
Copy Semantics and Move
Semantics in C++

CMSC 240
Many examples borrowed/modified from

C++ Crash Course by Josh Lospinoso
No Starch Press

Copy Semantics

• Copy semantics means “the meaning
of copy”
w The rules for making copies of objects

• What we want: After x is copied into y
they are equivalent and independent
w I.e., x==y (equivalence)
w Modification to x does not cause

modification to y (independence)

Object Passed by Value

When you pass by value, a copy of the actual parameter is made
(though you didn’t explicitly ask for one)!

Object Passed by Value

• For plain old data (POD) types, similar
situation
w Think of POD as a container of members

(which may have varying types)
w The parameter receives a member-wise

copy

Again an
implicit
copy

Bottom line

• For fundamental and plain old data
types, copying is done member wise
w It’s just a bit by bit copy into another

location
w All good

• But for fully featured classes, this can
be a problematic

SimpleString.cpp

What happens
if we perform
a member wise
copy of a
SimpleString object?

A Problem

• This can be bad
w Any operation performed on the buffer

member of one object changes the other

A Problem

• This can be dangerous!
w When one of the objects is destructed,

buffer is deleted. If the remaining
SimpleString tries to write its buffer,
undefined behavior!

A Problem

• This can be very dangerous!
w When the remaining object is destructed,

buffer will be freed again, a double free
§ Which in some circumstances can cause

serious security vulnerabilities (it messes with
data structures that hold free store info)

A Problem

• This can be very dangerous!
w When the remaining object is destructed,

buffer will be freed again, a double free
§ See: https://sensepost.com/blog/2017/linux-

heap-exploitation-intro-series-riding-free-
on-the-heap-double-free-attacks/

Copy Semantics are intended to avoid
such situations

Shallow Copy vs Deep Copy

We want deep copies

Method 1: Copy Constructor

Copy Constructor

• Copy constructor is automatically
invoked when passing a SimpleString
opject into a method by value

Copy Constructor

• Why is other passed by reference and
not by value?

Copy Constructor

• Why is other passed by reference and
not by value?
w Because if it was passed by value, then

when it was passed the copy constructor
would automatically be called. But calling
the copy constructor would require
another copy, which would call the copy
constructor…

Method 2: Copy Assignment

• The problems
w Behavior is undefined because we have

not defined a copy assignment operator
w More complicated than copy construction

because b might already have a value
§ So you have to clean up b’s resources before

copying a

Copy Assignment

• Default behavior: Copy members from
the source object to the destination
object. Dangerous!
w b’s buffer gets rewritten without freeing

the original, which was dynamically
allocated

w Now a and b own the same buffer
§ Issue with change to one changing the other
§ Double free (once again)

Copy Assignment

• Default behavior: Copy members from
the source object to the destination
object. Dangerous!

• So you must implement a copy
assignment operator that rectifies
these issues (i.e., clean handoff)

Copy Assignment

Why does copy assignment return a reference to SimpleString?

Copy Assignment

Why does copy assignment return a reference to SimpleString?
Strictly speaking, one doesn’t have to. But not doing so precludes
assignment chaining (a = b = c;) [which associates from right]

Default Copy

• Often compiler will generate default
copies for construction and
assignment
w Invoke copy construction or copy

assignment on each member of the class
• Be extremely careful with this!

w Default is likely to be wrong
w Code your own copy constructor and copy

assignment operators!

Default Copy

• To explicitly invoke default copy, use
default keyword

Repress Generation

• Some objects should not be copied
w E.g., the object manages a file
w E.g., objects represents a mutual exclusion

lock

w Any attempt to copy results in compiler error

Move Semantics

• Copying can be time consuming,
especially if large amount of data
involved

• It can be more efficient to just transfer
ownership of resources from one
object to another

• Making a copy and destroying the
original works, but is often inefficient

Move Semantics

• Move semantics is move’s corollary to
copy semantics

• Requirements: After object y is moved
into object x…
w x is equivalent to the former value of y
w y is in a special state called the moved-

from state
§ Can only do two things with objects in this

state: reassign or destruct

Move Semantics

• This raises a fairly reasonable
question: Why would anyone ever want
to move an object into another object
(without changing any of the data)
then get rid of the first?
w Why not just keep the original object and

work with that?

An Aside: Returning Values
from Functions

• We often talk about how parameters
are passed to functions, but rarely talk
about how they are returned!

• So, how are they passed to functions?
w Pass by value
w Pass by pointer
w Pass by reference

An Aside: Returning Values
from Functions

• So, how are they returned from
functions?
w The same three ways

• Data just travels in the other direction
• BUT with a big caveat: Local variables

go out of scope and are destroyed
when the function ends. We need to
consider the effect of this!

Thanks: https://www.learncpp.com/cpp-tutorial/
returning-values-by-value-reference-and-address/

https://www.learncpp.com/cpp-tutorial/

An Aside: Returning Values
from Functions

• Return by value

• Since a copy is passed to caller, no
issue with variable going out of scope

• BUT requires a copy that can be
expensive for large objects/structs

An Aside: Returning Values
from Functions

• Return by pointer

• Pointer is returned to caller, BUT goes
out of scope at function end!

• And accessing this memory via a
pointer gives undefined behavior

An Aside: Returning Values
from Functions

• Return by pointer

• An easy fix: return the address of
memory that has been dynamically
allocated! It does not go out of scope
at function end!

• But there is another problem. What?

An Aside: Returning Values
from Functions

• Return by pointer

• But there is another problem. What?
w The caller has to deallocate the memory!

An Aside: Returning Values
from Functions

• But there is another problem. What?
w The caller has to deallocate the memory!

• In general, allocating and deallocating
memory in different functions can be
problematic

• Manually allocating and deallocating
memory can make it difficult to know
who is responsible for deallocation
w Or whether the resource needs to be

deleted at all

An Aside: Returning Values
from Functions

• But there is another problem. What?
w The caller has to deallocate the memory!

• This may not seem like a big deal.
w But if you have complex large scale

software that does a lot of this, keeping
track of who deletes what can be a
nightmare

An Aside: Returning Values
from Functions

• Return by reference

• This returns a reference to memory whose
lifetime ends when the function ends
w So this is a reference to garbage
w Fortunately the compiler will usually catch

this

Move Semantics

• So hopefully at this point you see why
you might want to transfer the contents
one object to another and then kill off
the first
w Of in some cases, know that the first is

going to be killed automatically
• Again, you could make a copy. But that

can be inefficient
w Why copy a large array when you can

instead transfer ownership of that memory?

Move Semantics

• Move semantics effectively allows
efficiently returning by value
w And thus avoiding the issues with

pointers and references
• All STL collection classes (and many

others) support move semantics
w So you know that for collection classes

(and classes that support move
semantics) returning by value will be
efficient

Move Semantics

• Move semantics is move’s corollary to
copy semantics

• Note moving is not just renaming:
you’re dealing with separate objects
with separate storage and potentially
different lifetimes

• As with copying, you must specify
move constructor and move
assignment operator

Example (Pedagogical)

• Consider:

Example

• Suppose you want to move a
SimpleString into a SimpleStringOwner
as follows:

Assumes SimpleString has a copy constructor. So…

Example

Assumes SimpleString has a copy constructor. So…
we use it.

Example

Hidden waste: Caller never uses the pointed to object again after
constructing string (in this example, a is never used again)

Why Move?

Hidden waste: Caller never uses the pointed to object again after
constructing string

Better to move the “guts” of SimpleString a into the string field of
SimpleStringOwner b

Why Move?

What you want: SimpleStringOwner b steals the guts of
SimpleString a and then sets a into a destructible state

Why Move?

What you want: SimpleStringOwner b steals the guts of
SimpleString a and then sets a into a destructible state

After the move, the SimpleString of b is equivalent to the former
state of a, and a is destructible

A Caveat

• Moving can be dangerous: If you
accidentally use a moved-from object,
you’ve got a problem
w No guarantee that class invariants are

satisfied in a moved-from object

• However, compiler has built-in
safeguards: lvalues and rvalues

Value Categories

• Every expression has a type and value
category
w Value category describes what kind of

operations are valid for the expression
• Value categories in C++ can be

complicated
w We’ll just take a relatively simplistic view:

§ lvalue: any value that has a name
§ rvalue: anything that isn’t an lvalue

Value Categories

• Example:

• rvalue, lvalue arose from which side of
= operator each originally appeared
w Ex: int x = 50 (x is lvalue, 50 is rvalue)
w Not totally accurate: can have an lvalue

on right side of =
§ E.g., in copy assignment

lvalue and rvalue References

• Up to this point, all references we’ve
used have been lvalue references
w Denoted with single &

• You can take a parameter by rvalue
reference using &&

lvalue and rvalue References

• Scott Meyer:
• rvalues indicate objects eligible for

move operations
• In concept:

w rvalues correspond to temporary objects
returned from functions

w lvalues correspond to objects you can
refer to by name or following a pointer or
lvalue reference

lvalue and rvalue References

• More Scott Meyer:
• Conceptually: Can you (in your

program) take the address of an
expression
w If yes, it’s probably an lvalue
w If not, usually an rvalue

lvalue and rvalue References

• Compiler is very good at determining
whether an object is an lvalue or an
rvalue
w You can use function overloading and

compiler will call the correct function
based on what arguments are provided
on function invocation

lvalue and rvalue Referenceslvalue and rvalue References

Output:

lvalue and rvalue Referenceslvalue and rvalue References

The details of lvalues and rvalues can be tricky and subtle.
Question: what is x? (rvalue or lvalue?)

lvalue and rvalue Referenceslvalue and rvalue References

lvalues and rvalues can be tricky and subtle.
Solution: x has a name, so an lvalue (it is a variable of type
rvalue reference)

std::move

• Cast an lvalue reference to an rvalue
reference using std::move in the
<utility> header

• Note you never actually move
anything. You’re only casting
w Probably should have been called

std::rvalue
w In fact, there is not a single byte of code

associated with std::move! (It simply
informs the compiler.)

std::move

Output:

std::move

• Warning: Be careful when using
std::move
w You’ve removed the built-in safeguards

that prevent you from interaction with a
moved-from object
§ Remember: only can reassign it or destroy it

• Rules:
w If you have lvalue, moving is suppressed
w If you have rvalue, moving enabled

Move Construction

• Like copy construction, but takes an
rvalue reference instead of lvalue ref

• other is an rvalue reference so you can
“cannibalize” it

Move Construction

• Copy all fields of other into this, zero
out all fields of other
w This is important: puts other in a moved-

from state
§ What happens if not done, and other is destructed?

Move Construction

• Executing move constructor is (usually,
but not always) much less expensive
than copy constructor
w In some cases it can even be more

expensive

Move Construction

• Move constructor is designed to not
throw exception so you should always
mark it noexcept
w Compiler cannot use exception throwing

move constructors and will use copy
constructor instead

• Why? If an exception is thrown during
the move, then data being processed can
be lost
w Not an issue with copy, as original is

unchanged

Move Assignment

• Analogous to copy assignment via
operator=

• Move assignment operator takes rvalue
reference instead of const lvalue
reference
w And as with move constructor, designate it
noexcept

Move Assignment

Move Assignment

• We can use this now for the SimpleString
constructor of SimpleStringOwner

Move Assignment

• x is an lvalue, so you must use std::move to
cast it to rvalue.
w Might seem strange, since x is an rvalue reference

when passed (note rvalue/lvalue and lvalue
reference and rvalue reference are not same things)

w But consider what happens if moved from x then
tried to use it in the constructor

Move Assignment

Output:

Note need to cast a to
rvalue in order to use move
assignment

Compiler-Generated Methods

• Five methods govern move and copy
behavior:
w The destructor
w The copy constructor
w The move constructor
w The copy assignment operator
w The move assignment operator

• Compiler can generate default
implementations in some cases

Compiler-Generated Methods

• Compiler can generate default
implementations on some cases
w But it varies among implementations and is

complicated
• Rule-of-five: There are five methods to

implement. Implement them all to
avoid headaches down the road

Compiler-Generated Methods

• If you define nothing, compiler
generates defaults for all five
w This is the so called rule-of-zero

• If you define any of destructor/copy
constructor/ or copy assignment
operator, you get all three
w Generally dangerous

• If you define only move semantics,
compiler will only generate destructor

Compiler-Generated Methods

• Bottom line: define all five!

