
Implementation of Lexical Analysis

Lecture 4

1

Tips on Building Large Systems

•  KISS (Keep It Simple, Stupid!)

•  Don’t optimize prematurely

•  Design systems that can be tested

•  It is easier to modify a working system than
to get a system working

2

Outline

•  Specifying lexical structure using regular
expressions

•  Finite automata
–  Deterministic Finite Automata (DFAs)
–  Non-deterministic Finite Automata (NFAs)

•  Implementation of regular expressions
 RegExp => NFA => DFA => Tables

3

Notation

•  There is variation in regular expression
notation

•  Union: A | B ≡ A + B
•  Option: A + ε ≡ A?
•  Range: ‘a’+’b’+…+’z’ ≡ [a-z]
•  At least one: A+ (A-Abdullah) ≡ AA*

•  Excluded range:
 complement of [a-z] ≡ [^a-z]
 4

Regular Expressions in Lexical Specification

•  Last lecture: a specification for the predicate
 s ∈ L(R)

•  But a yes/no answer is not enough!

–  Because we need to know not just whether the
string is a valid program, but also…

•  How to partition the input into tokens

•  We adapt regular expressions to this goal
–  I.e., there are some small required extensions

Note: we can do this just by looking at reg. exp. R

5

Regular Expressions => Lexical Spec. (1)

1.  Write a regexp for the lexemes of each
token class
•  Number = digit +
•  Keyword = ‘if’ + ‘else’ + …
•  Identifier = letter (letter + digit)*
•  OpenPar = ‘(‘
•  …

•  So, we write down a whole list of regular
expressions, one for each syntactic category
in language 6

Regular Expressions => Lexical Spec. (2)

2.  Construct R, matching all lexemes for all
token classes

 R = Keyword + Identifier + Number + …
 = R1 + R2 + …

7

•  What follows is the key to how we use the
regular expression specification to perform
lexical analysis

8

Regular Expressions => Lexical Spec. (3)

3.  Let input be x1…xn
For 1 ≤ i ≤ n check whether the prefix

 x1…xi ∈ L(R)

4.  If success, then we know that
 x1…xi ∈ L(Rj) for some j

5.  Remove x1…xi from input and go to (3)

Continue removing pieces until we have tokenized

the entire string 9

Ambiguities (1)

•  There are ambiguities in the algorithm
–  Some things are under specified (and these turn

out to be interesting)
•  How much input is used? What if

•  x1…xi ∈ L(R) and also
•  x1…xK ∈ L(R) (of course i ≠ k)
•  Ex. We’ve got ==

•  Rule: Pick longest possible string in L(R)
–  The “maximal munch”

•  Yes, this is really what this rule is called
10

Ambiguities (1)

•  There are ambiguities in the algorithm
–  Some things are under specified (and these turn out

to be interesting)
•  How much input is used? What if

•  x1…xi ∈ L(R) and also
•  x1…xK ∈ L(R) (of course i ≠ k)
•  Ex. We’ve got ==

•  Rule: Pick longest possible string in L(R)
–  The “maximal munch”

•  Reason is that this is the way humans read things
•  So tools work this way as well (which usually does right thing)

Do we see “How” or H-o-w?

11

Ambiguities (2)

•  Which token is used? What if
•  x1…xi ∈ L(Rj) and also
•  x1…xi ∈ L(Rk)

•  Ex. Recall our specifications for
keywords and identifiers
•  Keyword = ‘if’ + ‘else’ + …
•  Identifier = letter (letter + digit)*
–  ‘if’ satisfies both

12

Ambiguities (2)

•  Which token is used? What if
•  x1…xi ∈ L(Rj) and also
•  x1…xi ∈ L(Rk)

•  Note: in most languages, if it’s a
keyword, it’s not an identifier
–  But: changing RE for Identifier to explicitly

exclude keywords is a real pain (current rule much
more natural)

13

Ambiguities (2)

•  Which token is used? What if
•  x1…xi ∈ L(Rj) and also
•  x1…xi ∈ L(Rk)

•  Rule: use rule listed first (j if j < k)
–  Treats “if” as a keyword, not an identifier
–  Bottom line: in file defining our lexical

specification, put Keywords before the
Identifiers

14

Error Handling

•  What if
 No rule matches a prefix of input ?
Note: This comes up quite a bit

•  Problem: Can’t just get stuck …
–  I.e., Important for compiler to do good error

handling (can’t simply crash)
–  Need to provide feedback as to where the error is

and what kind of error it is

15

Error Handling

•  What if
 No rule matches a prefix of input ?
Note: This comes up quite a bit

•  Solution:
–  Don’t let it ever happen that a string isn’t in L(R)
–  ???!!!

16

Error Handling

•  What if
 No rule matches a prefix of input ?
Note: This comes up quite a bit

•  Solution:
–  Don’t let it ever happen that a string isn’t in L(R)
–  Write a rule matching all “bad” strings

•  Create an Error token class
–  Put it last (lowest priority)

•  Putting it last also allows us to be a little bit sloppy – can
include strings in the RE that ARE valid

•  Earlier rules will have caught these
•  Action for this rule is to print an error string

17

Summary

•  Regular expressions provide a concise notation for
string patterns

•  Use in lexical analysis requires small extensions
–  To resolve ambiguities
–  To handle errors

•  Warning: When you actually go to write the
specification for a lexor, the two rules for resolving
ambiguity can lead to tricky situations – you must
think carefully about the ordering of the rules!
–  You may not always be getting what you think you are!

18

Summary

•  Regular expressions provide a concise notation for
string patterns

•  Use in lexical analysis requires small extensions
–  To resolve ambiguities
–  To handle errors

•  Good algorithms known
–  Require only single pass over the input
–  Few operations per character (table lookup)
–  These algorithms are the subject of the following slides

19

Finite Automata

•  Regular expressions = specification
•  Finite automata = implementation

Closely related: they can specify exactly the
 same languages -- the regular languages

20

Finite Automata

•  Regular expressions = specification
•  Finite automata = implementation

Closely related: they can specify exactly the
 same languages -- the regular languages

We won’t prove this,
but we will use it

21

Finite Automata

•  Regular expressions = specification
•  Finite automata = implementation

•  A finite automaton consists of

–  An input alphabet Σ (characters the FA can read)
–  A finite set of states S (thus “finite” automata)
–  A start state n
–  A set of accepting states F ⊆ S
–  A set of transitions state →input state

•  I.e., if it’s in a given state, it can read some input and move
to another specified state 22

Finite Automata

•  Transition
s1 →a s2

•  Is read
In state s1 on input “a” go to state s2

•  If end of input and in accepting state => accept

–  That is, “yes, this string was in the language of this
machine”

•  Otherwise => reject
23

So

•  Start in start state
•  Repeat (until end of input string):

–  Read one character of input string
–  Move to appropriate state

•  If after last character read you end up in
accepting state, string is in language of the FA

•  Else, string not in language of FA
–  E.g., Terminates in state not in F or
–  Machine gets stuck: finds itself in a state and there

is no transition of that state on the input (note that
it does not read “out of”)

24

Alternative Notation: Finite Automata State Graphs

•  A state

•  The start state

•  An accepting state

•  A transition
a

25

A Simple Example

•  A finite automaton that accepts only “1”

1

26

How The Machine Executes

•  A finite automaton that accepts only “1”

1
A B

StateState Input

 A 1

 B 1

Input pointer
always advances
one spot. Never
moves backwards

27

How The Machine Executes

•  A finite automaton that accepts only “1”

1
A B

StateState Input

 A 0

 0

28

How The Machine Executes

•  A finite automaton that accepts only “1”

1
A B

StateState Input

 A 1 0

 B 1 0

 1 0 29

The Language of a Finite Automata

•  Is the set consisting of accepted strings

30

Another Simple Example

•  A finite automaton accepting any number of
1’s followed by a single 0

•  Alphabet: {0,1}

0

1

31

And Another Example

•  Alphabet {0,1}
•  What language does this recognize?

0

1

0

1

0

1

32

Epsilon Moves

•  Another kind of transition: ε-moves
ε

•  Machine can move from state A to state B
without reading input

A B

33

Deterministic and Nondeterministic Automata

•  Deterministic Finite Automata (DFA)
–  One transition per input per state
–  No ε-moves

•  Nondeterministic Finite Automata (NFA)
–  Can have multiple transitions for one input in a

given state
–  Can have ε-moves

34

Execution of Finite Automata

•  A DFA can take only one path through the
state graph
–  Completely determined by input

•  NFAs can choose
–  Whether to make ε-moves
–  Which of multiple transitions for a single input to

take

35

Acceptance of NFAs

•  An NFA can get into multiple states

•  Input:

0

1

0

0

1 0 0

Rule: NFA accepts if it can get to a final state

36

NFA vs. DFA (1)

•  NFAs and DFAs recognize the same set of
languages (regular languages)
–  Think of NFAs as parallel processors

•  DFAs are faster to execute
–  There are no choices to consider

37

NFA vs. DFA (2)

•  For a given language NFA can be simpler than
DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

•  DFA can be exponentially larger than NFA
(why would you expect that to be the case?)

Regular Expressions to Finite Automata

•  High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

(Lookup tables + code for
traversing those tables)

39

Regular Expressions to NFA (1)

•  For each kind of rexp, define an equivalent NFA
–  Notation: NFA for rexp M

M

•  For ε
ε

•  For input a
a

40

Regular Expressions to NFA: Atomic REs

•  For each kind of rexp, define an equivalent NFA
–  Notation: NFA for rexp M

M

•  For ε
ε

•  For input a
a

Notion here is that we
will be building our
overall machine up from
smaller machines

41

Regular Expressions to NFA: Compound REs

•  For AB
A B ε

•  For A + B

A

B

ε
ε

ε

ε

42

Regular Expressions to NFA: Compound REs

•  For AB
A B ε

•  For A + B

A

B

ε
ε

ε

ε

Note modification of final state

And addition of ε transition

Note addition of new start and final states 43

Regular Expressions to NFA: Compound REs

•  For AB
A B ε

•  For A + B

A

B

ε
ε

ε

ε

Remember: With NFA if ANY choice works,
string is accepted 44

Regular Expressions to NFA (3)

•  For A*

A ε ε

ε

ε

45

Regular Expressions to NFA (3)

•  For A*

A ε ε

ε

ε

The “Abdullah” edge

Iteration of A

46

Let’s remember one very important thing in all
of this: it is done this way so that the process

can be automated!

You might see easier DFAs or NFAs, but a
computer needs to have an algorithm to create
these, which is why we go through this process.

47

Example of RegExp -> NFA conversion

•  Consider the regular expression
(1+0)*1

•  The NFA is

ε
ε
ε

B
1 C E
0 D F ε

ε
G ε ε

ε

ε

A H 1 I J

48

ε-closure

•  An idea that helps with transition from NFA to
DFA

•  ε-closure of state B is all states that can be
reached from B via epsilon moves
–  ε-closure(B) = {B,C,D}; e-closure(G) = {A,B,C,D,G,H,I}

ε
ε
ε

B
1 C E
0 D F ε

ε
G ε ε

ε

ε

A H 1 I J

49

NFA to DFA. Remark

•  An NFA may be in many states at any time

•  How many different states ?

•  If there are N states, the NFA must be in
some subset of those N states

•  How many subsets are there?
–  2N - 1 = finitely many

50

Some helpful notation

•  For a character a in the input language Σ, and
X a set of states in the NFA, define a(X) to
be a subset of the set of all states in the NFA
defined as follows:

•  a(X) = {Y | for some X in X, there is a
transition from X to Y on input a}
–  I.e., If we are in some state in set X, and a is the

next input, then a(X) is the set of states to which
we could transition.

51

NFA to DFA: The Trick

•  Simulate the NFA
•  Each state of DFA is a non-empty subset of

states of the NFA
–  Though not all subsets of states of the NFA will

have links to/from them
–  So a large number of possible states (but finite!)

52

NFA to DFA: The Trick

•  Start state
–  the set of NFA states reachable through ε-moves

from NFA start state
–  ε-clos(start state)

•  Think about why this makes sense: which sets
of states might the NFA be in at the
beginning of execution?

53

NFA to DFA: The Trick

•  Add a transition S →a S’ to DFA iff
–  S’ is the set of NFA states reachable from any

state in S after seeing the input a, considering ε-
moves as well

–  ε-clos(a(S))

54

NFA to DFA: The Trick

•  Final states
–  the set of DFA states X such that X contains a

state in F (the set of final states of the NFA)

•  Think about why this makes sense: if a subset
of NFA states contains a state that was in F
(for the NFA), and execution of the DFA ends
up in that state, then there is a path through
the NFA which ends in a final state.

55

Is What We Get a DFA?

•  A finite set of states
•  A start state
•  A set of final states
•  A transition function with only one move per

input
•  No ε-moves

56

Let’s do this!

•  We won’t follow exact steps: too many
possible states to list them all (and most not
involved in final DFA)

•  Start with start state, then work out which
additional states required

ε
1
0 1

ε ε
ε

ε

ε

ε ε

ε

A B
C

D

E

F
G H I J

57

NFA -> DFA Example

ε
1
0 1

ε ε
ε

ε

ε

ε ε

ε

A B
C

D

E

F
G H I J

FGHIABCD

EJGHIABCD
ABCDHI

0

1

0

1 0 1

58

The Final Step: Implementation of DFA

•  First, note that our original diagram was
somewhat misleading. Some systems go
straight from NFA to implementation
–  More on this in a bit

59

Implementation

•  A DFA can be implemented by a 2D table T
–  One dimension is “states”
–  Other dimension is “input symbol”
–  For every transition Si →a Sk define T[i,a] = k

•  DFA “execution”
–  If in state Si and input a, read T[i,a] = k and skip to

state Sk

–  Very efficient

60

Table Implementation of a DFA

S

T

U

0

1

0

1 0 1

0 1
S T U
T T U
U T U

state

input symbol

61

The code

62

The code

Note how compact and efficient this is
63

Table Implementation of a DFA

•  Much more compact
•  Duplicate rows common

in DFAs for LA

S

T

U

0

1

0

1 0 1

S
T
U

0 1
T U

64

Compaction of Table

•  Turns out that this technique can make tables
much more compact

•  Moreover, duplicate rows show up quite a bit in
the FAs that arise in lexical analysis

•  Considering large number of potential states,
this can lead to considerable compaction of
the table
–  While blowup in states from NFA to DFA is often

not the worst case, it can be substantial
–  2D table can be quite large

•  Disadvantage: pointer dereferences 65

What if we don’t want a DFA?

•  Why? Table that results might be huge, so
may want to use NFA directly

66

Directly from NFA to Table
ε

1
0 1

ε ε
ε

ε

ε

ε ε

ε

A B
C

D

E

F
G H I J

0 1 ε
A {B,H}
B {C,D}
C E
D F

67

Good and Bad of Going Directly from NFA to
Table

•  Good: Table guaranteed to be relatively small
–  limited by size of NFA and size of input alphabet

•  Bad: Even with compression tricks, inner loop
runs much more slowly because dealing with
sets of states, rather than states themselves
–  So on each move, we need to keep track of all

possible states to which we could go (and
associated ε-moves)

•  Bottom line: Can save a lot of space, but cost a
lot in time

68

Implementation (Cont.)

•  NFA -> DFA conversion is at the heart of tools
such as flex

•  But, DFAs can be huge

•  In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations
–  User chooses via configuration, whether they want

to be closer to full DFA or full NFA
69

