
Odds and Ends

CMSC 240
All examples borrowed/modified from
C++ Crash Course by Josh Lospinoso

No Starch Press

Before a Working Example…

• Some C++ concepts that we’ll need
for this example

w Function objects
w Lambda expressions

Function Objects

• One can make user-defined types
callable or invocable
w Done by overloading the function-call

operator operator()()
• Such a type is called a function type

w Instances of a function type are function
objects

• The function-call operator permits any
combination of argument types, return
types, and modifiers (except static)

Function Objects

• Why would you want to do this?
w Might need to interoperate with code that

expects function objects
§ Many libraries, including stdlib use the

function call operator as interface to function-
like objects (we’ll see one later)

§ Ex. Creating asynchronous task with
std:asynch function, which accepts arbitrary
function object that can execute on a separate
thread

Function Objects

• Why would you want to do this?
w The designers of std::asynch could

have required coder to expose a run
method

w But function call operator allows generic
code to use identical notation to invoke a
function or a function-object

Output:

Lambda Expressions

• Lambda expressions construct unnamed
function objects succinctly
w The function object implies the function

type
§ Quick way to create a function object

• Can’t do anything a plain old function
declaration can’t do
w But in specific contexts can be very

convenient
§ Declaring function objects can be verbose.

Lambda expressions much more succinct

Lambda Expressions: Usage

• Five components
w captures: member variables of the function

object
w parameters: arguments required to invoke

function object
w body: function object’s code
w specifiers: E.g., constexpr, noexcept
w return type: just what you think

Lambda Expressions: Usage

• Syntax:

• [captures] (parameters) modifiers ->
return type { body }

• Only capture and body required
w So everything else is optional

• Each lambda component has direct
analogue to part of function object…

Lambda Expressions: Usage

Lambda Expressions: Usage

capture
parameters

bodyreturn
type

specifiers

Lambda Parameters and
Bodies

• Lambda expressions produce function
objects, and thus are callable
w You’ll often want the function object to

accept parameters upon invocation
• Lamba expression body is just like a

function body – all parameters have
function scope

• Declare lambda parameters and bodies
using essentially same syntax as for
functions

Lambda Parameters and
Bodies

• Example:

• This lambda takes a single int x and
uses it in the body to perform squaring

Lambda Example

Lambda Example
Don’t be fooled. No different
than typename T

Lambda Example
Don’t be fooled. No different
than typename T

Except you better provide a type
that can be invoked, because of
how it’s used

Lambda Example

Output:

Lambda Example

Output:

Note that by declaring transform as a template function, you
can reuse it with any function object.

Generic Lambdas

• Generic lambdas are lambda expression
templates
w For one or more parameter one specifies
auto rather than a concrete type

w the auto types becomes template
parameters
§ Compiler will build a custom instantiation of the

lambda

Generic Lambdas

You better provide types Fn and
T such that Fn that can be
invoked on objects of type T

Generic Lambdas

generic lambda

Generic Lambdas

Output:

Lambda Captures

• Lambda captures inject objects into
the lambda
w This can be used to modify behavior of

the lambda
w Declared within brackets []
w Capture list before parameter list
w Can contain any number of comma

separated values
§ Which can then be used within lambda’s body

w Can capture by reference or value

Lambda Captures

to_count captured and can now be used within lambda’s body

lambda version of CountIf

Lambda Captures

Output:

Lambda Captures

Capture by reference

Note we are not declaring
these so no need for type

Lambda Captures

Output:

Recall: Function Pointers

• Declaring a function pointer is similar to declaring a
function

Thanks Alex Allain:
https://www.cprogramming.com/tutorial/function-pointers.html

Recall: Function Pointers

• Declaring a function pointer is similar to declaring a
function

Aside: std::function

• std::function from <functional>
header is a polymorphic container for
callable objects

• In other words, a generic function
pointer
w You can store a static function, a function

object, or a lambda into a
std::function

Declaring a function

• To declare a function you must
provide a single template parameter
containing the function prototype of the
callable object

• std::function class template has
many constructors
w Default constructor constructs a
std::function in empty mode – it
contains no callable object

Empty Functions

• If you declare a std::function with no
contained object, “calling it” will throw a
std::bad_function_call exception

Assigning a Callable Object to
a Function

• Two ways: use the constructor or use
the assignment operator of function

Example

• You can construct a function with any
callable object that supports the
function semantics implied by the
template parameter of the function

Example

An array of std::function objects

Example

Runtime Overhead

• Using a function comes with a runtime
overhead cost
w function might need to make a dynamic

allocation to store callable object
w Compiler has difficulty optimizing away
function invocations, so often incur an
indirect function call
§ Requires additional pointer dereferences

Indirect Function Call?

• Direct function call: function call is made with a fixed
address in instruction
w For those in CS 301, jal to fixed address that has

been placed in the executable by the linker
• Indirect function call: function call is made with

address of callee in a register
w Register is previously loaded either with fixed

address of function being called, or with a value
fetched from somewhere else (e.g., memory or
another register) where the function address has
been stored

Indirect Function Call?

• Direct function call: will always call the
same function

• Indirect function call: can call different
functions, depending on what was
loaded in register before call is made
wThe indirection requires extra effort

Variadic Functions

• Variadic functions take a variable
number of arguments
w E.g., printf – you provide format

specifier and variable number of
parameters

w Variadic functions declared by placing …
as the final parameter

w On invocation, compiler matches supplied
parameters against declared arguments.
Remainder are represented by …

Variadic Functions

• Variadic functions take a variable
number of arguments

• Extract individual arguments from
variadic arguments via utility functions
in the <cstdarg> header

Variadic Functions

Variadic Functions

Variadic Functions

All variadic functions must
declare a va_list. Here it’s
called args

Variadic Functions

All variadic functions must
declare a va_list. Here it’s
called args

