
Language Design,
Economics of Programming Languages,  

and  
 Overview of COOL

Grade Weights

• Project 50%
– I, II 10% each
– III, IV 15% each

• Midterm 15%

• Final 25%

• Written Assignments 10%
– 2.5% each

Lecture Outline

• Today’s topic: language design
• Why are there new languages? (The Economy of

Languages)
• Good-language criteria
• History of ideas:

– Abstraction
– Types
– Reuse

• Cool
• The Course Project

Programming Language Economics: Three Questions

• Why are there so many programming languages?
• Hundreds if not thousands in everyday use.
• Why do we need these?
• Why not just one all-purpose language?

• Why are there new programming languages
given that we already have so many?

• How do we know a good programming language
when we see one?

5

Why So Many Programming Languages?

» Well, why so many different models of cars?
» Fast cars
» Cars with good fuel economy
» Cars (i.e., trucks, SUVs) that can carry

larger amounts of cargo
» Cars for various terrains

» Pretty clear why one model of car would not
suffice for all potential uses: No one car can
do all things for all drivers.

6

Programming Domains

» Scientific Computing (big science, long running
apps, simulations)
» Good floating point support
» Good support for arrays and operations on

arrays of floating point data
» Good support for parallelism
» Many other required qualities

» Solution: (modern) FORTRAN
» still used by many scientists today

7

Programming Domains

» Business Computing
» Persistence: don’t want to lose your data
» Good facilities for report generation
» Good support for data analysis

» Solution: SQL and related relational database
programming languages

8

Programming Domains

» Systems programming (e.g., embedded
systems, control systems, operating systems)
» Very fine grained control of low level

resources
» Support for handling time constraints

» e.g., network response times
» Solution: C, C++

9

Programming Domains

» Mobile computing
» Ease of network functionality
» Appropriate mechanisms for inter-process

communication
» Capability to provide applications for variety

of mobile platforms
» Differing power and memory capacities,

etc.
» Solution?: Android versions of Java?

10

Why Are There So Many Programming
Languages?

» Pretty clear that requirements in various
domains are completely different

» Hopefully it’s clear that integrating all of the
properties into one language (and having that
language do a good job with all requirements)
is difficult (and likely impossible)

11

Given all these programming languages,
why the need for new languages?

12

For a Computer Language to Be Used…

» Someone has to design it: usually only one or
very few people, relatively inexpensive

» Someone has to build a compiler: usually 10-20
people for a really large compiler, relatively
inexpensive

13

The Real Cost: All the Users and Educating Them

» Thousands, hundreds of thousands, potentially
millions of developers: time and money spent
teaching them language is very large cost

» Cost of classes, textbooks, etc
» AND since many programmers teach

themselves, their time cost is a real economic
cost

» SO, think about cost of educating a million
programmers, it’s a significant economic
investment.

14

Consequences

» Even making small changes to an established
language used by millions is very expensive
» Even small change to interface to compiler

is costly in terms of educating users
» So, rate of change of language slows.
» For most popular languages, this causes

ossification

15

Another Consequence of Cost of Learning Language

» Paradoxically, it’s relatively ease to start a new
language
» Zero users, so zero training costs at the

beginning
» Even with few users, costs of teaching them

changes in language are not very high
» So new language can adapt much more quickly

to changing situations (i.e., just not very
expensive to experiment with a new language)

16

So…

» When a programmer is choosing between an
established language that doesn’t change
quickly, and a new language that has the
potential for real gains in productivity in the
short term (and at not too much time and
expense), then she’s going to go with the new
language.

» When? When there is some void that needs
to be filled (i.e., current programming
languages not meeting some requirement)

17

Voids?

» We are in the middle of an information
revolution, with new application domains arising
all the time.

» New kinds of programming emerge every few
years.
» Right now: Mobile applications (and attendant

technology to support mobile computing)
» A few years ago: the Internet (the phase

during which Java came into being)

Summary: Programming Language Economics

• Languages are adopted to fill a void
– Enable a previously difficult/impossible application
– Orthogonal to language design quality (almost)

• Observation: Programmer training is the dominant
cost of software development
– Languages with many users are replaced rarely
– Popular languages become ossified
– But easy to start in a new niche . . .

19

One More Consequence

» New programming languages tend to look a lot
like old programming languages
» Leverage the knowledge programmers

already have about the old language
» Classic Example: Java vs. C++

» Made entry to Java easy for C++
programmers

Topic: Language Design

• No universally accepted metrics for design
• Not among programmers
• Not among researchers in programming

language design

Topic: Language Design

• Claim: “A good language is one people use”
• Not. By this criteria, Visual Basic is the world’s

best programming language
• Besides: lot’s goes into language adoption (as

we’ve seen) besides technical excellence
• Language addresses niche -> becomes

established in niche -> then inertia sets in
• Thus Fortran and Cobol are still used, and

languages that we could, if starting over
today, design much better.

Language Evaluation Criteria

Characteristic Criteria

Readability Writeability Reliability
Simplicity * * *

Data types * * *

Syntax design * * *

Abstraction * *

Expressivity * *

Type checking *

Exception handling *

History of Ideas: Abstraction

• Abstraction = detached from concrete details

• Abstraction necessary to build software systems

• Modes of abstraction
– Via languages/compilers:

• Higher-level code, few machine dependencies
– Via subroutines

• Abstract interface to behavior
– Via modules

• Export interfaces; hide implementation
– Via abstract data types

• Bundle data with its operations

History of Ideas: Types

• Originally, few types
– FORTRAN: scalars, arrays
– LISP: no static type distinctions

• Realization: Types help
– Allow the programmer to express abstraction
– Allow the compiler to check against many frequent errors
– Sometimes to the point that programs are guaranteed “safe”

• More recently
– Lots of interest in types
– Experiments with various forms of parameterization
– Best developed in functional programming

History of Ideas: Reuse

• Reuse = exploit common patterns in software systems
– Goal: mass-produced software components
– Reuse is difficult

• Two popular approaches
– Type parameterization (List(int), List(double))
– Classes and inheritance: C++ derived classes
– Combined in C++, Java

• Inheritance allows
– Specialization of existing abstraction
– Extension, modification, hiding behavior

Trends

• Language design
– Many new special-purpose languages
– Popular languages to stay

• Compilers
– More needed and more complex
– Driven by increasing gap between

• new languages
• new architectures

– Venerable and healthy area

Why Study Languages and Compilers ?

5. Increase capacity of expression

4. Improve understanding of program behavior

3. Increase ability to learn new languages

2. Learn to build a large and reliable system

1. See many basic CS concepts at work

Cool Overview

• Classroom Object Oriented Language

• Designed to
– Be implementable in a short time
– Give a taste of implementation of modern

• Abstraction
• Static typing
• Reuse (inheritance)
• Memory management
• And more …

• But many things are left out

A Simple Example

• Cool programs are sets of class definitions
– A special class Main with a special method main
– No separate notion of subroutine

• class = a collection of attributes and methods
• Instances of a class are objects

class Point {
 x : Int ← 0;
 y : Int ← 0;
};

Cool Objects

• An object can be thought of as a record with a slot for
each attribute

class Point {
 x : Int ← 0;
 y : Int; (* use default value *)
};

x y
0 0

• The expression “new Point” creates a new
object of class Point

Methods

• Methods can refer to the current object using self

class Point {
 x : Int ← 0;
 y : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {
 { x ← newx;
 y ← newy;
 self;
 } -- close block expression
 }; -- close method
}; -- close class

• A class can also define methods for manipulating the attributes

Information Hiding in Cool

• Methods are global
• Attributes are local to a class

– They can only be accessed by the class’s methods

• Example:
class Point {
 . . .
 x () : Int { x };
 setx (newx : Int) : Int { x ← newx };
};

Methods

• Each object knows how to access the code of a method
• As if the object contains a slot pointing to the code

• In reality implementations save space by sharing these pointers
among instances of the same class

x y
0 0

movePoint
*

x y
0 0

methods

movePoint
*

Inheritance

• We can extend points to colored points using subclassing => class
hierarchy

class ColorPoint inherits Point {
 color : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {
 { color ← 0;
 x ← newx; y ← newy;
 self;
 }
 };
};

x y
0 0

color
0

 movePoint
*

Cool Types

• Every class is a type
• Base classes:

– Int for integers
– Bool for boolean values: true, false
– String for strings
– Object root of the class hierarchy

• All variables must be declared

– compiler infers types for expressions

Cool Type Checking

• Is well typed if A is an ancestor of B in the
class hierarchy
– Anywhere an A is expected a B can be used

• Type safety:

– A well-typed program cannot result in runtime type
errors

x : A;
x ← new B;

Method Invocation and Inheritance

• Methods are invoked by dispatch

• Understanding dispatch in the presence of inheritance is a subtle
aspect of OO languages

p : Point;
p ← new ColorPoint;
p.movePoint(1,2);

▪ p has static type Point
▪ p has dynamic type ColorPoint
▪ p.movePoint must invoke the ColorPoint version

Method Invocation

• Example: invoke one-argument method m

e.m(e’)

…
1

…
4

m: self ←
x ←
<method code>

3

5

5

6

1. Eval. e
2. Find class of e
3. Find code of m
4. Eval. argum.
5. Bind self and x
6. Run method

…

…

2

method
table

Other Expressions

• Expression language
– every expression has a type and a value
– Loops: while E loop E pool
– Conditionals if E then E else E fi
– Case statement case E of x : Type ⇒ E; … esac
– Arithmetic, logical operations
– Assignment x ← E
– Primitive I/O out_string(s), in_string(), …

• Missing features:
– arrays, floating point operations, exceptions, …

Cool Memory Management

• Memory is allocated every time new is invoked

• Memory is deallocated automatically when an
object is not reachable anymore
– Done by the garbage collector (GC)
– There is a Cool GC

Course Project

• A complete compiler
– Cool ==> MIPS assembly language
– No optimizations

• Split in 4 programming assignments (PAs)

• There is adequate time to complete assignments
– But start early and please follow directions

• Individual or team
– max. 2 students (but adhere to the Shaw Constraint (SC): can

only work with a given partner on one project).

