
Lexical Analysis 



Outline 

•  Informal sketch of lexical analysis 
–  Identifies tokens in input string 

•  Issues in lexical analysis 
–  Lookahead 
–  Ambiguities 

•  Specifying lexers 
–  Regular expressions 
–  Examples of regular expressions 



Lexical Analysis 

•  What do we want to do?  Example: 
if (i == j) 

Z = 0; 

else 
Z = 1; 
 

•  The input is just a string of characters: 
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1; 
 

•  Goal: Partition input string into substrings 
–  Note: humans have visual clues compiler doesn’t: it 

just sees a sequence of bytes 



Lexical Analysis 

•  What do we want to do?  Example: 
if (i == j) 

Z = 0; 

else 
Z = 1; 
 

•  The input is just a string of characters: 
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1; 
 

•  Goal: Partition input string into substrings 
–  And it’s not just substrings: it’s tokens 



What’s a Token? 

•  A syntactic category 
–  In English: 

noun, verb, adjective, … 
 

–  In a programming language: 
Identifier, Integer, Keyword, Whitespace, … 
Also: individual characters: {, }, (,), ;, … 
Classifies lexeme according to its role 

   

 
 



Tokens 

•  Tokens correspond to sets of strings. 
–  But tokens are NOT sets of strings.  Token itself is  

typically a tuple, e.g.,  <token class, lexeme> 
•  Identifier: strings of letters or digits, 

starting with a letter 
•  Integer: a non-empty string of digits 

–  Note possibly unusual: 001, rather than 1 
•  Keyword: “else” or “if” or “begin” or … 
•  Whitespace: a non-empty sequence of blanks, 

newlines, and tabs 



What are Tokens For? 

•  Classify program substrings according to role 
–  Which is, in effect, the goal of lexical analysis 

•  Output of lexical analysis is a stream of 
tokens . . . 

•  . . . which is input to the parser 

•  Parser relies on token distinctions 
–  An identifier is treated differently than a keyword 

LA 
 

 P string <class, lexeme> 



Example 

•  “foo = 42” tokenized as: 
        <Identifier, “foo”>
        < = , “=“> 
        <Integer, “42”>

–  Note that “42” is a string.  To LA, all 
things are strings. 



Note: 

•  The lexical analyzer must be able to break 
down into tokens any string that represents a 
valid program in the language 

•  So, somehow we’ll have to specify this: 
–  Not only whether the string is a valid program 
–  But also what each piece of the string represents 

(in terms of tokens) 
–  AND there can be no ambiguity! 



Designing a Lexical Analyzer: Step 1 

•  Define a finite set of tokens 

–  Tokens describe all items of interest 

–  Choice of tokens depends on language, design of 
parser 



Example 

•  Recall 
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1; 
 

•  Useful tokens for this expression: 
Integer, Keyword, Relation, Identifier, Whitespace, 

(, ), =, ; 
 

•  N.B., (, ), =, ; are tokens, not characters, here 
–  And often in token classes all by themselves 



Designing a Lexical Analyzer: Step 2 

•  Describe which strings belong to each token 

•  Recall: 
–  Identifier: strings of letters or digits, starting 

with a letter 
–  Integer: a non-empty string of digits 
–  Keyword: “else” or “if” or “begin” or … 
–  Whitespace: a non-empty sequence of blanks, 

newlines, and tabs 



Lexical Analyzer: Implementation 

•  An implementation must do two things: 

1.  Recognize substrings corresponding to tokens 

2.  Return the value or lexeme of the token 
–  The lexeme is the substring 



Example 

•  Recall: 
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1; 
 
 
 
 
(W)hitespace           Also (,),=, etc. 
(O)perator 
(K)eyword 
(I)dentifier 
(N)umber 
 
 
 



Example 

•  Recall: 
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1; 
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Lexical Analyzer: Implementation 

•  The lexer usually discards “uninteresting” 
tokens that don’t contribute to parsing. 

•  Examples: Whitespace, Comments 



True Crimes of Lexical Analysis 

•  Is it as easy as it sounds? 

•  Not quite! 

•  Look at some history . . . 
–  (Note: some examples borrowed from original 

Dragon Book, some from new Dragon book) 



Lexical Analysis in FORTRAN 

•  FORTRAN rule: Whitespace is insignificant 

•  E.g., VAR1 is the same as VA    R1 

•  A terrible design! 
–  Their idea was that you should be able to remove all 

whitespace from a program and it should run 
exactly the same 



Another Fortan Example 

•  Consider 
–  DO 5  I = 1,25 
–  DO 5  I = 1.25 

–  What is the difference here? 



Another Fortan Example 

•  Consider 
–  DO 5  I = 1,25 
–  DO 5  I = 1.25 

–  What is the difference here? 
–  And yet… 



Another Fortan Example 

•  Consider 
–  DO 5  I = 1,25 
–  DO 5  I = 1.25 

–  One of these is the header of a Fortran loop 



Another Fortan Example 

•  Consider 
–  DO 5  I = 1,25 
–  DO 5  I = 1.25 

–  One of these is the header of a Fortran loop 
–  The other is a variable declaration 



A Fortan (77) Loop 

•  Thanks to A.J. Miller (who was apparently a grad student at PSU around 2000) 



Lexical Analysis in FORTRAN (Cont.) 

•  Two important points: 
1.  The goal is to partition the string.  This is 

implemented by reading left-to-write, recognizing 
one token at a time 

2.  “Lookahead” may be required to decide where one 
token ends and the next token begins 
1.  In this example, need to read to 11th character before 

knowing what token you have 

 



Lookahead 

•  As you might expect, lookahead complicates 
the process of lexical analysis (making for a 
more complicated compiler) 
–   So languages are designed to minimize the need 

for lookahead 
•  This being said, some lookahead is almost 

always required 
•  For example… 



Lookahead 

•  Even our simple example has lookahead issues 
–  i vs. if 
–  = vs. == 

•  Footnote: FORTRAN Whitespace rule 
motivated by inaccuracy of punch card 
operators 
–  It was easy to accidentally insert blanks 
–  This rule prevents having to reenter the whole card 

if (i == j) 
Z = 0; 

else 
Z = 1; 

 



More Lookahead  

•  And yet more: 

if (i == j) 
Z = 0; 

else 
Z = 1; 
 
When we read the “e” in else, we can’t know whether we 

have a variable name or a keyword until we’ve read through 
to the space after the second “e” 

 



Lexical Analysis in PL/I 

•  PL/I stands for Programming Language 1 
–  Was supposed to be THE programming language (at 

least on IBM machines) 
–  Supposed to encompass every feature any 

programmer would ever need 
–  And so was supposed to be very, very general and 

have very few restrictions.  So… 

•  PL/I keywords are not reserved 
–  You could have variables named same as keywords 

 



Lexical Analysis in PL/I 

 
•  PL/I keywords are not reserved 
    IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN 
 
•  So you can’t know whether you have a keyword 

or a variable name until you’ve seen the entire 
line of code 

•  Which, as you might expect, makes lexical 
analysis in PL/I quite challenging 

   
 

  
 



Lexical Analysis in PL/I (Cont.) 

•  PL/I Declarations: 
DECLARE (ARG1,. . ., ARGN) 

 
•  Can’t tell whether DECLARE is a keyword or 

array reference until after the ). 
–  If what comes next is equal sign, it’s array name  
–  Requires arbitrary lookahead! 

•  More on PL/I’s quirks later in the course . . . 



Experience   

•  Fortran and PL/I taught folks a lot about what 
to do (and not do) in language design to help 
make lexical analysis easier. 

•  But… 



Lexical Analysis in C++ 

•  Unfortunately, the problems continue today 

•  C++ template syntax: 
Foo<Bar> 

•  C++ stream syntax: 
cin >> var; 

•  But there is a conflict with nested templates: 
Foo<Bar<Bazz>> 



Lexical Analysis in C++ 

•  But there is a conflict with nested templates: 
Foo<Bar<Bazz>> 

 
 
•  So what should the lexical analyzer do? 

–  Well, for a long time C++ compilers considered it a 
stream operator 

–  Solution: C++ eventually required a space between 
the two greater than signs 

•  Kind of ugly to require white space to fix lexical analysis 
of a program 

 
 



Review 

•  The goal of lexical analysis is to 
–  Partition the input string into lexemes 
–  Identify the token of each lexeme 

•  Left-to-right scan => lookahead sometimes 
required 

 



Next 

•  We still need 
–  A way to describe the lexemes of each token 

–  A way to resolve ambiguities 
•  Is if two variables i and f? 
•  Is == two equal signs =  =? 



Regular Languages 

•  There are several formalisms for specifying 
tokens 

•  Regular languages are the most popular   
–  Simple and useful theory 
–  Easy to understand 
–  Efficient implementations 



Formal Languages 

 
 
 

Def. Let Σ be a set of characters. A language 
over Σ is a set of strings of characters drawn 

from Σ 
 

(Note: not every string consisting of characters 
from Σ need be in the language) 

 



Examples of Languages 

•  Alphabet = English 
characters 

•  Language = English 
sentences 

•  Not every string of 
English characters is an 
English sentence 
–  And defining which strings 

of characters are valid 
English sentences would 
be tricky 

•  Alphabet = ASCII 
•  Language = C programs 

•  Note: ASCII character 
set is different from 
English character set 



Meaning Function 

•  Meaning function L maps syntax to semantics 
–  Ex. Regular expression might be the syntax, 

semantics might be the set of strings that a 
regular expression represents (more later). 



Notation 

•  Languages are sets of strings. 

•  Need some notation for specifying which sets 
we want 

•  The standard method for expressing regular 
languages is regular expressions. 
–  But it is not the only way this can be done. 



Atomic Regular Expressions 

•  Single character: represents the language 
consisting of one string 

•  Epsilon: also represents a language consisting 
of one string (does NOT represent the “empty 
language”) 

{ }' ' " "c c=

{ }""ε =



Compound Regular Expressions 

•  Union 

•  Concatenation 

•  Iteration 

{ }|  or A B s s A s B+ = ∈ ∈

{ }|  and AB ab a A b B= ∈ ∈

*
0

  where  ...  times ...i i
i

A A A A i A
≥

= =U
Kleene closure of A 



Compound Regular Expressions 

•  Union 

•  Concatenation 

•  Iteration 

{ }|  or A B s s A s B+ = ∈ ∈

{ }|  and AB ab a A b B= ∈ ∈

*
0

  where  ...  times ...i i
i

A A A A i A
≥

= =U
Note A0 is ε  

Note these are all mappings from an expression (piece 
of syntax) to a set of strings.  The purpose of L is to clarify this. 



Regular Expressions 

•  Def. The regular expressions over Σ are the 
smallest set of expressions including 

*

' ' where 
where ,  are rexp over 
"                 "                    "
where  is a rexp over 

c c
A B A B
AB
A A

ε

∈∑

+ ∑

∑



Syntax vs. Semantics 

•  To be careful, we should distinguish syntax 
and semantics. 

{ }

*
0

( ) ""
(' ') {" "}
( ) ( ) ( )
( ) { | ( ) and ( )}
( ) ( )i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=

=

+ = ∪

= ∈ ∈

= U
Note L: Expressions -> Sets of Strings 
Helps make clear what is an expression and what is a set 



Note: When we write things like this 

•  Makes clear how we recursively apply L to 
decompose original compound expressions into 
several expressions that we compute the 
meaning of and then compute the sets from 
those separate  smaller sets 

•   We’ll come back to this.  But first… 



Examples 

•  Assume Σ = {0,1} 

•  1* 

•  (1 + 0)1 

•  0* + 1* 

•  (0 + 1)*  



Examples 

•  Assume Σ = {0,1} 

•  1* 

•  (1 + 0)1 

•  0* + 1* 

•  (0 + 1)* (a.k.a. Σ*) 



Note These are Not Unique 

•  Assume Σ = {0,1} 

•  1* same as 1* + 1 

•  (1 + 0)1 same as 11 + 01 

•  0* + 1* 

•  (0 + 1)* (a.k.a. Σ*) 



Nor Are These 

All denote same set of strings 

0* 
0 + 0* 
ε + 00* 
ε + 0 + 0*  



Why Use a Meaning Function? 

•  Makes clear what is syntax, what is semantics 

•  Allows us to consider notation as a separate 
issue 
–  Allows us to vary the syntax while keeping the 

semantics the same 
•  Might discover that some kinds of syntax are better than 

others for the problems or languages which interest us 

•  Because expressions and meanings are not 1-1 
–  As we’ve seen  
–  Generally many more expressions than meanings 



Why is separating syntax from semantics 
good for notation? 

•  Consider: 
               1          4           42       107 
               I         IV       XLII     CVII 

•  Turns out that Roman Numerals are really 
hard to use when doing things like 
multiplication and addition 
–  Back in Roman times, very few people could do math 

with this 
–  Algorithms were very complicated 

•  Arabic system eliminated this problem 
–  Yet only change was the notation! 



So, Notation is Important Because   

•  It governs how you think 

•  It governs the kinds of things you can say 

•  It governs the procedures you can use 

•  So: don’t underestimate importance of 
notation! 



Thus  

•  The importance of notation is one reason why 
separating syntax from semantics is beneficial 
–  Ex. We can leave the notion that we’re playing with 

numbers out of things and just concentrate on the 
various ways of representing those numbers. 

•  As we’ve seen, some ways of representing them might be 
far better than others. 



Third Reason for Separating Syntax from 
Semantics 

•  For many languages in which we are 
interested, multiple expressions will have the 
same semantics 
–  I.e. L is many-to-one 
–  Extremely important in compilers: basis of 

optimization – many different programs that are 
functionally equivalent! 0* 

0 + 0* 
ε + 00* 
ε + 0 + 0*  



Note: It never works the other way 

•  L is never one-to-many 
–  First, it would imply that L is not a function 
–  More important, it would imply that one program 

would have more than one meaning! 



Segue 

•  Regular expressions are simple, almost trivial 
–  But they are useful! 

•  Reconsider informal token descriptions . . . 

•  And let’s see how to use regular expressions 
to specify different aspects of programming 
languages 

 
 



Example: Keyword 

Keyword: “else” or “if” or “begin” or … 
 
 
 

 

‘else’ + ‘if’ + ‘begin’ + . . . 

Note: ‘else’ abbreviates  

‘e’’l’’s’’e’  

(which is technically how you express the 
concatenation of these four single 
character regular expressions) 



Example: Integers 

Integer: a non-empty string of digits 
 
 
 
 
 

 
 
 

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation:    A AA+ =

Note: most tools allow for the naming of a regular  
expression (as we did with “digit” above) 

Why not digit*? 



Example: Integers 

Integer: a non-empty string of digits 
 
 
 
 
 

 
 
 

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation:    A AA+ =

so integer = digit+ 

Why not digit*? 



Example: Identifier 

Identifier: strings of letters or digits, 
starting with a letter 

letter       =  ‘A’ + . . . + ‘Z’ + ‘a’ + . . . + ‘z’ 
identifier =  letter (letter + digit)* 

Is (letter* + digit*) the same? 



Example: Identifier 

Identifier: strings of letters or digits, 
starting with a letter 

letter       =  ‘A’ + . . . + ‘Z’ + ‘a’ + . . . + ‘z’ = [A-Z] + [a-z] 
identifier =  letter (letter + digit)*               = [A-Za-z] 

                                                                      = [a-zA-Z] 

Is (letter* + digit*) the same? 

character range, supported by most tools  



Example: Whitespace 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs 

 
 ( )'  ' + '\n' + '\t' +



Example: Whitespace 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs 

 
 ( )'  ' + '\n' + '\t' +

Note: we sometimes need a way of naming some 
characters that don’t have a very nice print representation 
Typical way: some sort of escape sequences  



Let’s look at some non-programming language examples 



Example: Phone Numbers 

•  Regular expressions are all around you! 
•  Consider (555)-867-5309 

{ }
3

4

3

exchange = digit
phone = digit
area = digit
phone_number = '(' area ')-' exc

= digits  -,(,)

hange '-' phone

∑ ∪



Example: Email Addresses 

•  Consider anyone@cs.richmond.edu 

{ }
+name = letter

address = name '@' name '.' 

letters

name '.

 

'

.,@

 name

∑ = ∪

Of course this assumes that email addresses only 
consist of letters (just to keep things simple here) 



Example: Unsigned Pascal Floating Point Numbers 

+

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
digits = digit
opt_fraction = ('.' digits) 
opt_exponent = ('E' ('+' + '-' + ) digits) + 
num = digits opt_fraction opt_exponent

ε

ε ε

+

Note the use of ε to make parts of this optional 



Alternative Shorthand 

+

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
digits = digit
opt_fraction = ('.' digits) 
opt_exponent = ('E' ('+' + '-' + ) digits) + 
num = digits opt_fraction opt_exponent

ε

ε ε

+

opt_fraction = (‘.’ digits) + ε = (‘.’ digits)? 

shortcut 



Alternative Shorthand 

+

digit = '0' +'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
digits = digit
opt_fraction = ('.' digits) 
opt_exponent = ('E' ('+' + '-' + ) digits) + 
num = digits opt_fraction opt_exponent

ε

ε ε

+

opt_exponent = (‘E’ (‘+’ + ‘-’)? digits)?  



Other Examples 

•  File names 
•  Grep tool family 



Summary 

•  Regular expressions describe many useful 
languages 

•  Regular languages are a language specification 
–  We still need an implementation 

•  Next time: Given a string s and a rexp R, is 

( )?∈s L R


