Divide-and-Conquer
Application: Maxima Sets

- We can visualize the various trade-offs for optimizing two-dimensional data, such as points representing hotels according to their pool size and restaurant quality, by plotting each as a two-dimensional point, \((x, y)\), where \(x\) is the pool size and \(y\) is the restaurant quality score.

- We say that such a point is a **maximum point** in a set if there is no other point, \((x', y')\), in that set such that \(x \leq x'\) and \(y \leq y'\).

- The maximum points are the best potential choices based on these two dimensions and finding all of them is the **maxima set** problem.

We can efficiently find all the maxima points by divide-and-conquer. Here the set is \(\{A, H, I, G, D\}\).
Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

- **Divide**: divide the input data S into two or more disjoint subsets S_1, S_2, ...
- **Conquer**: solve the subproblems recursively
- **Combine**: combine the solutions for S_1, S_2, ..., into a solution for S

The base case for the recursion are subproblems of constant size.

Analysis can be done using recurrence equations.
Merge-Sort Review

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Conquer**: recursively sort S_1 and S_2
- **Combine**: merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S)$

- **Input** sequence S with n elements
- **Output** sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1)$

$mergeSort(S_2)$

$S \leftarrow merge(S_1, S_2)$
Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with \(\frac{n}{2} \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).
- Likewise, the basis case \((n < 2) \) will take at \(b \) most steps.
- Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n / 2) + bn & \text{if } n \geq 2
\end{cases}
\]

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has \(T(n) \) only on the left-hand side.
Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2)) + b(n/2)) + bn \]

\[= 2^2 T(n/2^2) + 2bn \]

\[= 2^3 T(n/2^3) + 3bn \]

\[= 2^4 T(n/2^4) + 4bn \]

\[= ... \]

\[= 2^i T(n/2^i) + ibn \]

Note that base, \(T(n)=b, \) case occurs when \(2^i=n. \) That is, \(i = \log n. \)

So,

\[T(n) = bn + bn \log n \]

Thus, \(T(n) \) is \(O(n \log n). \)
The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T's size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>bn</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>bn</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(bn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n\)
(last level plus all previous levels)
Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess: \(T(n) < cn \log n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(c(n/2) \log(n/2)) + bn \log n \\
= cn(\log n - \log 2) + bn \log n \\
= cn \log n - cn + bn \log n
\]

- Wrong: we cannot make this last line be less than \(cn \log n \)
Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T(n/2) + bn \log n \\
= 2(c(n/2) \log^2 (n/2)) + bn \log n \\
= cn(\log n - \log 2)^2 + bn \log n \\
= cn \log^2 n - 2cn \log n + cn + bn \log n \\
\leq cn \log^2 n
\]

- if \(c > b \).

So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

- Many divide-and-conquer recurrence equations have the form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

- The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \).
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \).
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).
Master Method, Example 1

The form:
\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:
\[T(n) = 4T(n/2) + n \]
Master Method, Example 1

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n / b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n / b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 4T(n / 2) + n \]

Solution: \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(O(n^2) \).
Master Method, Example 2

- The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

- The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:

\[T(n) = 2T(n/2) + n \log n \]
Master Method, Example 2

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) \) is \(O(n^\log_b a - \varepsilon) \), then \(T(n) \) is \(\Theta(n^\log_b a) \)
2. If \(f(n) \) is \(\Theta(n^\log_b a \log^k n) \), then \(T(n) \) is \(\Theta(n^\log_b a \log^{k+1} n) \)
3. If \(f(n) \) is \(\Omega(n^\log_b a + \varepsilon) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + n \log n \]

Solution: \(\log_b a = 1 \), so case 2 says \(T(n) \) is \(O(n \log^2 n) \).
Master Method, Example 3

The form:
\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. if \(f(n) = O(n^{\log_b a-\varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. if \(f(n) = \Theta(n^{\log_b a} \log^k n) \), then \(T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \)
3. if \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[
T(n) = T(n/3) + n \log n
\]
Master Method, Example 3

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/3) + n \log n \]

Solution: \(\log_b a = 0 \), so case 3 says \(T(n) \) is \(O(n \log n) \).
Master Method, Example 4

The form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. if \(f(n) \) is \(O(n \log^a b - \epsilon) \), then \(T(n) \) is \(\Theta(n \log^a b) \)
2. if \(f(n) \) is \(\Theta(n \log^a b \log^k n) \), then \(T(n) \) is \(\Theta(n \log^a b \log^{k+1} n) \)
3. if \(f(n) \) is \(\Omega(n \log^a b + \epsilon) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[
T(n) = 8T(n/2) + n^2
\]
Master Method, Example 4

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n / b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 8T(n/2) + n^2 \]

Solution: \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 5

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) = O(n^{\log_b a - \varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. If \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 9T(n/3) + n^3 \]
Master Method, Example 5

- **The form:**

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

- **The Master Theorem:**

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)

2. if \(f(n) \) is \(\Theta(n^{\log_b a} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a} \log^{k+1} n) \)

3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- **Example:**

\[
T(n) = 9T(n/3) + n^3
\]

Solution: \(\log_b a = 2 \), so case 3 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 6

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/2) + 1 \] (binary search)
Master Method, Example 6

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) = O(n^{\log_b a - \varepsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. if \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) = \Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/2) + 1 \] \(\text{ (binary search) } \)

Solution: \(\log_b a = 0 \), so case 2 says \(T(n) = \Theta(\log n) \).
Master Method, Example 7

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + \log n \quad \text{(heap construction)} \]
Master Method, Example 7

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 2T(n/2) + \log n \] (heap construction)

Solution: \(\log_b a = 1 \), so case 1 says \(T(n) \) is \(O(n) \).
Sketch of Proof of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

\[= a(aT\left(\frac{n}{b^2}\right)) + f\left(\frac{n}{b}\right)) + bn \]

\[= a^2T\left(\frac{n}{b^2}\right) + af\left(\frac{n}{b}\right) + f(n) \]

\[= a^3T\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + af\left(\frac{n}{b}\right) + f(n) \]

\[= \ldots \]

\[= a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f\left(\frac{n}{b^i}\right) \]

\[= n^{\log_b a} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f\left(\frac{n}{b^i}\right) \]

We then distinguish the three cases as:

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series

Should be \(f(n) \), and has one too many right parentheses.
We wish to show that $a^{\log_b n} = n^{\log_b a}$.

So, let $x = a^{\log_b n}$. Then

\[
\begin{align*}
\log_b x &= \log_b (a^{\log_b n}) = (\log_b n)(\log_b a) \Rightarrow \\
b^{\log_b x} &= b^{[(\log_b n)(\log_b a)]} = \left(b^{\log_b n}\right)^{\log_b a} \Rightarrow \\
x &= n^{\log_b a}
\end{align*}
\]
Sketch of Proof of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT(n/b) + f(n) \]

\[= a(aT(n/b^2)) + f(n/b) + bn \]

\[= a^2T(n/b^2) + af(n/b) + f(n) \]

\[= a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \]

\[= \ldots \]

\[= a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]

\[= n^{\log_b a} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i) \]

- We then distinguish the three cases as
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series

Should be f(n), and has one too many right parenthesis.
Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits

\[I = I_h 2^{n/2} + I_l \]
\[J = J_h 2^{n/2} + J_l \]

- We can then define I*J by multiplying the parts and adding:

\[I * J = \left(I_h 2^{n/2} + I_l \right) \times \left(J_h 2^{n/2} + J_l \right) \]
\[= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l \]

- So, \(T(n) = 4T(n/2) + n \), which implies \(T(n) \) is \(O(n^2) \).
- But that is no better than the algorithm we learned in grade school.

where did this come from?
An Improved Integer Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits(101,197),(898,830)

\[I = I_h 2^{n/2} + I_l \]

\[J = J_h 2^{n/2} + J_l \]

- Observe that there is a different way to multiply parts:

\[I \times J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l \]

\[= I_h J_h 2^n + [(I_h J_l - I_l J_h - I_h J_h + I_l J_l) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l \]

\[= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l \]

- So, \(T(n) = 3T(n/2) + n \), which implies \(T(n) \) is \(O(n^{\log_2 3}) \), by the Master Theorem.

- Thus, \(T(n) \) is \(O(n^{1.585}) \).
Matrix Multiplication

Given $n \times n$ matrices X and Y, wish to compute the product $Z = XY$.

Formula for doing this is

$$Z_{ij} = \sum_{k=0}^{n-1} X_{ik} Y_{kj}$$

This runs in $O(n^3)$ time

- In fact, multiplying an $n \times m$ by an $m \times q$ takes nmq operations
Matrix Multiplication

\[
\begin{bmatrix}
I & J \\
K & L
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}\begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
\]

\[
I = AE + BG
\]

\[
J = AF + BH
\]

\[
K = CE + DG
\]

\[
L = CF + DH
\]
Matrix Multiplication

- Using the decomposition on previous slide, we can compute Z using 8 recursively computed $(n/2) \times (n/2)$ matrices plus four additions that can be done in $O(n^2)$ time.
- Thus $T(n) = 8T(n/2) + bn^2$
- Still gives $T(n)$ is $\Theta(n^3)$
Strassen’s Algorithm

If we define the matrices S_1 through S_7 as follows

\begin{align*}
S_1 &= A(F - H) \\
S_2 &= (A + B)H \\
S_3 &= (C + D)E \\
S_4 &= D(G - E) \\
S_5 &= (A + D)(E + H) \\
S_6 &= (B - D)(G + H) \\
S_7 &= (A - C)(E + F)
\end{align*}
Strassen’s Algorithm

Then we get the following:

\[I = S_5 + S_6 + S_4 - S_2 \]
\[J = S_1 + S_2 \]
\[K = S_3 + S_4 \]
\[L = S_1 - S_7 - S_3 + S_5 \]

So now we can compute \(Z = XY \) using only seven recursive multiplications.
Strassen’s Algorithm

This gives the relation $T(n) = 7T(n/2) + bn^2$ for some $b > 0$.

By the Master Theorem, we can thus multiply two $n \times n$ matrices in $\Theta(n^{\log_7 7})$ time, which is approximately $\Theta(n^{2.808})$.

- May not seem like much, but if you’re multiplying two 100×100 matrices:
 - n^3 is 1,000,000
 - $n^{2.808}$ is 413,048

With (much) added complexity, there are algorithms to multiply matrices in as little as $\Theta(n^{2.376})$ time

- Reduces figures above to 56,494
Solving the Maxima Set Problem

Let us now return to the problem of finding a maxima set for a set, \(S \), of \(n \) points in the plane.

This problem is motivated from multi-objective optimization, where we are interested in optimizing choices that depend on multiple variables.

For instance, in the introduction we used the example of someone wishing to optimize hotels based on the two variables of pool size and restaurant quality.

A point is a maximum point in \(S \) if there is no other point, \((x', y')\), in \(S \) such that \(x \leq x' \) and \(y \leq y' \).
Divide-and-Conquer Solution

- Given a set, S, of n points in the plane, there is a simple divide-and-conquer algorithm for constructing the maxima set of points in S.
- If $n \leq 1$, the maxima set is just S itself.
- Otherwise, let p be the median point in S according to a lexicographic ordering of the points in S, that is, where we order based primarily on x-coordinates and then by y-coordinates if there are ties.
- Next, we recursively solve the maxima-set problem for the set of points on the left of this line and also for the points on the right.
- Given these solutions, the maxima set of points on the right are also maxima points for S.
- But some of the maxima points for the left set might be dominated by a point from the right, namely the point, q, that is leftmost.
- So then we do a scan of the left set of maxima, removing any points that are dominated by q, until reaching the point where q’s dominance extends.
- The union of remaining set of maxima from the left and the maxima set from the right is the set of maxima for S.
Example for the Combine Step

Dominance point from the right
Pseudo-code

Algorithm MaximaSet(S):

Input: A set, S, of n points in the plane

Output: The set, M, of maxima points in S

if $n \leq 1$ then
 return S

Let p be the median point in S, by lexicographic (x, y)-coordinates
Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S

$M_1 \leftarrow$ MaximaSet(L)
$M_2 \leftarrow$ MaximaSet(G)

Let q be the lexicographically smallest point in M_2

for each point, r, in M_1 do
 if $x(r) \leq x(q)$ and $y(r) \leq y(q)$ then
 Remove r from M_1

return $M_1 \cup M_2$
Before we analyze the divide-and-conquer maxima-set algorithm, there is a little implementation detail that we need to work out.

Namely, there is the issue of how to efficiently find the point, \(p \), that is the median point in a lexicographical ordering of the points in \(S \) according to their \((x, y)\)-coordinates.

There are two immediate possibilities:

One choice is to use a linear-time median-finding algorithm, such as that given in Section 9.2. This achieves a good asymptotic running time, but adds some implementation complexity.

Another choice is to sort the points in \(S \) lexicographically by their \((x, y)\)-coordinates as a preprocessing step, prior to calling the MaxmaSet algorithm on \(S \). Given this preprocessing step, the median point is simply the point in the middle of the list.
Analysis

In either case, the rest of the non-recursive steps can be performed in $O(n)$ time, so this implies that, ignoring floor and ceiling functions (as allowed by the analysis of Exercise C-11.5), the running time for the divide-and-conquer maxima-set algorithm can be specified as follows (where b is a constant):

$$T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}$$

Thus, according to the Master Theorem, this algorithm runs in $O(n \log n)$ time.