
Prof. Aiken CS 143 Lecture 1 1

Compilers

Thanks: Almost all of the slides and assignments,
as well as the general layout of this course are
modeled after Professor Alex Aiken’s CS 143
compilers course at Stanford University. Much
thanks to him for graciously providing all of the
material from his course for use in this one.

2

Administrivia

• Syllabus is on-line, of course
– Assignment dates will not change
– Please note midterm and final dates!

• Communication
– email, phone, office hours, Skype

4

Text

• The Purple Dragon Book

• Aho, Lam, Sethi & Ullman

• A useful and required
resource!

5

Course Structure

• Course has theoretical and practical aspects

• Need both in compilers!

• Written assignments = theory
• Programming assignments = practice
• Electronic hand-in for both

6

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We use plagiarism detection software
– many cases in past offerings

PLAGIARISM

7

The Course Project

• A big project

• … in 4 easy parts

• Start early!

8

How are Languages Implemented?

• Two major strategies:
– Interpreters (older)
– Compilers (newer)

• Interpreters run programs “as is”
– Little or no preprocessing of the program before running

• Compilers do extensive preprocessing

8

Interpreters

» Work done is “online” in sense
that the work occurs while
program is running

Interpreter
program

data
output

9

Compiler

» Compiler is “offline” in the sense
that the program is processed
before begin run.

 Compilerprogram executable

data

output

9

Language Implementations

• Batch compilation systems dominate
– gcc

• Some languages are primarily interpreted
– Java bytecode

• Some environments (Lisp) provide both
– Interpreter for development
– Compiler for production

10

History of High-Level Languages

• 1954 IBM develops the 704
– Successor to the 701
– First commercially successful

computer

• Problem
– Surprise! Software costs exceeded

hardware costs (by a LOT)!
– And hardware was expensive. It

cost far more in relative terms than
it ever would again

• All programming done in assembly

11

So Naturally: How to Code Faster?

• Enter “Speedcoding” (John Backus, 1953)
• Really an interpreter
• Programming became much faster, but…
• Ran 10-20 times slower than hand-written

assembly (also true of interpreted code today)
• Also speed code interpreter took up 300 bytes

of data!
• Which was in fact 30% of the memory in

those days! (so space was another concern)

12

FORTRAN I (Formula Translation Project)

• Enter John Backus

• Idea
– Translate high-level code to

assembly
– High-level to allow scientists to

write code closer in form to
equations they used

– Many thought this impossible

– Had already failed in other projects

13

FORTRAN I (Cont.)

• 1954-7
– FORTRAN I project

• 1958
– >50% of all software is in

FORTRAN (only one year after
compiler developed!)

• Development time halved
• Allowed far better use of

machines

14

FORTRAN I

• The first compiler
– Huge impact on computer science

• Led to an enormous body of theoretical work
• And requires a good amount of engineering as well
• Compiler design and programming languages combines

systems work with subtleties of theory

• Modern compilers preserve the outlines of FORTRAN I
• Compiler design one of the great historical successes of

computer science research

15

The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

The first 3, at least, can be understood by
analogy to how humans comprehend English.

17

Clarification

» Optimization: Need not be just about making
program run faster. Can also mean using less
power and/or memory.

» Code generation: Target need not be assembly
language. Might be byte code for a virtual
machine, or another high level language

15

The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

The first 3, at least, can be understood by
analogy to how humans comprehend English.

16

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

16

Lexical Analysis

This is a sentence.

• Work is being done, though it may seem automatic
• You immediately recognize that there are four words:

’this’, ‘is’, ‘a' and ‘sentence'
• You have to recognize the separators, namely the blanks.
• And the punctuation, things like the periods
• And clues like capital letters
• And these help you to divide up this group of letters into

a bunch of words that you can understand

17

More Lexical Analysis

• Lexical analysis is not trivial. Consider:
ist his ase nte nce

18

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

If x == y then z = 1; else z = 2;

• Units:

18

And More Lexical Analysis

• Lexical analyzer divides program text into “words” or
“tokens”

If x == y then z = 1; else z = 2;

• Units:
• Keywords
• Variable Names
• Constants
• Operators: ‘==‘ and ‘=‘

• How do we know == isn’t just two =
• Punctuation and spaces

19

Parsing

• Once words are understood, the next step is to understand
sentence structure

• I.e., group words together into higher constructs

• Parsing = Diagramming Sentences
– The diagram is a tree

20

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

25

26

Parsing

» Analogy between parsing English text and
parsing program text is very strong. In fact
they are exactly the same thing.

21

Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;

• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

22

Semantic Analysis

• Once sentence structure is understood, we can try to
understand “meaning”

– But meaning is too hard for compilers
– And we don’t even really understand how it happens in humans

• Compilers perform limited semantic analysis to catch
inconsistencies

• E.g., if a program is self-inconsistent or there are
ambiguities, compiler can catch this and report error

• But compiler has no real understanding of “meaning”

23

Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there? Possibilities?
Which one left the assignment?

Analogy in programming languages is variable bindings.

24

Semantic Analysis in Programming

• Programming languages
define strict rules to
avoid such ambiguities

• This C++ code prints
“4”; the inner definition
is used (standard rule
for many lexically
scoped languages)

{
 int Jack = 3;
 {
 int Jack = 4;
 cout << Jack;
 }
}

25

More Semantic Analysis

• Compilers perform many semantic checks besides
variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we know
they are different people
– Presumably Jack is male
– This kind of analysis is analogous to type checking

26

Optimization

• No strong counterpart in English, but akin to editing
• E.g., removing words to make a page limit, but

keeping meaning the same

• Automatically modify programs so that they
– Run faster
– Use less memory
– Reduce number of database accesses or network packets
– In general, conserve some resource

• The project has no optimization component

27

Optimization Example

X = Y * 0 is the same as X = 0

Real improvement: make a multiplication and
assignment into just an assignment

27

Optimization Example

X = Y * 0 is the same as X = 0

Real improvement: make a multiplication and
assignment into just an assignment

Except that it’s not always correct…

27

Optimization Example

X = Y * 0 is the same as X = 0

For integers it works, but not for floating point.
Special number in IEEE standard called NaN.

And NaN * 0 is not 0. It’s NaN.

27

Optimization Example

X = Y * 0 is the same as X = 0

So if, for example, X and Y are plotting point
numbers, you can’t do this, since it breaks

some important algorithms that depend on
correct propagation of NaN.

27

Optimization Example

X = Y * 0 is the same as X = 0

 This is one of the important aspects of
compiling optimization: it’s not always
obvious when it’s legal to do certain

optimizations.

28

Code Generation

• Produces assembly code (usually)

• A translation into another language
– Analogous to human translation

29

Intermediate Languages

• Many compilers perform translations between
successive intermediate forms
– All but first and last are intermediate languages internal

to the compiler
– Typically there is 1 IL

• IL’s generally ordered in descending level of
abstraction
– Highest is source
– Lowest is assembly

30

Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose
features hidden by higher levels
– registers
– memory layout
– etc.

• But lower levels obscure high-level meaning

31

Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design

32

Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

