Implementation of Lexical Analysis

Lecture 4

1

Tips on Building Large Systems

- KISS (Keep It Simple, Stupid!)
- Don't optimize prematurely
- Design systems that can be tested
- It is easier to modify a working system than to get a system working

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

- There is variation in regular expression notation
- Union: $A \mid B \equiv A + B$
- Option: $A + \varepsilon \equiv A$?
- Range: $(a' + b' + ... + z') \equiv [a-z]$
- At least one: A^+ (A-Abdullah) = AA^*
- Excluded range:

complement of $[a-z] \equiv [^a-z]$

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate $s \in L(R)$

Note: we can do this just by looking at reg. exp. R

- But a yes/no answer is not enough!
 - Because we need to know not just whether the string is a valid program, but also...
- How to partition the input into tokens
- We adapt regular expressions to this goal
 - I.e., there are some small required extensions $_5$

Regular Expressions => Lexical Spec. (1)

- 1. Write a regexp for the lexemes of each token class
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = '('

 So, we write down a whole list of regular expressions, one for each syntactic category in language

Regular Expressions => Lexical Spec. (2)

- 2. Construct R, matching all lexemes for all token classes
 - R = Keyword + Identifier + Number + ... $= R_1 + R_2 + ...$

 What follows is the key to how we use the regular expression specification to perform lexical analysis

Regular Expressions => Lexical Spec. (3)

- 3. Let input be $x_1...x_n$ For $1 \le i \le n$ check whether the prefix $x_1...x_i \in L(R)$
- 4. If success, then we know that $x_1 ... x_i \in L(R_j) \text{ for some } j$
- 5. Remove $x_1...x_i$ from input and go to (3)

Continue removing pieces until we have tokenized

the entire string

Ambiguities (1)

- There are ambiguities in the algorithm
 - Some things are under specified (and these turn out to be interesting)
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_k \in L(R)$ (of course $i \neq k$)
 - Ex. We've got ==
- Rule: Pick longest possible string in L(R)
 - The "maximal munch"
 - Yes, this is really what this rule is called

Do we see "How" or H-o-w?

Ambiguities (1)

- There are ambiguities in the algorithm
 - Some things are under specified (and these turn out to be interesting)
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_k \in L(R)$ (of course $i \neq k$)
 - Ex. We've got ==
- Rule: Pick longest possible string in L(R)
 - The "maximal munch"
 - $\boldsymbol{\cdot}$ Reason is that this is the way humans read things
 - So tools work this way as well (which usually does right 1 thing)

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
- Ex. Recall our specifications for keywords and identifiers
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - 'if' satisfies both

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
- Note: in most languages, if it's a keyword, it's not an identifier
 - But: changing RE for Identifier to explicitly exclude keywords is a real pain (current rule much more natural)

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
- Rule: use rule listed first (j if j < k)
 - Treats "if" as a keyword, not an identifier
 - Bottom line: in file defining our lexical specification, put Keywords before the Identifiers

Error Handling

• What if

No rule matches a prefix of input ? Note: This comes up quite a bit

- Problem: Can't just get stuck ...
 - I.e., Important for compiler to do good error handling (can't simply crash)
 - Need to provide feedback as to where the error is and what kind of error it is

Error Handling

• What if

No rule matches a prefix of input ? Note: This comes up quite a bit

- Solution:
 - Don't let it ever happen that a string isn't in L(R)
 - ???!!!

Error Handling

• What if

No rule matches a prefix of input ? Note: This comes up quite a bit

- Solution:
 - Don't let it ever happen that a string isn't in L(R)
 - Write a rule matching all "bad" strings
 - Create an Error token class
 - Put it last (lowest priority)
 - Putting it last also allows us to be a little bit sloppy can include strings in the RE that ARE valid
 - Earlier rules will have caught these
 - Action for this rule is to print an error string

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Warning: When you actually go to write the specification for a lexor, the two rules for resolving ambiguity can lead to tricky situations - you must think carefully about the ordering of the rules!
 - You may not always be getting what you think you are!

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)
 - These algorithms are the subject of the following slides

- Regular expressions = specification
- Finite automata = implementation

Closely related: they can specify exactly the same languages -- the *regular languages*

- Regular expressions = specification
- Finite automata = implementation

Closely related: they can specify exactly the same languages -- the *regular languages*

We won't prove this, but we will use it

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ (characters the FA can read)
 - A finite set of states 5 (thus "finite" automata)
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state
 - I.e., if it's in a given state, it can read some input and move to another specified state 22

Transition

$$s_1 \rightarrow^a s_2$$

• Is read

In state s_1 on input "a" go to state s_2

- If end of input and in accepting state => accept
 - That is, "yes, this string was in the language of this machine"
- Otherwise => reject

- Start in start state
- Repeat (until end of input string):
 - Read one character of input string
 - Move to appropriate state
- If after last character read you end up in accepting state, string is in language of the FA
- Else, string not in language of FA
 - E.g., Terminates in state not in F or
 - Machine gets stuck: finds itself in a state and there is no transition of that state on the input (note that it does not read "out of")

Alternative Notation: Finite Automata State Graphs

- A state
 - The start state
- An accepting state

• A transition

A Simple Example

How The Machine Executes

How The Machine Executes

How The Machine Executes

The Language of a Finite Automata

Is the set consisting of accepted strings

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?

Epsilon Moves

• Another kind of transition: ε -moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ϵ -moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ϵ -moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ϵ -moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 0

Rule: NFA accepts if it <u>can</u> get to a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
 - Think of NFAs as parallel processors

- DFAs are faster to execute
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language NFA can be simpler than DFA
 - NFA $\int_{0}^{1} 0 0 0$ DFA $\int_{1}^{1} 0 0 0 0$
- DFA can be exponentially larger than NFA (why would you expect that to be the case?)

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an equivalent NFA
 - Notation: NFA for rexp M

For ε

• For input a

Regular Expressions to NFA: Atomic REs

- For each kind of rexp, define an equivalent NFA
 - Notation: NFA for rexp M

• For ε

For input a

Notion here is that we will be building our overall machine up from smaller machines

Regular Expressions to NFA: Compound REs

- For AB
 A
 B
- For **A** + **B**

Regular Expressions to NFA: Compound REs

Regular Expressions to NFA: Compound REs

- For AB
 A E B
- For **A** + **B**

Remember: With NFA if ANY choice works, string is accepted

Regular Expressions to NFA (3)

For A*

Regular Expressions to NFA (3)

Let's remember one very important thing in all of this: it is done this way so that the process can be automated!

You might see easier DFAs or NFAs, but a computer needs to have an algorithm to create these, which is why we go through this process.

Example of RegExp -> NFA conversion

- Consider the regular expression (1+0)*1
- The NFA is

ε-closure

- An idea that helps with transition from NFA to DFA
- ε-closure of state B is all states that can be reached from B via epsilon moves
 - ε -closure(B) = {B,C,D}; e-closure(G) = {A,B,C,D,G,H,I}

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N 1 = finitely many$

- For a character **a** in the input language Σ , and X a set of states in the NFA, define $\mathbf{a}(X)$ to be a subset of the set of all states in the NFA defined as follows:
- a(X) = {Y | for some X in X, there is a transition from X to Y on input a}
 - I.e., If we are in some state in set X, and **a** is the next input, then $\mathbf{a}(X)$ is the set of states to which we could transition.

- Simulate the NFA
- Each state of DFA is a non-empty subset of states of the NFA
 - Though not all subsets of states of the NFA will have links to/from them
 - So a large number of possible states (but finite!)

- Start state
 - the set of NFA states reachable through $\epsilon\text{-moves}$ from NFA start state
 - ε-clos(start state)
- Think about why this makes sense: which sets of states might the NFA be in at the beginning of execution?

- Add a transition $S \rightarrow^{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ϵ -moves as well
 - ε-clos(a(S))

- Final states
 - the set of DFA states X such that X contains a state in F (the set of final states of the NFA)
- Think about why this makes sense: if a subset of NFA states contains a state that was in F (for the NFA), and execution of the DFA ends up in that state, then there is a path through the NFA which ends in a final state.

Is What We Get a DFA?

- A finite set of states
- A start state
- A set of final states
- A transition function with only one move per input
- No ε-moves

Let's do this!

- We won't follow exact steps: too many possible states to list them all (and most not involved in final DFA)
- Start with start state, then work out which additional states required

NFA -> DFA Example

The Final Step: Implementation of DFA

 First, note that our original diagram was somewhat misleading. Some systems go straight from NFA to implementation

- More on this in a bit

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

input symbol

state

```
char[] input;
int i = 0;
int state = 0;
while ( input[i] != '\0' ) {
    state = transitionTable[ state, input[i]];
    ++i;
}
```

```
char[] input;
int i = 0;
int state = 0;
while ( input[i] != '\0' ) {
    state = transitionTable[ state, input[i]];
    ++i;
}
```

Note how compact and efficient this is

Table Implementation of a DFA

Compaction of Table

- Turns out that this technique can make tables much more compact
- Moreover, duplicate rows show up quite a bit in the FAs that arise in lexical analysis
- Considering large number of potential states, this can lead to considerable compaction of the table
 - While blowup in states from NFA to DFA is often not the worst case, it can be substantial
 - 2D table can be quite large
- Disadvantage: pointer dereferences

What if we don't want a DFA?

 Why? Table that results might be huge, so may want to use NFA directly

Directly from NFA to Table

	0	1	3
A			{B,H}
В			{ <i>C</i> , <i>D</i> }
С		E	
D	F		

Good and Bad of Going Directly from NFA to Table

- Good: Table guaranteed to be relatively small
 - limited by size of NFA and size of input alphabet
- Bad: Even with compression tricks, inner loop runs much more slowly because dealing with sets of states, rather than states themselves
 - So on each move, we need to keep track of all possible states to which we could go (and associated ε-moves)
- Bottom line: Can save a lot of space, but cost a lot in time

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
 - User chooses via configuration, whether they want to be closer to full DFA or full NFA