Implementation of Lexical Analysis

Lecture 4
Tips on Building Large Systems

• KISS (Keep It Simple, Stupid!)

• Don’t optimize prematurely

• Design systems that can be tested

• It is easier to modify a working system than to get a system working
Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp => NFA => DFA => Tables
Notation

• There is variation in regular expression notation

• Union: $A \mid B \equiv A + B$

• Option: $A + \varepsilon \equiv A?$

• Range: ‘a’+'b'+...+'z' \equiv [a-z]

• At least one: $A^+ (A$–Abdullah) \equiv AA^*

• Excluded range:

 \text{complement of [a-z]} \equiv [^a-z]
Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate
 \(s \in L(R) \)

 Note: we can do this just by looking at reg. exp. \(R \)

- But a yes/no answer is not enough!
 - Because we need to know not just whether the string is a valid program, but also...

- How to partition the input into tokens

- We adapt regular expressions to this goal
 - I.e., there are some small required extensions
1. Write a regexp for the lexemes of each token class
 - Number = digit +
 - Keyword = ‘if’ + ‘else’ + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = ‘(‘
 - ...

- So, we write down a whole list of regular expressions, one for each syntactic category in language
2. Construct R, matching all lexemes for all token classes

$$R = \text{Keyword} + \text{Identifier} + \text{Number} + \ldots$$

$$= R_1 + R_2 + \ldots$$
• What follows is the key to how we use the regular expression specification to perform lexical analysis
Regular Expressions => Lexical Spec. (3)

3. Let input be $x_1...x_n$
 For $1 \leq i \leq n$ check whether the prefix

 $x_1...x_i \in L(R)$

4. If success, then we know that
 $x_1...x_i \in L(R_j)$ for some j

5. Remove $x_1...x_i$ from input and go to (3)

Continue removing pieces until we have tokenized
the entire string
Ambiguities (1)

• There are ambiguities in the algorithm
 - Some things are under specified (and these turn out to be interesting)
• How much input is used? What if
 • \(x_1 \ldots x_i \in L(R) \) and also
 • \(x_1 \ldots x_k \in L(R) \) (of course \(i \neq k \))
 • Ex. We’ve got ==
• Rule: Pick longest possible string in \(L(R) \)
 - The “maximal munch”
 • Yes, this is really what this rule is called
Ambiguities (1)

• There are ambiguities in the algorithm
 - Some things are under specified (and these turn out to be interesting)

• How much input is used? What if
 - \(x_1...x_i \in L(R) \) and also
 - \(x_1...x_k \in L(R) \) (of course \(i \neq k \))
 - Ex. We’ve got ==

• Rule: Pick longest possible string in \(L(R) \)
 - The “maximal munch”
 - Reason is that this is the way humans read things
 - So tools work this way as well (which usually does right thing)
Ambiguities (2)

• Which token is used? What if
 • \(x_1 \ldots x_i \in L(R_j) \) and also
 • \(x_1 \ldots x_i \in L(R_k) \)

• Ex. Recall our specifications for keywords and identifiers
 • Keyword = ‘if’ + ‘else’ + ...
 • Identifier = letter (letter + digit)*
 - ‘if’ satisfies both
Ambiguities (2)

• Which token is used? What if
 • \(x_1...x_i \in L(R_j)\) and also
 • \(x_1...x_i \in L(R_k)\)

• Note: in most languages, if it's a keyword, it's not an identifier
 • But: changing RE for Identifier to explicitly exclude keywords is a real pain (current rule much more natural)
Ambiguities (2)

• Which token is used? What if
 • \(x_1...x_i \in L(R_j) \) and also
 • \(x_1...x_i \in L(R_k) \)

• Rule: use rule listed first \((j \text{ if } j < k)\)
 - Treats “if” as a keyword, not an identifier
 - Bottom line: in file defining our lexical specification, put Keywords before the Identifiers
Error Handling

• **What if**

 No rule matches a prefix of input?

 Note: This comes up quite a bit

• **Problem: Can’t just get stuck ...**

 – I.e., Important for compiler to do good error handling (can’t simply crash)

 – Need to provide feedback as to where the error is and what kind of error it is
Error Handling

• What if
 No rule matches a prefix of input?
 Note: This comes up quite a bit

• Solution:
 - Don’t let it ever happen that a string isn’t in L(R)
 - ???!!!
Error Handling

• What if
 No rule matches a prefix of input?
 Note: This comes up quite a bit

• Solution:
 - Don’t let it ever happen that a string isn’t in L(R)
 - Write a rule matching all “bad” strings
 • Create an Error token class
 - Put it last (lowest priority)
 • Putting it last also allows us to be a little bit sloppy – can include strings in the RE that ARE valid
 • Earlier rules will have caught these
 • Action for this rule is to print an error string
Summary

• Regular expressions provide a concise notation for string patterns

• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors

• Warning: When you actually go to write the specification for a lexor, the two rules for resolving ambiguity can lead to tricky situations – you must think carefully about the ordering of the rules!
 - You may not always be getting what you think you are!
Summary

• Regular expressions provide a concise notation for string patterns

• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors

• Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)
 - These algorithms are the subject of the following slides
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

Closely related: they can specify exactly the same languages -- the regular languages
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

Closely related: they can specify exactly the same languages -- the regular languages

We won't prove this, but we will use it
Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
 - An input alphabet Σ (characters the FA can read)
 - A finite set of states S (thus “finite” automata)
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $\text{state} \rightarrow \text{input} \rightarrow \text{state}$
 • I.e., if it’s in a given state, it can read some input and move to another specified state
Finite Automata

• Transition

\[s_1 \rightarrow^a s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input and in accepting state \(\Rightarrow \) accept

 - That is, “yes, this string was in the language of this machine”

• Otherwise \(\Rightarrow \) reject
So

• Start in start state
• Repeat (until end of input string):
 – Read one character of input string
 – Move to appropriate state
• If after last character read you end up in accepting state, string is in language of the FA
• Else, string not in language of FA
 – E.g., Terminates in state not in F or
 – Machine gets stuck: finds itself in a state and there is no transition of that state on the input (note that it does not read “out of”)
Alternative Notation: Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

- A finite automaton that accepts only “1”
How The Machine Executes

- A finite automaton that accepts only “1”

Input pointer always advances one spot. Never moves backwards.
How The Machine Executes

- A finite automaton that accepts only “1”
How The Machine Executes

- A finite automaton that accepts only “1”
The Language of a Finite Automata

• Is the set consisting of accepted strings
Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0
• Alphabet: \{0,1\}
And Another Example

- Alphabet \(\{0,1\}\)
- What language does this recognize?
Epsilon Moves

- Another kind of transition: \(\varepsilon \)-moves

- Machine can move from state \(A \) to state \(B \) without reading input
Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

• Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

Input: 1 0 0 0

Rule: NFA accepts if it can get to a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)
 - Think of NFAs as parallel processors

• DFAs are faster to execute
 - There are no choices to consider
• For a given language NFA can be simpler than DFA

NFA

DFA

• DFA can be exponentially larger than NFA (why would you expect that to be the case?)
Regular Expressions to Finite Automata

• High-level sketch

Regular expressions

Lexical Specification

NFA

DFA

Table-driven Implementation of DFA (Lookup tables + code for traversing those tables)
Regular Expressions to NFA (1)

- For each kind of rexp, define an equivalent NFA
 - Notation: NFA for rexp M

- For ϵ

- For input a
Regular Expressions to NFA: Atomic REs

• For each kind of rexp, define an equivalent NFA
 - Notation: NFA for rexp M

 ![Diagram](image)

• For ε

 ![Diagram](image)

• For input a

 ![Diagram](image)

Notion here is that we will be building our overall machine up from smaller machines
Regular Expressions to NFA: Compound REs

- For AB

- For $A + B$
Regular Expressions to NFA: Compound REs

• For AB

 ![Diagram for AB]

 Note modification of final state

• For $A + B$

 ![Diagram for A+B]

 And addition of ε transition

 Note addition of new start and final states
Regular Expressions to NFA: Compound REs

• For AB

\[
\begin{array}{c}
A \\
\varepsilon \\
B
\end{array}
\]

• For $A + B$

\[
\begin{array}{c}
A \\
\varepsilon \\
\varepsilon \\
B \\
\varepsilon \\
\varepsilon \\
\varepsilon
\end{array}
\]

Remember: With NFA if ANY choice works, string is accepted
Regular Expressions to NFA (3)

• For A^*
Regular Expressions to NFA (3)

- For A^*

![Diagram showing NFA for A^*]

- Iteration of A
- The "Abdullah" edge
Let’s remember one very important thing in all of this: it is done this way so that the process can be automated!

You might see easier DFAs or NFAs, but a computer needs to have an algorithm to create these, which is why we go through this process.
Example of RegExp -> NFA conversion

- Consider the regular expression
 \[(1+0)^*1\]
- The NFA is
\(\varepsilon\)-closure

- An idea that helps with transition from NFA to DFA
- \(\varepsilon\)-closure of state B is all states that can be reached from B via epsilon moves
 - \(\varepsilon\)-closure(B) = \{B, C, D\}; \(\varepsilon\)-closure(G) = \{A, B, C, D, G, H, I\}
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 - $2^N - 1 = \text{finitely many}$
Some helpful notation

• For a character a in the input language Σ, and X a set of states in the NFA, define $a(X)$ to be a subset of the set of all states in the NFA defined as follows:

 $a(X) = \{ Y \mid \text{for some } X \text{ in } X, \text{ there is a transition from } X \text{ to } Y \text{ on input } a \}$

 - I.e., If we are in some state in set X, and a is the next input, then $a(X)$ is the set of states to which we could transition.
NFA to DFA: *The Trick*

- Simulate the NFA
- Each state of DFA is a **non-empty** subset of states of the NFA
 - Though not all subsets of states of the NFA will have links to/from them
 - So a large number of possible states (but finite!)
NFA to DFA: The Trick

- **Start state**
 - the set of NFA states reachable through ε-moves from NFA start state
 - ε-clos(start state)

- Think about why this makes sense: which sets of states might the NFA be in at the beginning of execution?
NFA to DFA: The Trick

- Add a transition $S \xrightarrow{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ϵ-moves as well
 - ϵ-clos($a(S)$)
NFA to DFA: The Trick

• Final states
 - the set of DFA states \mathcal{X} such that \mathcal{X} contains a state in F (the set of final states of the NFA)

• Think about why this makes sense: if a subset of NFA states contains a state that was in F (for the NFA), and execution of the DFA ends up in that state, then there is a path through the NFA which ends in a final state.
Is What We Get a DFA?

• A finite set of states
• A start state
• A set of final states
• A transition function with only one move per input
• No ε-moves
Let's do this!

- We won't follow exact steps: too many possible states to list them all (and most not involved in final DFA)
- Start with start state, then work out which additional states required
NFA -> DFA Example

[Diagram of NFA and DFA conversion process]

ABCDHIFI

0 0

FGHIABCD

0

1

EJGHIABCD

0 0

1

1
The Final Step: Implementation of DFA

• First, note that our original diagram was somewhat misleading. Some systems go straight from NFA to implementation
 - More on this in a bit
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbol”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th>state</th>
<th>input symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

The transition table above shows the states S, T, and U, with transitions for input symbols 0 and 1.
The code

```c
char[] input;
int i = 0;
int state = 0;

while ( input[i] != '\0' ) {
    state = transitionTable[ state, input[i] ];
    ++i;
}
```
The code

```c
char[] input;
int i = 0;
int state = 0;

while ( input[i] != '\0' ) {
    state = transitionTable[ state, input[i] ];
    ++i;
}
```

Note how compact and efficient this is
Table Implementation of a DFA

- Much more compact
- Duplicate rows common in DFAs for LA
Compaction of Table

• Turns out that this technique can make tables much more compact
• Moreover, duplicate rows show up quite a bit in the FAs that arise in lexical analysis
• Considering large number of potential states, this can lead to considerable compaction of the table
 - While blowup in states from NFA to DFA is often not the worst case, it can be substantial
 - 2D table can be quite large
• Disadvantage: pointer dereferences
What if we don’t want a DFA?

- Why? Table that results might be huge, so may want to use NFA directly
Directly from NFA to Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>{B,H}</td>
</tr>
<tr>
<td>B</td>
<td>{C,D}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Good and Bad of Going Directly from NFA to Table

• **Good:** Table guaranteed to be relatively small
 - limited by size of NFA and size of input alphabet

• **Bad:** Even with compression tricks, inner loop runs much more slowly because dealing with sets of states, rather than states themselves
 - So on each move, we need to keep track of all possible states to which we could go (and associated ε-moves)

• **Bottom line:** Can save a lot of space, but cost a lot in time
Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as flex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
 - User chooses via configuration, whether they want to be closer to full DFA or full NFA