
CMSC 240

SOFTWARE SYSTEMS
DEVELOPMENT

CMSC 240: Fall 2022

Homework

¨ https://facultystaff.richmond.edu/~dszajda/classes/cs2
40/Spring_2023/index.html

¨ Read:
¤ Syllabus

¨ Tutorial:
¤ Unix Tutorial for Beginners (Intro, Tutorial 1, Tutorial 2)

http://www.mathcs.richmond.edu/~blawson/cmsc240

Linux / Unix

¨ Macs (G02, G14, G04, 225): Unix
¨ Linux Boxes (225): Linux
¨ Windows Linux Subsystem (G03)

¨ *nix primarily uses a command prompt
¤ Interact via commands typed in window
¤ Similar to DOS command prompt

Example Unix File System (on Mac)
/ (root)

System UsersApplications …

dszajda Guest …

Applications Desktop Documents

cmsc150

hello.py

(~)

hw1.pdf

Microsoft
Outlook.app

Example Unix File System (on Linux)
/

dev etc home usr

console lbarnett

outbox

cmsc240

cpp_examples

README

dszajda

Example Unix File System (on Linux)
/

dev etc home usr

console lbarnett

classes

cmsc240

cpp_examples

README

dszajda

Big difference between Window and
Unix/Linix: Window uses “drive specifiers”
that indicate physical device the file is on.
Linux hides hardware structure with flexible
scheme that allows directory structure stored on
a device to be transparently mounted anywhere
in a tree-structured file system. E.g. /Volumes
on a Mac.

Unix/Linux File System

¨ Special directory names:
¤ Root directory: /
¤ Current directory: .
¤ Parent directory: .. (allows you to go up)
¤ User’s home directory: ~
¤ Some other user’s home: ~sb4tc

¨ Two primary operations for navigating/locating:
¤ cd <name> change directory to “name” (relative)
¤ ls list all files/directories in current directory

Unix/Linux File System

¨ Two primary operations for navigating/locating:
¤ cd <name> change directory to “name” (relative)
¤ ls list all files/directories in current directory

¨ Special cases:
¤ cd (with no arg) goes to your home directory
¤ cd . does nothing
¤ cd .. moves to the parent of the current directory
¤ ls allows wildcards, e.g., ls *.cpp lists all files ending in .cpp

Example Terminal Commands

¨ cd ~

¨ mkdir cmsc240

¨ cd cmsc240

¨ pwd

¨ echo “Hi!” > myFile.txt

¨ cat myFile.txt

¨ cp myFile.txt yourFile.txt

¨ mv yourFile.txt ourFile.txt

¨ mkdir tmpDir

¨ mv ourFile.txt tmpDir

¨ ls

¨ cd ..

¨ change to home directory
¨ make a new cmsc240 directory
¨ cd to the cmsc240 directory
¨ print the working directory
¨ redirect output to a new file
¨ display contents of file
¨ make a copy of the file
¨ rename the new file
¨ make another new directory
¨ move the file copy to new dir
¨ list current directory contents
¨ change to parent directory

Need Help? Use “man” pages…

¨ man ls
¨ man cd

¨ Navigating a manual page:
¤ <return> advances line at a time
¤ <space> advances page at a time
¤ b reverses page at a time
¤ /keywd searches for keywd
¤ q quits

Writing Your First C++ Program

#include <iostream>
using namespace std;

int main() {
cout << “Hello!” << endl;
return 0;

}

Writing Your First C++ Program

#include <iostream>
using namespace std;

int main() {
std::cout << “Hello!” << std::endl;
return 0;

}

More on namespaces later

Writing Your First C++ Program

#include <cstdio>

int main() {
int count{5};
printf(“Count is %d\n.”, count);
return 0;

}

Why? Because some C++ code uses this ”legacy” style.

C Format Specifiers

¨ %d Integer format specifier
¨ %f Float format specifier
¨ %c Character format specifier
¨ %s String format specifier
¨ %u Unsigned int format specifier
¨ %ld Long int format specifier
¨ %x or %X Hex format specifier (lower or UPPER)
¨ Augmenting options control field width, etc:

¤ %8.5f would cause “ 1.23400” (note leading space)

Writing Your First C++ Program

#include <cstdio>

void myfunc(char *mystring) {
printf(mystring);
return 0;

}

Yes, you can do this. DON’T! It’s a
security vulnerability: “format string bug”

Writing Your First C++ Program

#include <cstdio>

void myfunc(char *mystring) {
printf(“%s”, mystring);
return 0;

}

Do this instead. Or better yet, just use cout.

Compile & Execute Your Program

¨ g++ hello.cpp –o hello

¨ ls -l *

¨ ./hello

in this example indicates where
the “executable” should be
stored. In general, indicates what
output of operation should be
called

indicates that the executable
resides in the current directory

Compile & Execute Your Program

¨ g++ hello.cpp –o hello

¨ ls -l *

¨ ./hello

indicates where the “executable”
should be stored as output

indicates that the executable
resides in the current directory

Compilation in C++ directly creates platform-specific
executable code (or object code – more later).

Unlike Java, there is no compilation first to
platform-independent byte code.

Hence, a C++ executable created on a Mac
will not run on Linux or Windows.

Compile & Execute Your Program

¨ g++ -std=gnu++2a hello.cpp –o hello

¨ ls -l *

¨ ./hello

indicates where the “executable”
should be stored as output

indicates that the executable
resides in the current directory

Allows the Mac default clang compiler to compile ``modern’’ C++

Compile & Execute Your Program

¨ g++ -std=c++17 hello.cpp –o hello

¨ ls -l *

¨ ./hello

indicates where the “executable”
should be stored as output

indicates that the executable
resides in the current directory

Allows the Linux cluster machines to compile ``modern’’ C++

No longer necessary on cluster!

Compile & Execute Your Program

¨ g++ -o hello -std=gnu++2a hello.cpp
¨ ./hello

Note order of config parameters not usually important. I tend to put executable first.

“Modern C++”

¨ This is the third year of the full-unit CMSC 240
¨ In this course you will learn “Modern C++”

¤ So if you consult notes from before 2020, code might look
very different from what we do

¨ C++ “versions”: C++98, C++03, C++11, C++14,
C++17, C++20
¤ I learned C++ in 1995-97.

n I learned modern C++ during Summer 2020. There is still
much I have to think twice about(it’s a very powerful, very
feature rich, very complex language)

¤ The change is not “minor” – complete language revision.
n We will learn modern C++ from the start

“Modern C++”

¨ C++ is a powerful language that provides low level
access to memory
¤ Which is great for system programming
¤ But which also leaves a person open to pernicious bugs if

they are not careful…

“Modern C++”

¨ C++ is a powerful language that provides low level
access to memory (and won’t prevent bad judgement)

Command-Line Parameters
(a.k.a. Arguments)
#include <iostream>

int main(int argc, char* argv[])
{

if (argc != 2) // argc counts the num of CLPs
{

std::cerr << “Usage: “ << argv[0]
<< “ <first name>” << std::endl;

exit(0);
}

std::cout << “Hello ” << argv[1] << std::endl;
return 0;

}
The insertion operator (when used with streams)

Command-Line Arguments

#include <iostream>

int main(int argc, char* argv[])
{

if (argc != 2)
{

std::cerr << “Usage: “ << argv[0]
<< “ <first name>” << std::endl;

return 0;
}

std::cout << “Hello ” << argv[1] << std::endl;
return 0;

}

So what is
argv?

Converting Command-Line Args

...
int bar(int param)
{
return(8675309 + param);

}

int main(int argc, char* argv[])
{

// check for correct # of CLAs!!
char* offsetAsString { argv[1] };
int offset { std::stoi(offsetAsString) };
std::cout << bar(offset) << std::endl;
return 0;

}

char* is a type:
C-style string

stoi(): converts
string to integer

Compile & Execute Your Program

¨ g++ -o hello hello.cpp

¨ ls -l *

¨ ./hello

¨ ./hello Lilly

argv[0] argv[1]

C-Style Arrays
...

int main()

{

std::cout << “Enter 10 integers: “ << std::endl;

int array[10];

for (int i = 0; i < 10; i++) {

std::cin >> array[i];

}

std::cout << “In reverse, you entered: “;

for (int i = 9; i >= 0; i--) {

std::cout << array[i] << “ “;

}

std::cout << std::endl;

return 0;

}

C-style arrays
do not

have a length field

The extraction operator (when used with streams)

The name of the array is “array”

C-Style Arrays
...

int main()

{

std::cout << “Enter 10 integers: “ << std::endl;

const int ARRAY_LENGTH = 10;

int array[ARRAY_LENGTH];

for (int i = 0; i < ARRAY_LENGTH; i++) {

std::cin >> array[i];

}

std::cout << “In reverse, you entered: “;

for (int i = ARRAY_LENGTH - 1; i >= 0; i--) {

std::cout << array[i] << “ “;

}

std::cout << std::endl;

return 0;

}

Problems with C-style arrays:
1) doesn't know its own size
2) converts to a pointer to its first element

(more on pointers later)

C++ Arrays: std::array for fixed size
...

int main()
{

std::array<int, 10> array;

std::cout << "Enter " << array.size() << " integers: " << std::endl;
for (int i = 0; i < array.size(); i++) {

std::cin >> array[i];
}

std::cout << "You entered: ";
for (int val : array)

{
std::cout << val << " ";

}
std::cout << std::endl;

// omission of return 0; ==> implicitly returns 0
}

This is a range-based loop

C++ Arrays: std::vector for dynamic size
...

int main()
{

std::vector<int> vector;

std::cout << "Enter a non-negative integer, or -1 to quit: ";
int num = 0;

while (std::cin >> num) {
if (num == -1) break;
vector.push_back(num);

std::cout << "Enter a non-negative integer, or -1 to quit: ";
}

std::cout << "You entered: ";

for (auto val : vector)
{

std::cout << val << " ";

}
std::cout << std::endl;

}

C++ Arrays: std::vector for dynamic size
...

int main()
{

std::vector<int> vector;

std::cout << "Enter a non-negative integer, or -1 to quit: ";
int num = 0;

while (std::cin >> num) {
if (num == -1) break;
vector.push_back(num);

std::cout << "Enter a non-negative integer, or -1 to quit: ";
}

std::cout << "You entered: ";

for (auto val : vector)
{

std::cout << val << " ";

}
std::cout << std::endl;

}

The overloaded operator>> function returns a
reference to the stream itself, and the stream
has an overloaded operator that allows it to be
used in a boolean condition to see if the last
operation went okay or not. Part of the "okay or
not" includes end of file reached, or other errors.

http://en.cppreference.com/w/cpp/io/basic_istream/operator_gtgt
http://en.cppreference.com/w/cpp/io/basic_ios/operator_bool

C++ Arrays: std::vector for dynamic size
...

int main()
{

std::vector<int> vector;

std::cout << "Enter a non-negative integer, or -1 to quit: ";
int num = 0;

while (std::cin >> num) {
if (num == -1) break;
vector.push_back(num);

std::cout << "Enter a non-negative integer, or -1 to quit: ";
}

std::cout << "You entered: ";

for (auto val : vector)
{

std::cout << val << " ";

}
std::cout << std::endl;

}

In using "auto", C++ will automatically determine
the type (within reason – be careful about this).

C++ Arrays: std::vector for dynamic size
...

int main()
{

std::vector<int> vector;

std::cout << "Enter a non-negative integer, or -1 to quit: ";
int num = 0;

while (std::cin >> num) {
if (num == -1) break;
vector.push_back(num);

std::cout << "Enter a non-negative integer, or -1 to quit: ";
}

std::cout << "You entered: ";

for (auto val : vector)
{

std::cout << val << " ";

}
std::cout << std::endl;

}

vector is almost always preferred over
an array. If you know exactly how many
elements you’ll have, array has slightly less
overhead. But vector is more flexible and
has more operations. It should be your
primary sequential container.

Functions in C++: With Prototype

#include <iostream>

int foo(); // declaration (AKA function prototype)

int main()
{
std::cout << foo() << std::endl; // call foo()
return 0;

}

int foo() // definition
{
return(8675309);

}
It’s like declaring variables before using them: either define functions before
calling them , or you have to ”declare” them.

Functions in C++: Without Prototype

#include <iostream>

int foo() // definition (occurs before call)
{
return(8675309);

}

int main()
{
std::cout << foo() << std::endl; // call foo()
return 0;

}

It’s like declaring variables before using them: either define functions before
calling them , or you have to ”declare” them.

Functions in C++: With Prototype

#include <iostream>

int foo(char); // declaration (AKA function prototype)

int main()
{
std::cout << foo() << std::endl; // call foo()
return 0;

}

int foo(char initial) // definition
{
return(8675309);

}
Also, declaration provides interface: no need for formal parameters in declaration.

Functions in C++: With Prototype

#include <iostream>

int foo(char initial) // definition
{
return(8675309);

}

Note: In most cases, no difference in return statements with or without
parens. However,
one exception can be found here:
https://stackoverflow.com/questions/4762662/are-parentheses-
around-the-result-significant-in-a-return-statement.
You’ll never have to worry about that in this class. But if you decide to
become a C++ master, then you’ll likely want to go down this rabbit
hole (and many others).

https://stackoverflow.com/questions/4762662/are-parentheses-around-the-result-significant-in-a-return-statement

Functions in C++: Parameters

#include <iostream>

int bar(int param)
{
return(8675309 + param);

}

int main()
{

int offset {10}; // (almost) same as int offset = 10;
std::cout << bar(offset) << std::endl; // call bar
return 0;

}

= versus {}-list initialization

¨ From Stroustrup (A Tour of C++, 2nd Ed., Section 1.4.2):

The = form is traditional and dates back to C, but if in doubt, use
the general {}-list form. If nothing else, it saves you from
conversions that lose information:

int i1 = 7.8; // i1 becomes 7 (surprise?)
int i2 {7.8}; // error: floating-point to integer conv.

¨ This is a feature introduced in C++11, so you will need to
indicate that in your compile command (by making sure your
compiler “knows” it is compiling modern C++)

I highly recommend Stroustrup book. AFTER you have learned C++.

C++: Input and Output

¨ Standard input / standard output streams
¤ #include <iostream>
¤ std::cin / std::cout

¨ File input / file output streams
¤ #include <fstream>
¤ std::ifstream / std::ofstream

¨ Streams for console and files all work the same
¤ >> reads whitespace-delimited words from input stream
¤ << prints text/variables to output stream

¤ to read entire line, use getline(cin, stringvar)

Example of Opening an Input File

¨ Remember to #include <fstream>
¨ To open an input file for reading:

string fname { “phone.txt"};

ifstream infile {fname};

if (!infile)
{

cerr << "Could not open file: " << fname << endl;
return 0;

}

¨ Then use infile where you would use cin, with >>
¨ Make sure to close when done…

infile.close();

File Reading Example
(a) enter this C++ program as fileInput.cpp
(b) compile the program:

g++ fileInput.cpp -o fileInput

(c) create a text file containing two numbers
(d) run, passing in the name of your text file:

./fileInput numbers.txt

Example of Opening an Output File

¨ Remember to #include <fstream>
¨ To open an output file for reading:

string fname {"myOutput.txt"};
ofstream outfile {fname};
if (!outfile)
{

// cerr appropriate error message
return 0;

}

¨ Then use outfile where you would use cout, with <<
¨ Make sure to close when done…

outfile.close();

File Writing Example
(a) enter this C++ program as

fileOutput.cpp

(b) compile the program:
g++ fileOutput.cpp -o fileOutput

(c) run, passing in the name of a text file:
./fileOutput newNumbers.txt

(d) dislay the contents of the new output file:
less newNumbers.txt

Week 1 Assignment

¨ Write, compile, and test 7 short C++ programs from these slides

¨ Name as follows, submitting to hw1 in shared Box folder

1. args.cpp Slide 24 on command-line arguments

2. array.cpp Slide 31 on std::array in C++

3. vector.cpp Slide 32 on std::vector in C++

4. prototype.cpp Slide 34 on functions w/ prototype

5. params.cpp Slide 38 on function parameters

6. fileInput.cpp Slide 42 on file input example

7. fileOutput.cpp Slide 44 on file input example

¨ For #7, #8, include checks for number of CLAs (see logic on slide 25)

