Testing

———
CMSC 240

Unit Tests

+ Unit tests verify that a focused collection
of code (e.qg., function or class) behave as
intended

= Want these tests to isolate unit being tested

from its dependencies (though this may be
difficult)

= If tested unit depends on other unit,
sometimes use mocks (fake objects) as stand
in during tests
» Mocks are only used for testing

Mocks

» Can be used to simulate fine-grained
control over how the dependencies
behave during test

* Can also test how unit is interacting
with mocks, to ensure this is correct

* Can use mocks to simulate rare events
(e.g., out of memory) by programming
them to throw exceptions

Types of Unit Tests

* Integration Tests: Test a collection of
units together

* Can also refer to testing interactions
between software and hardware

* NOT a replacement for individual unit
tests, but complement them

Types of Unit Tests

Acceptance Tests: Verify that software
meets customer requirements

Can be used to guide development

Once acceptance tests passed, software
is deliverable

These tests become part of code base,
sO built-in protection against
refactoring or feature regression

Feature regression: breaking an old feature
when adding new

Types of Unit Tests

* Performance Tests: Just what it sounds
like

Does code meet speed requirements?

Does code meet memory requirements?

Does code meet power consumption

requirements?

» Typically have an idea where problems
will occur, but can’t be sure without
testing

Types of Unit Tests

e Performance Tests

 Can’t know whether optimizations are
working unless you measure after
implementing

e Instrumentation: instrument code to
provide relevant measures
+ Also detect errors, log program execution

Intrumentation

» Often part of customer requirements

* E.g., procedure must execute in under
100ms and/or use less than 1MB of
memory

* By making this part of code, can
automate checks as further optimizations
are implemented

Test-Driven Development
(TDD)

« We'll try implementing auto braking
service using TDD

* So, the idea: if you're going to be
coding unit tests anyway, why not
code them first?

« TDD or Not TDD: Something of a

religious war

+ Like vim vs emacs, where prens go, big
endian vs little endian

TDD Advantages

Key notion: write the code that tests a
requirement before implementing
solution

Proponents claim:

Code is more modular, robust, clean, and
well designed

Good tests are excellent documentation

Good test suite is a working set of
examples that prevents regression

TDD Advantages

« Key notion: write the code that tests a
requirement before implementing
solution

* Great way to submit bug reports

* Found by failed unit test

* Once fixed, stays fixed, because test and
code that fixes bug becomes part of the
test suite

TDD: Red-Green-Refactor

» Red: First implement a failing test

Why? Make sure you’re actually testing
something!

* Green: Implement code that makes the
test pass (no more, no less)

» Refactor: restructure existing code
without changing functionality

E.g., replace code with library, rewrite for
performance, elegance

If it breaks, test suite will tell you

Assertions

 Essential element of a unit test

« An assertion tests that some condition
IS met

* If not met, test fails

#include <stdexcept>

constexpr void assert_that(bool statement, const charx message) {
if(!statement) throw std::runtime_error{ message };
}

int main() {

assert_that(1l + 2 > 2, "Something is profoundly wrong with the universe.");
assert_that(24 == 42, "This assertion will generate an exception!");

}

What does constexpr mean?

Assertions

 Essential element of a unit test

« An assertion tests that some condition
IS met

* If not met, test fails

#include <stdexcept>

constexpr void assert_that(bool statement, const charx message) {
if(!statement) throw std::runtime_error{ message };
}

int main() {

assert_that(1l + 2 > 2, "Something is profoundly wrong with the universe.");
assert_that(24 == 42, "This assertion will generate an exception!");

}
What does constexpr mean? It instructs the compiler to

evaluate the expression at compile time, if possible,

Assertions

 Essential element of a unit test

« An assertion tests that some condition
1S met

If not met, test fails

#include <stdexcept>

constexpr void assert_that(bool statement, const charx message) {
if(!statement) throw std::runtime_error{ message };
}

int main() {

assert_that(1 + 2 > 2, "Something is profoundly wrong with the universe.");
assert_that(24 == 42, "This assertion will generate an exception!");

}

libc++abi.dylib: terminating with uncaught exception of type std::runtime_error: This
assertion will generate an exception!

Abort trap: 6

Test Harness

e Test harness: code that executes unit
tests

e |dea: create code that invokes unit
tests, but handles failed assertions
gracefully

* E.g., doesn’t crash on failed test(s)

Test Harness

e Test harness: code that executes unit
fests

#include <string>
#include <exception>

—snip —

void run_test(void (xunit_test)(), string name) {
try {
unit_test();
cout << "[+] Test \"" << name << "\" successful!" << endl;
} catch (exception& e) {
cout << "[-] Test failure in \"" << name << "\" " << e.what() << endl;

}
}

Test Harness

 To make a unit-test program that will
run all of the unit tests, place run test

inside the main function of a new
program...

#include <string>
#include <exception>
#include "Stack.h"

using namespace std;

"void pushes_and_pops_work_correctly();

void moved_from_stack_has_null_values_variable();
void run_test(void (x)(), string);

void assert_that(bool statement, string message) {
if (!statement) {
throw runtime_error{message};
}
}

int main() {
//assert_that(1l + 2 > 2, "Something is profoundly wrong with the universe!");
// assert_that(24 == 42, "This assertion will generate an exception!");
// pushes_and_pops_work_correctly();
run_test(pushes_and_pops_work_correctly, "pushes and pops work correctly");
run_test(moved_from_stack_has_null_values_variable, "moved-from stack has null values variable");

}

void run_test(void (xunit_test)(), string name) {
try {
unit_test();
cout << "[+] Test \"" << name << "\" successful!" << endl;
} catch (exception& e) {
cout << "[-] Test failure in \"" << name << "\" " << e.what() << endl;
}

}

#include <string>
#include <exception>
#include "Stack.h"

using namespace std;

void pushes_and_pops_work_correctly();
void moved_from_stack_has_null_values_variable();
void run_test(void (x)(), string);

void assert_that(bool statement, string message) {
if (!statement) {
throw runtime_error{message};
}
}

int main() {
//assert_that(1l + 2 > 2, "Something is profoundly wrong with the universe!");
// assert_that(24 == 42, "This assertion will generate an exception!");
// pushes_and_pops_work_correctly();
run_test(pushes_and_pops_work_correctly, "pushes and pops work correctly");
run_test(moved_from_stack_has_null_values_variable, "moved-from stack has null values variable");

}

void run_test(void (kunit_test)(), string name) {
try {
unit_test();
cout << "[+] Test \"" << name << "\" successful!" << endl;
} catch (exception& e) {
cout << "[-] Test failure in \"" << name << "\" " << e.what() << endl;

}
¥

(base) ml-mcs-dszajda:week8 dszajda$./StackTesterAssertions

[-] Test failure in "pushes and pops work correctly" push or pop not working correctly
[+] Test "moved-from stack has null values variable" successful!

Mocking Dependencies

* Mock class (think "mock up”): a special
implementation that you generate for
the purpose of testing a class that

depends on the mock

That is, your class depends, say, on class
foo. But you may not have the full foo

implementation (perhaps it isn’t even
coded yet)

Use the mock to test interactions with your
class

Mocking Dependencies

* You have complete control over the
mock —- you can do just about
anything you want with it

* Can record arbitrarily detailed info about
how the mock gets called

= E.g., number of times the mock is called and
with which parameters

* Can perform arbitrary computation in the
mock

Mocking Dependencies

* You have complete control over the
mock —- you can do just about
anything you want with it. E.g.

* How does your class respond to an out of
memory error?

* How many times did your class invoke
methods in the dependent?

+ Etc.

One Note:

 Mocks are very useful, but if you end
up refactoring your class(es), you'll
likely have to refactor your unit tests as
well

* No way around that, unless the interface to
your class doesn’t change

Unit Testing and Mocking
Frameworks

* Unit-testing frameworks make unit
testing easier, just as IDEs can help
make coding easier
* Provide commonly used functions and the

scaffolding necessary to tie tests into a
user-friendly program

* Functionality to help create consice,
expressive tests

The Catch Unit-Testing
Framework

Catch Unit Testing Framework: One of three
described in your text

Very straightforward
Written by Phil Nash
Available at

Header only library

* So you can download the single-header
version and #include in each unit-testing
translation unit

https://github.com/catchorg/Catch2/

Catch

» Easiest way to use this

* Download single catch.hpp header file

= https://raw.githubusercontent.com/catchorg/C
atch2/v2.x/single_include/catch2/catch.hpp

+ Put it in your project directory
¢+ Be sure to #include it in unit test code

https://raw.githubusercontent.com/catchorg/Catch2/v2.x/single_include/catch2/catch.hpp

Catch

* Defining an entry

point

Provide your test binary’s entry point with
#define CATCH CONFIG MAIN

That’s it: Within the catch.hpp header file,
it looks for CATCH CONFIG MAIN

preprocessor definition

When found, Catc
function (so you ¢

n will add a main
on’t have to)

Automatically gra

os all unit tests you have

defined and wraps them in a test harness

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include <iostream>
#include <stdexcept>
#include <string>
#include <exception>
#include "Stack.h"

using namespace std;
P
P TEST_CASE("Move Constructor") {

// This is the setup. The init here is run before each test.

// Conceptually, this code is glued into the start of each SECTION
Stack stackl{};

stackl.push(-5);

stackl.push(3);

Stack stack2{std::move(stackl)};

SECTION("moved from stack has null \"values\" variable") {
REQUIRE(stackl.getValues() == nullptr);

}

TEST_CASE("Push and pop") {
Stack stackl{};
Stack stack2{};

SECTION("initial push() works correctly") {
stackl.push(-5);
REQUIRE(stackl.pop() == -5);

k

SECTION("pop() off empty stack causes thrown exception") {
REQUIRE_THROWS(stack2.pop());
}

SECTION("stack resizes without error") {
for (int i = 0; i < 100; ++i) {
stackl.push(i);

REQUIRE(stackl.pop() == 99);
¥
}

Catch

» Building: just build the executable as
usual

* E.g., this is from my Makefile

StackTesterCatch: Stack.cpp Stack.h StackTesterCatch.cpp
g++ $(CFLAGS) -o StackTesterCatch StackTesterCatch.cpp Stack.cpp

* Note StackTesterCatch.cpp has nomain
method

* Running StackTesterCatch (after

changing stack to not throw exception

O Il U A C K

(base) ml-mcs-dszajda:week8 dszajda$./StackTesterCatch

P N N N PN PN 0 N N N 0 N N N N N NI N N N N N NS

StackTesterCatch is a Catch v2.13.1 host application.
Run with -7 for options

Push and pop
pop() off empty stack causes thrown exception

StackTesterCatch.cpp:35:
REQUIRE_THROWS(C stack2.pop())
because no exception was thrown where one was expected:

test cases: 2 | 1 passed |
assertions: 3 | 2 passed |

Recall...

Earlier, we defined separate functions for
each unit test

Passed a pointer to each function as the
first parameter to run test

Passed name of the test as the second
parameter

Which is redundant if you named unit test
function well

Implemented an assert function for
each unit test

Catch

» Catch does all of that implicitly

* For each unit test, use TEST CASE

macro and Catch does all of the
integration for you

Catch: Making Assertions

» Catch comes with a built-in assertion,
with two distinct families of macros
REQUIRE: will fail a test immediately

CHECK: will allow test to run to completion,
but still cause a failure

= Useful if a group of related assertions can help
lead the programmer toward a bug

Also, macros for assertions that should be
false
" REQUIRE FALSE

= CHECK FALSE

Catch: Making Assertions

* Usage: wrap a Boolean expression with
REQUIRE macro

+ |f expression evaluates to false, assertion
fails

*You provide assertion expression that
evaluates to true if assertion passes, false if
it doesn’t

 Syntax: REQUIRE (assertion-expression) ;

Testing: Summary

Unit tests

Mocks

Test-driven development
Assertions

Mocks

Unit-testing frameworks

