
Coding standards - CS240/CS301

1. Good programmers write beautiful code. Pay attention to readability. You want me to
be able to read and understand your code, and you want to be able to read and
understand it, too.

1.1. Choose meaningful names for quantities such as variables, constants, classes and
methods.

1.2. Choose an indentation style and stick with it. Xemacs understands how to indent
a program. Take advantage of its features. Hitting the tab key at the beginning of
a line indents it properly. Typing “Esc x indent-buffer” reindents the entire file.

1.3. Separate your code into logically related chunks using blank lines.

1.4. Put two blank lines between method definitions.

2. Good programmers write understandable code. Documentation is vital. It should be

written first, before you begin coding.

2.1. If the name of a data member or local variable is not completely self-explanatory,

write a comment that describes what it will be used for. (This is not necessary for
loop control variables.)

2.2. Every method or function you write should begin with a comment that describes
the following:

the purpose of the method,
what the method expects when it is called (preconditions),

what the programmer can expect when the method terminates
(postconditions),

what each parameter is used for, and
what the method returns, if anything.

When documenting class methods, these comments should appear both in the
header file where the prototypes are declared and in the implementation file
where they are defined. (The header file for a class is usually available for
inspection by the authors of client programs; the implementation file may not be,
but you want to be able to easily refer to the description of the method while you
are writing or modifying its definition.)

2.3. Complex methods should contain internal documentation. If there is a section of
your code that you spent more than thirty seconds thinking about, it needs a
comment. (I’m exaggerating a little bit, but not much. You’ll see what I mean ten
years from now when you try to reuse a bit of code you wrote in one of your
courses. Don’t laugh. If you stay in this business long enough, it’s inevitable.)
The purpose of loops and conditions are frequently good candidates for internal

comments. Design decisions (why one algorithm was chosen over another, why a
certain data structure is appropriate, why a file format or input format was chosen,
etc.) should also be explained in the code.

2.4. Every class you write should begin with a comment that describes what the class

represents and/or does. Every class data field should have an explanatory
comment. As stated in 2.2, every method or function also needs to be
commented.

2.5. Comments on methods and classes should NOT reveal implementation details.

They should provide a general description of what the methods and classes do or
represent. Private data fields and methods should not be referred to in comments.

3. Good programmers write maintainable code.

3.1. Use defined constants for widely used values that may be subject to change, or

where using a meaningful name would improve the understandability of code
when used in place of a cryptic literal value.

3.2. Parallel arrays are seldom the easiest or safest way to deal with several pieces of
data of different types that are logically related. Learn how to construct simple
structs or classes for data aggregation purposes. You can’t succeed in computing
if you are afraid of the power that your tools provide you.

3.3. Big design decisions should be hidden inside classes. Thus, if the design decision

needs to be reconsidered, only the class that hides the decision needs to be
rewritten. Think carefully about what public methods your classes provide. Well-
hidden implementations are easy to modify. Public interfaces are difficult to
modify.

4. Good programmers write testable code.

4.1. Determine the interface your class presents to client programs first. In C++, you

can write the header file at this point.

4.2. Write your test driver next. If you understand how to test your class, you
understand how it needs to behave.

4.3. Now, write your class implementation and test it.

4.4. Regression test after changes. Changes sometimes have unintended side effects.

Testing the entire behavior of your program after a change catches these
problems. (A cautionary tale: Version 4.10 of Kawa, a Java IDE, had a broken
“Save as” capability. This was clearly a result of failure to do adequate
regression testing on the other bugs that v4.10 was intended to fix.)

5. Good programmers write well-designed, object-oriented code.

5.1. Classes should represent a single construct or object. Having several small

classes where each class represents a logical entity is better design than having a
single class that combines unrelated functionality together.

5.2. Methods should perform a single action. If more than one action needs to be

performed, several simple methods should be created, where each method
performs a single action, and then all of those methods should be called
sequentially. For example, if you want to sort an array and then print it, two
methods should be created (one for sorting and one for printing).

5.3. While accessor methods are appropriate, methods should not return references or

pointers to private data, nor should they return copies of collections of private
data. If manipulation of the private data is needed, the class should have a new
method created that manipulates the private data and then returns the required
result.

Now, some specifics about the assignments you will be doing for our course:

6. Every programming assignment should include a README file containing your

name and a description of the work. Submissions without a README file will not be
graded.

7. Most professors prefer not to receive programming projects by email. You will
receive specific directions in the assignment on how to turn in your work. Unless
explicitly allowed, assignments submitted by email will be ignored.

8. Putting the main function in a class definition file will result in lost points.

9. You need to have comments in each header file explaining what the class does. Each

datum and method should have a brief explanation. In particular, for methods you
should explain what the arguments to the method are, what the function does, and
what the function returns if it returns something. Method descriptions may
alternatively go in the class implementation file (.cpp/.cc/.c) immediately after the
method header but before the code that implements the header.

Not commenting will cause you to lose points on assignments. You should comment
anything that is not particularly obvious at a high level, meaning explaining what
code does logically not how it's done.

10. All files must have your name(s) at the top.

11. Do not include .cpp/.cc/.c files using the #include directive.

12. You may not get solutions to either the programming assignments or to the
homework assignments from the web. That is a violation of the honor code. You may,
however, use the web as a reference guide; for example, you can use it to find out
information about what C++ functions are included in particular libraries or what a
debugger message means.

