Extended Euclidean Algorithm and Fast Exponentiation

Lab 2: RSA
Euclidean Algorithm

\[a = q_1 b + r \]
\[r_0 = q_1 r_1 + r_2 \]
\[r_1 = q_2 r_2 + r_3 \]
\[r_2 = q_3 r_3 + r_4 \]
\[\vdots \]
\[r_i = q_{i+1} r_{i+1} + r_{i+2} \]
\[\vdots \]
Euclidean Algorithm

\[a = q_1 b + r \]
\[r_0 = q_1 r_1 + r_2 \]
\[r_1 = q_2 r_2 + r_3 \]
\[r_2 = q_3 r_3 + r_4 \]
\[\vdots \]
\[r_i = q_{i+1} r_{i+1} + r_{i+2} \]
\[\vdots \]
\[r_{i+1} = r_{i-1} - q_i r_i \]
Extended Euclidean Algorithm

Define two new sequences: s_i and t_i as follows:

\[
\begin{align*}
 s_0 &= 1 \\
 s_1 &= 0 \\
 s_{i+1} &= s_{i-1} - q_i s_i \\
 t_0 &= 0 \\
 t_1 &= 1 \\
 t_{i+1} &= t_{i-1} - q_i t_i
\end{align*}
\]
Extended Euclidean Algorithm

Claim: For $i \geq 0$, $r_i = s_i a + t_i b$

\[
\begin{align*}
 r_0 &= s_0 a + t_0 b? \quad \text{YES!} \quad r_0 = a = 1 \cdot a + 0 \cdot b \\
 r_1 &= s_1 a + t_1 b? \quad \text{YES!} \quad r_1 = b = 0 \cdot a + 1 \cdot b \\
 r_i &= s_i a + t_i b? \quad \text{YES!}
\end{align*}
\]

\[
\begin{align*}
 r_{i+1} &= r_{i-1} - r_i q_i = (a s_{i-1} + b t_{i-1}) - (a s_i + b t_i) q_i \\
 &= (a s_{i-1} - a s_i q_i) + (b t_{i-1} - b t_i q_i) = a s_{i+1} + b t_{i+1}
\end{align*}
\]
Extended Euclidean Algorithm

Define two new sequences: s_i and t_i as follows:

\[
\begin{align*}
 s_0 &= 1 \\
 s_1 &= 0 \\
 s_{i+1} &= s_{i-1} - q_i s_i \\
 t_0 &= 0 \\
 t_1 &= 1 \\
 t_{i+1} &= t_{i-1} - q_i t_i
\end{align*}
\]
Euclidean Algorithm

The Euclidean algorithm expressed in pseudocode is:

```
procedure gcd(a, b: positive integers)
x := a
y := b
while y ≠ 0
    r := x mod y
    x := y
    y := r
return x {gcd(a,b) is x}
```

In Section 5.3, we’ll see that the time complexity of the algorithm is $O(\log b)$, where $a > b$.