a rule matching all “bad” strings 

•  Create an Error token class 
–  Put it last (lowest priority) 

•  Putting it last also allows us to be a little bit sloppy – can 
include strings in the RE that ARE valid  

•  Earlier rules will have caught these 
•  Action for this rule is to print an error string 
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Summary 

•  Regular expressions provide a concise notation for 
string patterns 

•  Use in lexical analysis requires small extensions 
–  To resolve ambiguities 
–  To handle errors 

•  Warning: When you actually go to write the 
specification for a lexor, the two rules for resolving 
ambiguity can lead to tricky situations – you must 
think carefully about the ordering of the rules! 
–  You may not always be getting what you think you are! 
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Summary 

•  Regular expressions provide a concise notation for 
string patterns 

•  Use in lexical analysis requires small extensions 
–  To resolve ambiguities 
–  To handle errors 

•  Good algorithms known 
–  Require only single pass over the input 
–  Few operations per character (table lookup) 
–  These algorithms are the subject of the following slides 

19 



Finite Automata 

•  Regular expressions = specification 
•  Finite automata = implementation 

Closely related: they can specify exactly the 
 same languages -- the regular languages 
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Finite Automata 

•  Regular expressions = specification 
•  Finite automata = implementation 

Closely related: they can specify exactly the 
 same languages -- the regular languages 

We won’t prove this, 
but we will use it 
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Finite Automata 

•  Regular expressions = specification 
•  Finite automata = implementation 
 
•  A finite automaton consists of 

–  An input alphabet Σ    (characters the FA can read) 
–  A finite set of states S  (thus “finite” automata) 
–  A start state n 
–  A set of accepting states F ⊆ S 
–  A set of transitions  state →input state 

•  I.e., if it’s in a given state, it can read some input and move 
to another specified state 22 



Finite Automata 

•  Transition 
s1 →a s2 

•  Is read 
In state s1 on input “a” go to state  s2 

 
•  If end of input and in accepting state => accept 

–  That is, “yes, this string was in the language of this 
machine” 

•  Otherwise => reject  
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So 

•  Start in start state 
•  Repeat (until end of input string): 

–  Read one character of input string 
–  Move to appropriate state 

•  If after last character read you end up in 
accepting state, string is in language of the FA 

•  Else, string not in language of FA 
–  E.g., Terminates in state not in F or 
–  Machine gets stuck: finds itself in a state and there 

is no transition of that state on the input (note that 
it does not read “out of”)  

  

24 



Alternative Notation: Finite Automata State Graphs 

•  A state 

•  The start state 

•  An accepting state 

•  A transition 
a 
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A Simple Example 

•  A finite automaton that accepts only “1” 

1 
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How The Machine Executes 

•  A finite automaton that accepts only “1” 

1 
A B 

StateState Input 

       A   1 

       B   1 

Input pointer  
always advances  
one spot.  Never  
moves backwards 
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How The Machine Executes 

•  A finite automaton that accepts only “1” 

1 
A B 

StateState Input 

       A   0 

          0 
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How The Machine Executes 

•  A finite automaton that accepts only “1” 

1 
A B 

StateState Input 

       A   1 0 

       B   1 0 

  1  0 29 



The Language of a Finite Automata 

•  Is the set consisting of accepted strings 
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Another Simple Example 

•  A finite automaton accepting any number of 
1’s followed by a single 0 

•  Alphabet: {0,1} 

0 

1 
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And Another Example 

•  Alphabet {0,1} 
•  What language does this recognize? 

0 

1 

0 

1 

0 

1 
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Epsilon Moves 

•  Another kind of transition: ε-moves 
ε 

•  Machine can move from state A to state B 
without reading input 

A B 
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Deterministic and Nondeterministic Automata 

•  Deterministic Finite Automata (DFA) 
–  One transition per input per state  
–  No ε-moves 

•  Nondeterministic Finite Automata (NFA) 
–  Can have multiple transitions for one input in a 

given state 
–  Can have ε-moves 
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Execution of Finite Automata 

•  A DFA can take only one path through the 
state graph 
–  Completely determined by input 

•  NFAs can choose 
–  Whether to make ε-moves 
–  Which of multiple transitions for a single input to 

take 
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Acceptance of NFAs 

•  An NFA can get into multiple states 

•  Input: 

0 

1 

0 

0 

1 0 0 

Rule: NFA accepts if it can get to a final state 
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NFA vs. DFA (1) 

•  NFAs and DFAs recognize the same set of 
languages (regular languages) 
–  Think of NFAs as parallel processors 

•  DFAs are faster to execute 
–  There are no choices to consider 
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NFA vs. DFA (2) 

•  For a given language NFA can be simpler than 
DFA 

0 
1 

0 

0 

0 
1 

0 

1 

0 

1 

NFA 

DFA 

•  DFA can be exponentially larger than NFA 
(why would you expect that to be the case?) 



Regular Expressions to Finite Automata 

•  High-level sketch 

Regular 
expressions 

NFA 

DFA 

Lexical 
Specification 

Table-driven  
Implementation of DFA 

(Lookup tables + code for 
traversing those tables) 
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Regular Expressions to NFA (1) 

•  For each kind of rexp, define an equivalent NFA 
–  Notation: NFA for rexp M         

M 

•  For ε 
ε 

•  For input a 
a 
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Regular Expressions to NFA: Atomic REs 

•  For each kind of rexp, define an equivalent NFA 
–  Notation: NFA for rexp M         

M 

•  For ε 
ε 

•  For input a 
a 

Notion here is that we  
will be building our  
overall machine up from 
smaller machines 
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Regular Expressions to NFA: Compound REs 

•  For AB 
A B ε 

•  For A + B 

A 

B 

ε 
ε 

ε 

ε 
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Regular Expressions to NFA: Compound REs 

•  For AB 
A B ε 

•  For A + B 

A 

B 

ε 
ε 

ε 

ε 

Note modification of final state 

And addition of ε transition 

Note addition of new start and final states 43 



Regular Expressions to NFA: Compound REs 

•  For AB 
A B ε 

•  For A + B 

A 

B 

ε 
ε 

ε 

ε 

Remember: With NFA if ANY choice works,  
string is accepted 44 



Regular Expressions to NFA (3) 

•  For A* 

A ε ε 

ε 

ε 
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Regular Expressions to NFA (3) 

•  For A* 

A ε ε 

ε 

ε 

The “Abdullah” edge  

Iteration of A  
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Let’s remember one very important thing in all 
of this: it is done this way so that the process 

can be automated! 
 

You might see easier DFAs or NFAs, but a 
computer needs to have an algorithm to create 
these, which is why we go through this process. 
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Example of RegExp -> NFA conversion 

•  Consider the regular expression 
(1+0)*1 

•  The NFA is 

ε 
ε 
ε 

B 
1 C E 
0 D F ε 

ε 
G ε ε 

ε 

ε 

A H 1 I J 
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ε-closure 

•  An idea that helps with transition from NFA to 
DFA  

•  ε-closure of state B is all states that can be 
reached from B via epsilon moves 
–  ε-closure(B) = {B,C,D};  e-closure(G) = {A,B,C,D,G,H,I} 

ε 
ε 
ε 

B 
1 C E 
0 D F ε 

ε 
G ε ε 

ε 

ε 

A H 1 I J 
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NFA to DFA. Remark 

•  An NFA may be in many states at any time 

•  How many different states ? 

•  If there are N states, the NFA must be in 
some subset of those N states 

•  How many subsets are there? 
–  2N - 1 = finitely many 
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Some helpful notation 

•  For a character a in the input language Σ, and 
X a set of states in the NFA, define a(X) to 
be a subset of the set of all states in the NFA 
defined as follows: 

•  a(X) = {Y | for some X in X, there is a 
transition from X to Y on input a} 
–  I.e., If we are in some state in set X, and a is the 

next input, then a(X) is the set of states to which 
we could transition. 
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NFA to DFA: The Trick 

•  Simulate the NFA 
•  Each state of DFA is a non-empty subset of 

states of the NFA 
–  Though not all subsets of states of the NFA will 

have links to/from them 
–  So a large number of possible states (but finite!) 
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NFA to DFA: The Trick 

•  Start state  
–  the set of NFA states reachable through ε-moves 

from NFA start state 
–  ε-clos(start state)  

•  Think about why this makes sense: which sets 
of states might the NFA be in at the 
beginning of execution? 
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NFA to DFA: The Trick 

•  Add a transition S →a S’ to DFA iff 
–  S’ is the set of NFA states reachable from any 

state in S after seeing the input a, considering ε-
moves as well 

–  ε-clos( a(S) )   
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NFA to DFA: The Trick 

•  Final states  
–  the set of DFA states X such that X contains a 

state in F (the set of final states of the NFA) 

•  Think about why this makes sense: if a subset 
of NFA states contains a state that was in F 
(for the NFA), and execution of the DFA ends 
up in that state, then there is a path through 
the NFA which ends in a final state.  
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Is What We Get a DFA? 

•  A finite set of states 
•  A start state 
•  A set of final states 
•  A transition function with only one move per 

input 
•  No ε-moves 
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Let’s do this! 

•  We won’t follow exact steps: too many 
possible states to list them all (and most not 
involved in final DFA) 

•  Start with start state, then work out which 
additional states required 

ε 
1 
0 1 

ε ε 
ε 

ε 

ε 

ε ε 

ε 

A B 
C 

D 

E 

F 
G H I J 
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NFA -> DFA Example 

ε 
1 
0 1 

ε ε 
ε 

ε 

ε 

ε ε 

ε 

A B 
C 

D 

E 

F 
G H I J 

FGHIABCD 

EJGHIABCD 
ABCDHI 

0 

1 

0 

1 0 1 
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The Final Step: Implementation of DFA 

•  First, note that our original diagram was 
somewhat misleading.  Some systems go 
straight from NFA to implementation 
–  More on this in a bit 
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Implementation 

•  A DFA can be implemented by a 2D table T 
–  One dimension is “states” 
–  Other dimension is “input symbol” 
–  For every transition Si →a Sk define T[i,a] = k 

•  DFA “execution” 
–  If in state Si and input a, read T[i,a] = k and skip to 

state Sk 

–  Very efficient 
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Table Implementation of a DFA 

S 

T 

U 

0 

1 

0 

1 0 1 

0 1 
S T U 
T T U 
U T U 

state 

input symbol 
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The code 
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The code 

Note how compact and efficient this is 
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Table Implementation of a DFA 

•  Much more compact 
•  Duplicate rows common 

in DFAs for LA 

S 

T 

U 

0 

1 

0 

1 0 1 

S 
T 
U 

0 1 
T U 
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Compaction of Table 

•  Turns out that this technique can make tables 
much more compact 

•  Moreover, duplicate rows show up quite a bit in 
the FAs that arise in lexical analysis 

•  Considering large number of potential states, 
this can lead to considerable compaction of 
the table 
–  While blowup in states from NFA to DFA is often 

not the worst case, it can be substantial 
–  2D table can be quite large 

•  Disadvantage: pointer dereferences 65 



What if we don’t want a DFA? 

•  Why?  Table that results might be huge, so 
may want to use NFA directly 
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Directly from NFA to Table 
ε 

1 
0 1 

ε ε 
ε 

ε 

ε 

ε ε 

ε 

A B 
C 

D 

E 

F 
G H I J 

0 1 ε 
A {B,H} 
B {C,D} 
C E 
D F 
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Good and Bad of Going Directly from NFA to 
Table 

•  Good: Table guaranteed to be relatively small 
–  limited by size of NFA and size of input alphabet 

•  Bad: Even with compression tricks, inner loop 
runs much more slowly because dealing with 
sets of states, rather than states themselves 
–  So on each move, we need to keep track of all 

possible states to which we could go (and 
associated ε-moves) 

•  Bottom line: Can save a lot of space, but cost a 
lot in time 
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Implementation (Cont.) 

•  NFA -> DFA conversion is at the heart of tools 
such as flex 

•  But, DFAs can be huge 

•  In practice, flex-like tools trade off speed 
for space in the choice of NFA and DFA 
representations 
–  User chooses via configuration, whether they want 

to be closer to full DFA or full NFA 
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