
Testing

CMSC 240

Unit Tests

w Unit tests verify that a focused collection
of code (e.g., function or class) behave as
intended
§ Want these tests to isolate unit being tested

from its dependencies (though this may be
difficult)

§ If tested unit depends on other unit,
sometimes use mocks (fake objects) as stand
in during tests
• Mocks are only used for testing

Mocks

• Can be used to simulate fine-grained
control over how the dependencies
behave during test

• Can also test how unit is interacting
with mocks, to ensure this is correct

• Can use mocks to simulate rare events
(e.g., out of memory) by programming
them to throw exceptions

Types of Unit Tests

• Integration Tests: Test a collection of
units together
w Can also refer to testing interactions

between software and hardware
w NOT a replacement for individual unit

tests, but complement them

Types of Unit Tests

• Acceptance Tests: Verify that software
meets customer requirements

• Can be used to guide development
• Once acceptance tests passed, software

is deliverable
• These tests become part of code base,

so built-in protection against
refactoring or feature regression
w Feature regression: breaking an old feature

when adding new

Types of Unit Tests

• Performance Tests: Just what it sounds
like
w Does code meet speed requirements?
w Does code meet memory requirements?
w Does code meet power consumption

requirements?
• Typically have an idea where problems

will occur, but can’t be sure without
testing

Types of Unit Tests

• Performance Tests
• Can’t know whether optimizations are

working unless you measure after
implementing

• Instrumentation: instrument code to
provide relevant measures
w Also detect errors, log program execution

Intrumentation

• Often part of customer requirements
w E.g., procedure must execute in under

100ms and/or use less than 1MB of
memory

w By making this part of code, can
automate checks as further optimizations
are implemented

Test-Driven Development
(TDD)

• We’ll try implementing auto braking
service using TDD

• So, the idea: if you’re going to be
coding unit tests anyway, why not
code them first?

• TDD or Not TDD: Something of a
religious war
w Like vim vs emacs, where prens go, big

endian vs little endian

TDD Advantages

• Key notion: write the code that tests a
requirement before implementing
solution

• Proponents claim:
w Code is more modular, robust, clean, and

well designed
• Good tests are excellent documentation
• Good test suite is a working set of

examples that prevents regression

TDD Advantages

• Key notion: write the code that tests a
requirement before implementing
solution

• Great way to submit bug reports
w Found by failed unit test
w Once fixed, stays fixed, because test and

code that fixes bug becomes part of the
test suite

TDD: Red-Green-Refactor

• Red: First implement a failing test
w Why? Make sure you’re actually testing

something!
• Green: Implement code that makes the

test pass (no more, no less)
• Refactor: restructure existing code

without changing functionality
w E.g., replace code with library, rewrite for

performance, elegance
w If it breaks, test suite will tell you

Assertions

• Essential element of a unit test
• An assertion tests that some condition

is met
w If not met, test fails

What does constexpr mean?

Assertions

• Essential element of a unit test
• An assertion tests that some condition

is met
w If not met, test fails

What does constexpr mean? It instructs the compiler to
evaluate the expression at compile time, if possible,

Assertions

• Essential element of a unit test
• An assertion tests that some condition

is met
w If not met, test fails

Test Harness

• Test harness: code that executes unit
tests

• Idea: create code that invokes unit
tests, but handles failed assertions
gracefully
w E.g., doesn’t crash on failed test(s)

Test Harness

• Test harness: code that executes unit
tests

Test Harness

• To make a unit-test program that will
run all of the unit tests, place run_test
inside the main function of a new
program…

Mocking Dependencies

• Mock class (think ”mock up”): a special
implementation that you generate for
the purpose of testing a class that
depends on the mock
w That is, your class depends, say, on class
foo. But you may not have the full foo
implementation (perhaps it isn’t even
coded yet)

w Use the mock to test interactions with your
class

Mocking Dependencies

• You have complete control over the
mock -- you can do just about
anything you want with it
w Can record arbitrarily detailed info about

how the mock gets called
§ E.g., number of times the mock is called and

with which parameters
w Can perform arbitrary computation in the

mock

Mocking Dependencies

• You have complete control over the
mock -- you can do just about
anything you want with it. E.g.
w How does your class respond to an out of

memory error?
w How many times did your class invoke

methods in the dependent?
w Etc.

One Note:

• Mocks are very useful, but if you end
up refactoring your class(es), you’ll
likely have to refactor your unit tests as
well
w No way around that, unless the interface to

your class doesn’t change

Unit Testing and Mocking
Frameworks

• Unit-testing frameworks make unit
testing easier, just as IDEs can help
make coding easier
w Provide commonly used functions and the

scaffolding necessary to tie tests into a
user-friendly program

w Functionality to help create consice,
expressive tests

The Catch Unit-Testing
Framework

• Catch Unit Testing Framework: One of three
described in your text

• Very straightforward
• Written by Phil Nash
• Available at

https://github.com/catchorg/Catch2/
• Header only library

w So you can download the single-header
version and #include in each unit-testing
translation unit

https://github.com/catchorg/Catch2/

Catch

• Easiest way to use this
w Download single catch.hpp header file

§ https://raw.githubusercontent.com/catchorg/C
atch2/v2.x/single_include/catch2/catch.hpp

w Put it in your project directory
w Be sure to #include it in unit test code

https://raw.githubusercontent.com/catchorg/Catch2/v2.x/single_include/catch2/catch.hpp

Catch

• Defining an entry point
w Provide your test binary’s entry point with
#define CATCH_CONFIG_MAIN

w That’s it: Within the catch.hpp header file,
it looks for CATCH_CONFIG_MAIN
preprocessor definition

w When found, Catch will add a main
function (so you don’t have to)

w Automatically grabs all unit tests you have
defined and wraps them in a test harness

Catch

• Building: just build the executable as
usual
w E.g., this is from my Makefile

w Note StackTesterCatch.cpp has no main
method

• Running StackTesterCatch (after
changing Stack to not throw exception
on empty stack)

Recall…

• Earlier, we defined separate functions for
each unit test

• Passed a pointer to each function as the
first parameter to run_test

• Passed name of the test as the second
parameter
w Which is redundant if you named unit test

function well
• Implemented an assert function for

each unit test

Catch

• Catch does all of that implicitly
• For each unit test, use TEST_CASE

macro and Catch does all of the
integration for you

Catch: Making Assertions

• Catch comes with a built-in assertion,
with two distinct families of macros
w REQUIRE: will fail a test immediately
w CHECK: will allow test to run to completion,

but still cause a failure
§ Useful if a group of related assertions can help

lead the programmer toward a bug
w Also, macros for assertions that should be

false
§ REQUIRE_FALSE

§ CHECK_FALSE

Catch: Making Assertions

• Usage: wrap a Boolean expression with
REQUIRE macro
w If expression evaluates to false, assertion

fails
w You provide assertion expression that

evaluates to true if assertion passes, false if
it doesn’t

• Syntax: REQUIRE(assertion-expression);

Testing: Summary

• Unit tests
• Mocks
• Test-driven development
• Assertions
• Mocks
• Unit-testing frameworks

