
Design Patterns
Much thanks to Professor Ian J. Davis (ret.)

Cheriton School of Computer Science
University of Waterloo

for creating many of these slides
(Any errors belong to Prof. Szajda)

1

Object-Oriented Design
• Lots of students list “object-oriented design” on

their resume
– But they don’t really understand what OO design is!
– What it’s not:

• Knowing what classes and objects are and how they are
used in programs

• Knowing how to code classes and subclasses
• Understanding inheritance

• Object-oriented design is the art and science of
planning a system of interacting objects for the
purpose of solving a software problem

2

Object-Oriented Design
• For relatively small systems, one can get away

with sloppy design
• Not for large, complex systems
• Plus there are other considerations
– How extensible is the design?
– How scalable is the design?
– How adaptable is the design?
– How robust/maintainable is the design?

• Depending on context, any or all of these may
be important considerations

3

Useful books

The “Gang of Four” book
1994

Head First Design Patterns Book
2004 4

A design pattern is a general solution
to a common problem in a context.

What you haveWhat you want

What you can do

5

Design Pattern Index

6

Creational Structural Behavioural

Factory Method Adapter Template

Abstract Factory Bridge Strategy

Builder Composite Command

Singleton Decorator State

Multiton Facade Visitor

Object pool Flyweight Chain of Responsibility

Prototype Front controller Interpreter

Proxy Observer

Iterator

Mediator

Memento

Motivation
• A cook knows a lot of recipes
– They look up the ones they forget

• Design patterns are recipes for programmers
• How can you choose a good strategy if you don’t

know the range of available strategies?
• How can you talk about the choices if they don’t

have well understood names?
• Angel food cake
– Instruction: Fold don’t stir…
– I used a food blender because it was there

• My angel food cake will forever be remembered as a
pancake

7

WARNING:
Overuse of design patterns can lead to code

that is downright over-engineered.
Always go with the simplest solution that does
the job and introduce patterns only where the

need emerges.

8[Head First Design Patterns]

Introduction
• Designing object-oriented software is hard,

designing reusable object-oriented software is
even harder

• Design should be specific to problem, but also
general enough to address future problems
and requirements

• Expert designers reuse solutions that have
worked for them in the past
– Recurring patterns of classes and communicating

objects exist in many object-oriented systems

9
Thanks to Sascha Konrad for this and the next several slides

Introduction
• If details of previous problems and their

solutions are known, then they could be
reused
– Recording experience in software design for

others to use

• Design patterns = important and recurring
design in object-oriented systems

10

What is a Design Pattern?
“Each pattern describes a problem which occurs

over and over again in our environment and
then describes the core of the solution to that
problem, in such a way that you can use this

solution a million times over, without ever doing
it in the same way twice”

Christopher Alexander, A Pattern Language,
1977

11

What is a Design Pattern

• A Pattern has 4 Essential Elements
• Pattern name
• Problem
• Solution
• Conquences

12

Pattern Name
• A handle used to describe a design problem,

its solutions and its consequences in a word or
two

• Increases design vocabulary
• Makes it possible to design at a higher level of

abstraction
• Enhances communication
• But finding a good name is often hard

13

Problem
• Describes when to apply the pattern
• Explains the problem and its context
• Might describe specific design problems or

class or object structures
• Might also describe specific objectives (e.g.,

extensibility)

• Sometimes contains a list of conditions that
must be met before it makes sense to apply
the pattern

14

Solution
• Describes the elements that make up the

design, their relationships, responsibilities and
collaborations

• Doesn’t describe a particular concrete design
or implementation

• Abstract description of design problems and
how the pattern solves it

15

Consequences
• Results and trade-offs of applying the pattern
• Critical for evaluating design alternatives and

for understanding the costs and benefits of
applying the pattern

• Includes the impacts of a pattern on a
system’s flexibility, extensibility and/or
portability

16

Design Patterns Are Not
• Designs that can be encoded in classes and

reused as is (i.e. linked lists, hash tables)
• Complex domain-specific designs (for an

entire application or subsystem)
• They Are: “Descriptions of communicating

objects and classes that are customized to
solve a general design problem in a particular
context.”

17

Good Uses For Design Patterns
• Finding appropriate objects

• Hard part of object-oriented design is
decomposing a system into objects:
Encapsulation, granularity, dependency, flexibility,
performance, …

• Design Patterns help identifying less obvious
abstractions and the objects that can capture
them

• As well as less obvious issues that might arise with
certain design decisions

18

Good Uses For Design Patterns
• Determining object granularity

• Objects can vary tremendously in size and number
• Design patterns address this also i.e., describing

how to decompose an object into smaller objects

19

Good Uses For Design Patterns
• Specifying object interfaces

• An object’s interface characterizes the complete
set of requests that can be sent to the object

• A type can be thought of as a particular interface
• Subtypes inherit the interfaces of its super types
• Design patterns help in defining the interfaces by

identifying the key elements and the kind of data
that gets sent across an interface

• A design pattern might also tell what not to put in
an interface

20

21

Design Patterns Sascha Konrad

Specifying Object Implementations
(2)

Class vs. Interface Inheritance:
• Distinction between class and type
• Many design patterns depend on this distinction

Programming to an Interface, not an Implementation:
• There two benefits from manipulating objects solely in

terms of the interface defined by abstract classes
1. clients remain unaware of the specific types they use, as long as

the objects adhere to the interface that clients expect
2. Clients remain unaware of the classes that implement these

objects, clients only know about the abstract class(es) defining
the interface

Creational Patterns assure that the system is written in terms of interfaces,
not implementations

22

Design Patterns Sascha Konrad

Aside: Difference Between Class and
Type

Class vs. Type:

An object's class defines how the object is implemented. The
class defines object's internal state and the implementation
of its operations.

In contrast, an object's type only refers to its interface - a set
of requests to which it can respond.

An object can have many types, and objects of different
classes can have the same type.

From GoF book

23

Design Patterns Sascha Konrad

Specifying Object Implementations
(2)

Class vs. Interface Inheritance:
• Distinction between class and type
• Many design patterns depend on this distinction

Programming to an Interface, not an Implementation:
• There two benefits from manipulating objects solely in

terms of the interface defined by abstract classes
1. clients remain unaware of the specific types they use, as long as

the objects adhere to the interface that clients expect
2. Clients remain unaware of the classes that implement these

objects, clients only know about the abstract class(es) defining
the interface

Creational Patterns assure that the system is written in terms of interfaces,
not implementations

Good design principles
– Program to interfaces not to an implementation
– Separate what changes from what does not
– Encapsulate what varies behind an interface
– Favor composition over inheritance

• Inheritance: derives one class from another (tightly coupled)
• Composition: defines a class as the sum of its parts (loosely)

– Loosely couple objects that interact
– Classes should be open for extension, but closed for

modification (the “open-closed principle”)
• Such an entity can allow its behaviour to be extended without

modifying its source code.
– Each class should have one responsibility
– Depend on abstractions, not concrete classes

25

Open-Closed Principle

• An entity should allow its behavior to be
extended without modifying its source code
– What on earth does this mean?

26

Example – Calculating Area

27Thanks Joel Abrahamsson: http://joelabrahamsson.com/a-simple-example-of-the-openclosed-principle/

Example – Calculating Area

28

29

Example – Calculating Area

30

Good use of Design Pattern Principles

• Let design patterns emerge from your design,
don’t use them just because you should

• Always choose the simplest solution that meets
your need

• Always use the pattern if it simplifies the solution
• Know all the design patterns out there
• Talk a pattern when that simplifies conversation

31

Three Types of Design Patterns

• Creational : Used to create objects for a suitable class that
serves as a solution for a problem.
– Particularly useful when you are taking advantage

of polymorphism and need to choose between different
classes at runtime rather than compile time

• Behavioral : describe interactions between objects and
focus on how objects communicate with each other.
– They can reduce complex flow charts to mere interconnections

between objects of various classes.
• Structural: concerned with how classes and objects are

composed to form larger structures

32

https://www.gofpatterns.com/design-patterns/module2/polymorphism-encryption-stream.php

Creational Design Patterns

33

Factory Pattern
• Create an object without exposing creation

logic to the client
• Refer to newly created object using a common

interface
• Thanks to tutorialspoint:

https://www.tutorialspoint.com/design_patte
rn/factory_pattern.htm

34

https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

Factory Pattern Example
Implementation

• Create a Shape interface and concrete
classes implementing the Shape interface

• A factory class ShapeFactory is defined as
a next step

• FactoryPatternDemo will use
ShapeFactory to get a Shape object
– Passes information to ShapeFactory to get the

type of object it requires

35

Factory Pattern Example
Implementation

36

Factory Pattern Example
Implementation

• Steps:
– Create interface
– Create concrete classes implementing interface
– Create a factory to generate concrete classes

based on provided information
– Use factory to get object of concrete class by

passing information, such as type
– Verify output

37

Factory Pattern Example
Implementation

• Create interface

38

Factory Pattern Example
Implementation

• Create concrete classes implementing same
interface (next slide)

39

Factory Pattern Example
Implementation

40

Factory Pattern Example
Implementation

• Create a factory to generate concrete classes
based on provided information (next slide)

41

42

Factory Pattern Example
Implementation

• Use factory to get object of concrete class by
passing information, such as type (next slide)

43

44

Factory Pattern Example
Implementation

• Verify output

45

Factory Design Pattern Goals
• Separate what changes from what does not
• Encapsulate what varies behind an interface
• Depend on abstractions, not concrete classes
• Loosely couple objects that interact
• Design should be open for extension but closed to

modification

46

Problems with using new
• So myClass = new MyClass(….) is bad..
– It might be invoked from many places
– It might be replaced by new MyBetterClass(…)
– Many different subclasses might exist
• Want to be able to decide the subclass at runtime
• Want to create the correct subclass not old superclass
• Without ugly code present everywhere

– Want perhaps to pass around a tool to create
whatever the tool is designed to create

– May not know what to create until run time

47

Factory Solution

• Wrap code that creates objects inside a method
– Interface = createMyClass(parameters)
– We can change the class created now in one place
– Parameter can identify what to create

• Might make createMyClass static
– Ie. static MyClass::createMyClass(…)
– But this reassociates the creation with the class

• If we want to pass method around, put it in a
factory object (cleaner than pointer to method)

48

Factory Pattern
• High Level: uses factory methods to deal with

the problem of creating objects without
having to specify the exact class of the object
that will be created. This is done by creating
objects by calling a factory method—either
specified in an interface and implemented by
child classes, or implemented in a base class
and optionally overridden by derived classes—
rather than by calling a constructor.

49
Thanks to Wikipedia: https://en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Object_creation
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Method_overriding
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)

50

51

Advantages
• Protects higher level code from ugly lower level

detail such as which class should be created
• Any change to the class created is made just once
• We can make the objects to create dynamic
– Simply pass a pointer to a factory object to the things

that need to create the objects
– Then the factory object becomes conceptually the

instruction regarding what to create
• We can override createMyClass in subclasses or

use it in any other way we wish
– (i.e. Use with Template design pattern (look it up))

52

Factory Pattern Definition

• The Factory Method Pattern defines an interface
for creating an object, but lets subclasses decide
which class to instantiate.

• Question: How should we delete objects created
using a factory.

• Should we have a matching deleteMyClass()
• Should it make the pointer to the object null
• Or should we use reference counting??

53

Factory Pattern Consequences

• There may be many more classes than
necessary

• Factory pattern hides implementation details
of concrete classes, and in fact at times details
of the classes themselves, from the client. But
these details may be something that the client
needs to know

54

Abstract Factory Pattern
• Suppose we have a factory that can be told

what objects to create from a choice of all
within a framework

• Then we can create a new factory with the
same “abstract” interfaces to create the same
objects but from a very different framework

• Deciding which framework to use then
becomes deciding which concrete
instantiation of an abstract factory class to use

55

56

Advantages

• Protects us from creating components from
many frameworks that can’t talk to each other

• Makes it easy to decide at run time which
framework we want to use

• The framework chosen is transparent to all
higher level code

• Makes it easier to add new frameworks if we
have need to do so

57

Example
• Domino’s pizza’s are flat
• Pizza Hut’s pizza’s are deep dish pizza’s
• Both offer a variety of subclasses of pizzas
• If we create an abstract factory
– Subclass a Domino’s pizza factory
– Subclass a Pizza Hut’s pizza factory

• We won’t need to create a pizza store for each
– Just give each pizza store a different factory

• Adding support for New York Pizza
– Piece of cake (pizza)

58

59

This is employing the template
design pattern (described later)

• This is the template approach
• Can also pass factory to pizzastore
– Save it internally
– This is the strategy design pattern

60

Abstract Factory Definition

• The Abstract Factory Pattern provides an
interface for creating families of related or
dependent objects without specifying their
concrete classes

61

Strategy Design Pattern

• A.k.a. Policy pattern
• A behavioral design pattern
• Enables objects to select their desired

algorithm(s) at runtime
– Instead of coding algorithm directly, code instead

receives run-time info which determines which
algorithm from a particular family should be used

– So algorithm varies independently from clients that
use it

– Deferring to run time allows for more flexible and
reusable code

62

Thanks Wikipedia: https://en.wikipedia.org/wiki/Strategy_pattern

Strategy Design Pattern

• A.k.a. Policy pattern
• A behavioral design pattern
• Enables objects to select their desired

algorithm(s) at runtime
– Instead of coding algorithm directly, code instead

receives run-time info which determines which
algorithm from a particular family should be used

– So algorithm varies independently from clients that
use it

– Deferring to run time allows for more flexible and
reusable code

63

Strategy Design Pattern

• Example: Class needs to perform validation on
incoming data
– Particular validation method might depend, for

example, on data type, data source, user choice, etc.
• Particulars not known until runtime, and may require very

different validation specifics
• The validation algorithms (strategies)

encapsulated separately from validating object
can be used by other objects in different parts of
system (or different system) without code
duplication

64

Strategy Design Pattern

65

State Design Pattern

• Behavioral design pattern that allows an
object to change its behavior when internal
state changes
– So effectively a variant of strategy pattern

• Can be a clean way for an object to change its
behavior at run time without resorting to
conditional statements
– Improves maintainability

66

Thanks Wikipedia: https://en.wikipedia.org/wiki/State_pattern#cite_note-GOF-1

State Design Pattern

• Solves two primary problems
– Object should change behavior when internal state

changes
– State-specific behavior should be defined

independently
• I.e., adding new states should not affect behavior of existing

states
• Implementing state-specific behavior directly

within a class is inflexible
– It commits the class to a particular behavior
– It makes it impossible to add a new state or change

the behavior of an existing state later without
modifying the class

67

State Design Pattern
• Two solutions
– For each state, design separate object that

enacapsulates specific behavior for that state
– A class delegates state-specific behavior to its current

state object
• Rather than implementing it directly

• Class becomes independent of implementation of
state-specific behavior

• New states added by defining new state classes
• Class changes state at runtime by changing

current state object

68

State Design Pattern

69

Look familiar?

State Design Pattern Example

70

State Design Pattern Example

71

State Design Pattern Example

72

Façade Pattern

• A Structural design pattern
• As in architecture, a façade is a client facing

interface that hides complexity of the underlying
structure and code
– Façade delegates to the underlying interfaces/system(s)

• Potential uses:
– Improve readability and usability of software library by

providing a single simplified interface
– Provide context-specific interface to generic

functionality
– Allow for refactoring monolithic (typically tightly

coupled) code into more loosely coupled code
73

Façade Pattern

74

