Design Patterns

Much thanks to Professor lan J. Davis (ret.)
Cheriton School of Computer Science
University of Waterloo

for creating many of these slides

(Any errors belong to Prof. Szajda)

Object-Oriented Design

* Lots of students list “object-oriented design” on
their resume
— But they don’t really understand what OO design is!

— What it’s not:

 Knowing what classes and objects are and how they are
used in programs

* Knowing how to code classes and subclasses
* Understanding inheritance

* Object-oriented design is the art and science of
planning a system of interacting objects for the
purpose of solving a software problem

Object-Oriented Design

For relatively small systems, one can get away
with sloppy design

Not for large, complex systems

Plus there are other considerations

— How extensible is the design?

— How scalable is the design?

— How adaptable is the design?

— How robust/maintainable is the design?

Depending on context, any or all of these may
be important considerations

Useful books

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover art © 1994 M.C. Escher / Cordon Art - Baar - Holland. All rights reserved
Foreword by Grady Booch

The “Gang of Four” book
1994

b

>
O
Q
@&
o
>
=
m
wn
=
m
<
a°)
A
o
m
m
wn
2]
o
.
>
=
()]
@,
=
T
=
=
Z
@
w
m
-
m
(2]

Head First

Design Patterns
e e R

8 know sbout Factory
|

patiern s
hahie -

P
A

J

O'REILLY

Head First Design Patterns Book
2004 4

What you can do

A design pattern is a general solution
to a common problem in a context.

What you want What you have

Design Pattern Index
Crestional | structural______ pehavioural

Factory Method Adapter Template
Abstract Factory Bridge Strategy
Builder Composite Command
Singleton Decorator State
Multiton Facade Visitor
Object pool Flyweight Chain of Responsibility
Prototype Front controller Interpreter
Proxy Observer
Iterator
Mediator

Memento

Motivation

A cook knows a lot of recipes
— They look up the ones they forget

Design patterns are recipes for programmers

How can you choose a good strategy if you don’t
<now the range of available strategies?

How can you talk about the choices if they don’t
nave well understood names?

Angel food cake

— Instruction: Fold don’t stir...

— | used a food blender because it was there

* My angel food cake will forever be remembered as a
pancake

WARNING:

Overuse of design patterns can lead to code
that is downright over-engineered.

Always go with the simplest solution that does
the job and introduce patterns only where the
need emerges.

[Head First Design Patterns]

Introduction

e Desighing object-oriented software is hard,
designing reusable object-oriented software is
even harder

e Design should be specific to problem, but also
general enough to address future problems
and requirements

e Expert designers reuse solutions that have
worked for them in the past

— Recurring patterns of classes and communicating
objects exist in many object-oriented systems

Thanks to Sascha Konrad for this and the next several slides

Introduction

e |f details of previous problems and their
solutions are known, then they could be
reused
— Recording experience in software design for

others to use

* Desigh patterns = important and recurring
design in object-oriented systems

What is a Design Pattern?

“Each pattern describes a problem which occurs
over and over again in our environment and
then describes the core of the solution to that

oroblem, in such a way that you can use this
solution a million times over, without ever doing
it in the same way twice”

Christopher Alexander, A Pattern Language,
1977

What is a Design Pattern

e A Pattern has 4 Essential Elements
e Pattern name
e Problem
e Solution
e Conquences

Pattern Name

A handle used to describe a design problem,
its solutions and its consequences in a word or
two

Increases design vocabulary

Makes it possible to design at a higher level of
abstraction

Enhances communication

But finding a good name is often hard

Problem

Describes when to apply the pattern
Explains the problem and its context

Might describe specific design problems or
class or object structures
e Might also describe specific objectives (e.g.,
extensibility)

Sometimes contains a list of conditions that
must be met before it makes sense to apply
the pattern

Solution

e Describes the elements that make up the
design, their relationships, responsibilities and
collaborations

e Doesn’t describe a particular concrete design
or implementation

e Abstract description of design problems and
how the pattern solves it

Consequences

e Results and trade-offs of applying the pattern

e Critical for evaluating design alternatives and
for understanding the costs and benefits of
applying the pattern

* Includes the impacts of a pattern on a
system’s flexibility, extensibility and/or
portability

Design Patterns Are Not

e Designs that can be encoded in classes and
reused as is (i.e. linked lists, hash tables)

e Complex domain-specific designs (for an
entire application or subsystem)

e They Are: “Descriptions of communicating
objects and classes that are customized to
solve a general design problem in a particular
context.”

Good Uses For Design Patterns

e Finding appropriate objects
e Hard part of object-oriented design is
decomposing a system into objects:

Encapsulation, granularity, dependency, flexibility,
performance, ...

e Design Patterns help identifying less obvious
abstractions and the objects that can capture
them

e As well as less obvious issues that might arise with
certain design decisions

Good Uses For Design Patterns

e Determining object granularity
e Objects can vary tremendously in size and humber

e Design patterns address this also i.e., describing
how to decompose an object into smaller objects

Good Uses For Design Patterns

e Specifying object interfaces

e An object’s interface characterizes the complete
set of requests that can be sent to the object

e A type can be thought of as a particular interface
e Subtypes inherit the interfaces of its super types

e Design patterns help in defining the interfaces by
identifying the key elements and the kind of data
that gets sent across an interface

e A design pattern might also tell what not to put in
an interface

Design Patterns Sascha Konrad

Specifying Object Implementations

Class vs. Interface Inheritance:
e Distinction between class and type
e Many design patterns depend on this distinction

Programming to an Interface, not an Implementation:
e There two benefits from manipulating objects solely in
terms of the interface defined by abstract classes
1. clients remain unaware of the specific types they use, as long as
the objects adhere to the interface that clients expect
2. Clients remain unaware of the classes that implement these
objects, clients only know about the abstract class(es) defining
the interface

Creational Patterns assure that the system 1s written in terms of interfaces,
not implementations

Design Patterns Sascha Konrad

Aside: Difference Between Class and
Type

Class vs. Type:

An object's class defines how the object 1s implemented. The
class defines object's internal state and the implementation
of 1ts operations.

In contrast, an object's type only refers to its interface - a set
of requests to which it can respond.

An object can have many types, and objects of different
classes can have the same type.

From GoF book

Design Patterns Sascha Konrad

Specifying Object Implementations

Class vs. Interface Inheritance:
e Distinction between class and type
e Many design patterns depend on this distinction

Programming to an Interface, not an Implementation:
e There two benefits from manipulating objects solely in
terms of the interface defined by abstract classes
1. clients remain unaware of the specific types they use, as long as
the objects adhere to the interface that clients expect
2. Clients remain unaware of the classes that implement these
objects, clients only know about the abstract class(es) defining
the interface

Creational Patterns assure that the system 1s written in terms of interfaces,
not implementations

Good design principles

— Program to interfaces not to an implementation
— Separate what changes from what does not

— Encapsulate what varies behind an interface

— Favor composition over inheritance

* Inheritance: derives one class from another (tightly coupled)
* Composition: defines a class as the sum of its parts (loosely)

— Loosely couple objects that interact

— Classes should be open for extension, but closed for
modification (the “open-closed principle”)

e Such an entity can allow its behaviour to be extended without
modifying its source code.

— Each class should have one responsibility
— Depend on abstractions, not concrete classes

25

Open-Closed Principle

* An entity should allow its behavior to be
extended without modifying its source code

— What on earth does this mean?

26

Example — Calculating Area

public class Rectangle

{
public double Width { get; set; }

public double Height { get; set; }

public class AreaCalculator

{
public double Area(Rectangle[] shapes)

{

double area = 0;
foreach (var shape in shapes)

{
area += shape.Widthxshape.Height;

return area;

Thanks Joel Abrahamsson: http://joelabrahamsson.com/a-simple-example-of-the-openclosed-principle/

Example — Calculating Area

public double Area(object[] shapes)
{
double area = 0;
foreach (var shape 1in shapes)
{
if (shape is Rectangle)
{
Rectangle rectangle = (Rectangle) shape;
area += rectangle.Widthxrectangle.Height;
}

else

{

Circle circle = (Circle)shape;
area += circle.Radius * circle.Radius * Math.PI;

return area;

public abstract class Shape
{

public abstract double Area();

public class Rectangle : Shape

{
public double Width { get; set; }

public double Height { get; set; }
public override double Area()

{
return WidthxHeight;

public class Circle : Shape

{
public double Radius { get; set; }

public override double Area()

{

return Radius*Radius*Math.PI;

Example — Calculating Area

public double Area(Shape[] shapes)
{

double area = 0;
foreach (var shape 1in shapes)

{

area += shape.Area();

}

return area;

Good use of Designh Pattern Principles

Let design patterns emerge from your design,
don’t use them just because you should

Always choose the simplest solution that meets
your need

Always use the pattern if it simplifies the solution
Know all the design patterns out there
Talk a pattern when that simplifies conversation

31

Three Types of Design Patterns

* Creational : Used to create objects for a suitable class that
serves as a solution for a problem.

— Particularly useful when you are taking advantage
of polymorphism and need to choose between different
classes at runtime rather than compile time
* Behavioral : describe interactions between objects and

focus on how objects communicate with each other.

— They can reduce complex flow charts to mere interconnections
between objects of various classes.

e Structural: concerned with how classes and objects are
composed to form larger structures

32

https://www.gofpatterns.com/design-patterns/module2/polymorphism-encryption-stream.php

Creational Design Patterns

Factory Pattern

* Create an object without exposing creation
logic to the client

* Refer to newly created object using a common
interface

* Thanks to tutorialspoint:
https://www.tutorialspoint.com/design patte
rn/factory pattern.htm

34

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

Factory Pattern Example
Implementation

* Create a Shape interface and concrete
classes implementing the Shape interface

* Afactoryclass ShapeFactory is defined as
a next step

* FactoryPatternDemo will use
ShapeFactory to get a Shape object

— Passes information to ShapeFactory to get the
type of object it requires

35

Factory Pattern Example
Implementation

Shape

+draw() : void

<<Interface>>

FactoryPattern
Demo

+main() : void

7)
implements implements asks
implements
Circle Square Rectangle i
ShapeFactory
creates
be
+draw() : void +draw() : void +draw() : void +getShape() :
Shape

36

Factory Pattern Example
Implementation

* Steps:
— Create interface
— Create concrete classes implementing interface

— Create a factory to generate concrete classes
based on provided information

— Use factory to get object of concrete class by
passing information, such as type

— Verify output

37

Factory Pattern Example
Implementation

e Create interface

Shape.java

public interface Shape {
void draw();

}

38

Factory Pattern Example
Implementation

* Create concrete classes implementing same
interface (next slide)

39

Rectangle.java

public class Rectangle implements Shape {

@Override
public void draw() {
System.out.println("Inside Rectangle::draw() method.");

Square.java

public class Square implements Shape {

@Override
public void draw() {
System.out.println("Inside Square::draw() method.");

Circle.java

public class Circle implements Shape {

@Override
public void draw() {
System.out.println("Inside Circle::draw() method.");

40

Factory Pattern Example
Implementation

* Create a factory to generate concrete classes
based on provided information (next slide)

41

ShapefFactory.java

public class ShapeFactory {

//use getShape method to get object of type shape
public Shape getShape(String shapeType) {
if (shapeType == null){
return null;
}
if (shapeType.equalsIgnoreCase(" "CIRCLE")) {
return new Circle();

} else if(shapeType.equalsIgnoreCase(" "RECTANGLE")){
return new Rectangle();

} else if(shapeType.equalsIgnoreCase("SQUARE")){

return new Square();

return null;

42

Factory Pattern Example
Implementation

* Use factory to get object of concrete class by
passing information, such as type (next slide)

43

FactoryPatternDemo.java

public class FactoryPatternDemo {

public static void main(String[] args) {
ShapeFactory shapeFactory = new ShapeFactory();

//get an object of Circle and call its draw method.
Shape shapel = shapeFactory.getShape("CIRCLE");

//call draw method of Circle
shapel.draw() ;

//get an object of Rectangle and call its draw method.
Shape shape2 = shapeFactory.getShape("RECTANGLE") ;

//call draw method of Rectangle
shape2.draw() ;

//get an object of Square and call its draw method.
Shape shape3 = shapeFactory.getShape("SQUARE");

//call draw method of square
shape3.draw() ;

Factory Pattern Example
Implementation

e Verify output

Inside Circle::draw() method.
Inside Rectangle::draw() method.
Inside Square::draw() method.

45

Factory Design Pattern Goals

Separate what changes from what does not
Encapsulate what varies behind an interface
Depend on abstractions, not concrete classes

Loosely couple objects that interact

Design should be open for extension but closed to
modification

46

Problems with using new
 So myClass = new MyClass(....) is bad..

— It might be invoked from many places
— It might be replaced by new MyBetterClass(...)
— Many different subclasses might exist

* Want to be able to decide the subclass at runtime
* Want to create the correct subclass not old superclass
* Without ugly code present everywhere

— Want perhaps to pass around a tool to create
whatever the tool is designed to create

— May not know what to create until run time

Factory Solution

* Wrap code that creates objects inside a method
— Interface = createMyClass(parameters)
— We can change the class created now in one place
— Parameter can identify what to create

* Might make createMyClass static
— le. static MyClass::createMyClass(...)
— But this reassociates the creation with the class

* |f we want to pass method around, putitina
factory object (cleaner than pointer to method)

Factory Pattern

* High Level: uses factory methods to deal with
the problem of creating objects without
having to specify the exact class of the object
that will be created. This is done by creating
objects by calling a factory method—either
specified in an interface and implemented by
child classes, or implemented in a base class
and optionally overridden by derived classes—
rather than by calling a constructor.

Thanks to Wikipedia: https://en.wikipedia.org/wiki/Factory _method_pattern

https://en.wikipedia.org/wiki/Object_creation
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)

Now we give PizzaStovre a veferente
to a SimplePizzaFactory.

public class PizzaStore { z(/’—
SimplePizzaFactory factory: {f”’—\\\\

public PizzaStore (SimplePizzaFactory factory) { _Pi%zag{"""‘ gets the fac{:ory Passed +o
this.factory = factory:; it in the constructor.

}

public Pizza orderPizza(String type) {

Pizza pizza:

pizza = factory.createPizza (type):

pizza.prepare():
pizza.bake():
pizzawcuti();
pizza.box ()
return pizza:

}

// other methods here

And the orderPizzal) method uses the
’_/ ‘Cac{:o\r\/ %o eveate its pizzas by s'm\?ly
passing on the type of the order.

Notice that we've veplaced the new
operator with a ereate method on the

£ac{:or\/ ob}cct. No move tontrete
instantiations hcrc,’

50

This is the (:acto\ry where we treate

pizzas; it should be the only part This is the \wodvt{: of
of our application that vekers to the Sackory: pizzd
contrete Pizza ¢lasses.. [
WC,VC de!«:'mcd Pizza
PizzaStore SimplePizzaFactory Pizza 3s an abs{-xa(,{‘cc\ass
orderPizza() createPizzal() — [e e h c\‘, ul :
bake() ‘mv‘c'nch{',a{';lons 'tha
C’ (cut) tan bC och‘ﬁddCW
. box()
the tlient ok the The tveate method is ofben

_2\;:;\1 P-‘u‘agto;\e\c detlaved statieally: f l\
throuwo

et
S\MY\CP.‘LZQF ad’,oY‘[v ? CheesePizza I PepperoniPizza

VeggiePizza ClamPizza

These are our conevete Products. Each
Product needs to implement the Pizza

(in{:ehcacc* (which in this tase means

‘extend the abstraet Pizza ¢lass”) and

be contrete. As long as that’s the case,

it tan be eveated by the fac{:ory and J
handed back +o the tlient.

51

Advantages

* Protects higher level code from ugly lower level
detail such as which class should be created

* Any change to the class created is made just once

* We can make the objects to create dynamic

— Simply pass a pointer to a factory object to the things
that need to create the objects

— Then the factory object becomes conceptually the
instruction regarding what to create

 We can override createMyClass in subclasses or
use it in any other way we wish
— (i.e. Use with Template design pattern (look it up))

Factory Pattern Definition

The Factory Method Pattern defines an interface

for creating an object, but lets subclasses decide
which class to instantiate.

Question: How should we delete objects created
using a factory.

Should we have a matching deleteMyClass()
Should it make the pointer to the object null
Or should we use reference counting??

Factory Pattern Consequences

* There may be many more classes than
necessary

e Factory pattern hides implementation details
of concrete classes, and in fact at times details
of the classes themselves, from the client. But
these details may be something that the client
needs to know

Abstract Factory Pattern

* Suppose we have a factory that can be told
what objects to create from a choice of all
within a framework

* Then we can create a new factory with the
same “abstract” interfaces to create the same
objects but from a very different framework

* Deciding which framework to use then
becomes deciding which concrete

instantiation of an abstract factory class to use

WeckyetFactory

CreateSoroliBan)
Create Winabwi)

|
AN

MotifWwidgetFactory

PhidgetFactory

CreateScrollBar)
CreateMndow()

Window

Client

CreateScrollBar)
Create\Vindow()

Phvindow

MotifWindow

SecrofiBar

PiScrollBar

Motif ScrollBar

56

Advantages

Protects us from creating components from
many frameworks that can’t talk to each other

Makes it easy to decide at run time which
framework we want to use

The framework chosen is transparent to all
higher level code

Makes it easier to add new frameworks if we
have need to do so

Example

Domino’s pizza’s are flat
Pizza Hut’s pizza’s are deep dish pizza’s
Both offer a variety of subclasses of pizzas

If we create an abstract factory

— Subclass a Domino’s pizza factory

— Subclass a Pizza Hut'’s pizza factory

We won’t need to create a pizza store for each
— Just give each pizza store a different factory
Adding support for New York Pizza

— Piece of cake (pizza)

; :)
PizzaStove is now abstract (see why below This is employing the template

[design pattern (described later)

public abstract class PizzaStore {

public Pizza orderPizza(String type) {
Pizza pizza;

Now treatePizza is back to being

pizza = createPizza (type): call +o a method in the PizzaStore
vather than on a factory object
pizza.prepare():

pizza.bake():
pizza.cut ():
G HeRROmE S Al s loks just the same.

return pizza:

2

abstract Pizza createPizza (String type): Now we've moved our fac.l:or

| ochcf to this method.

C

Our “‘FGC{OVY mC'thOd” ¥onn
abS'EV‘BC't n PiZZ&S'l;orc,

[

Each subelass overvides the treatePizzal)
method, while all subtlasses make use
Eierason of the ordevPizzal) method defined

createPizzal) in PizzaStore. We could make the
orderPizza()

orderPizza() method final if we veally
wanted to cnﬁo\réc this.

B m
NYStylePizzaStore ChicagoStylePizzaStore Simila\rl\/, b‘/ using the

1£ a franchise wants NY f‘iﬂc createPizza) createPizzal) Chicago subtlass, we et an
?iuaghgo;‘\}{:: i:::::‘:f";‘ has implementation of txc:tc?izzao
g g) : ' hi naredients.
its own (,v-ca'{;cPiua() method, RCannbcr: Crca{;cPizz.aO 1S with C itago Ing n
eveating NY style pizzas. abstract in PizzaStore, so all

pizza stovre sub{:\{?cs MUST

]mplcmcw{: ‘{',hc mC‘U‘\Od-

[
* This is the template approach

e Can also pass factory to pizzastore
— Save it internally

— This is the strategy design pattern

60

Abstract Factory Definition

 The Abstract Factory Pattern provides an
interface for creating families of related or

dependent objects without specifying their
concrete classes

Strategy Design Pattern

* A.k.a. Policy pattern
* A behavioral design pattern

 Enables objects to select their desired
algorithm(s) at runtime

— Instead of coding algorithm directly, code instead
receives run-time info which determines which
algorithm from a particular family should be used

— So algorithm varies independently from clients that
use it

— Deferring to run time allows for more flexible and
reusable code

Thanks Wikipedia: https://en.wikipedia.org/wiki/Strategy_pattern

Strategy Design Pattern

* A.k.a. Policy pattern
* A behavioral design pattern

 Enables objects to select their desired
algorithm(s) at runtime

— Instead of coding algorithm directly, code instead
receives run-time info which determines which
algorithm from a particular family should be used

— So algorithm varies independently from clients that
use it

— Deferring to run time allows for more flexible and
reusable code

Strategy Design Pattern

 Example: Class needs to perform validation on
incoming data

— Particular validation method might depend, for
example, on data type, data source, user choice, etc.

e Particulars not known until runtime, and may require very
different validation specifics

* The validation algorithms (strategies)
encapsulated separately from validating object
can be used by other objects in different parts of

system (or different system) without code
duplication

Strategy Design Pattern

amerface
Context Strategy
strataqy
operation|] algorithmf)
|
strategy.alkgorithmi); :
«ee |
Fr————%—=——
| |
]]
Strategyl Strategy2
‘ algorithmf) akgorthmi]

:Strateqy 1

:Strateqy 2

(=

=,
'-

—— o

65

State Design Pattern

* Behavioral design pattern that allows an
object to change its behavior when internal

state changes
— So effectively a variant of strategy pattern
 Can be a clean way for an object to change its

behavior at run time without resorting to
conditional statements

— Improves maintainability

Thanks Wikipedia: https://en.wikipedia.org/wiki/State_pattern#cite_note-GOF-1

State Design Pattern

* Solves two primary problems

— Object should change behavior when internal state
changes

— State-specific behavior should be defined
independently

 |.e., adding new states should not affect behavior of existing
states

* Implementing state-specific behavior directly
within a class is inflexible
— |t commits the class to a particular behavior

— |t makes it impossible to add a new state or change
the behavior of an existing state later without
modifying the class

State Design Pattern

Two solutions

— For each state, design separate object that
enacapsulates specific behavior for that state

— A class delegates state-specific behavior to its current
state object

e Rather than implementing it directly

Class becomes independent of implementation of
state-specific behavior

New states added by defining new state classes

Class changes state at runtime by changing
current state object

State Design Pattern

Context

state _operation();

amerficen
I State :Context Statel State2
B — _
operation(] i I I
| | |
| . e | I
& L operation(this) | I
: |
|
| setState(State2) |
|

I l
E’ ‘{ | dperation|this) _ !

|

Statel State2 setState(Statel) |

2dMPE |
operation] operation|] v i : I
viagram | | |
1 I 1

Look familiar?

69

State Design Pattern Example

interface State {
void writeName(StateContext context, String name);

class LowerCaseState implements State ({
@Override
public void writeName(StateContext context, String name) {
System.out.println(name.toLowerCase());
context.setState(new MultipleUpperCaseState());

class MultipleUpperCaseState implements State {
/* Counter local to this state */
private int count = 0;

@Override
public void writeName(StateContext context, String name) {
System.out.println(name.toUpperCase());
/* Change state after StateMultipleUpperCase's writeName() gets invoked twice */
if (++count > 1) {
context.setState(new LowerCaseState());

70

State Design Pattern Example

class StateContext {
private State state;

public StateContext() {
state = new LowerCaseState();

J**
* Set the current state.
* Normally only called by classes implementing the State interface.
* @param newState the new state of this context
*/
void setState(State newState) ({
state = newState;

public void writeName(String name) {
state.writeName(this, name);

71

State Design Pattern Example

public class StateDemo {
public static void main(String[] args) {
StateContext context = new StateContext();

context.writeName("Monday");
context.writeName ("Tuesday");
context.writeName ("Wednesday");
context.writeName ("Thursday");
context.writeName("Friday");
context.writeName("Saturday");
context.writeName("Sunday");

monday
TUESDAY
WEDNESDAY
thursday
FRIDAY
SATURDAY
sunday

72

Facade Pattern

e A Structural design pattern

* Asin architecture, a facade is a client facing
interface that hides complexity of the underlying
structure and code
— Facade delegates to the underlying interfaces/system(s)

e Potential uses:

— Improve readability and usability of software library by
providing a single simplified interface

— Provide context-specific interface to generic
functionality

— Allow for refactoring monolithic (typically tightly
coupled) code into more loosely coupled code

Facade Pattern

