DATA BREACHES

Roadmap: Fall 2017

These Happen Quite a Bit

RESOURCE CEN How is this repor	t produced? What are the	016 Breach I e rules? See last		r details. Re	eport Date: 8/9/2016		Page 1 of 120
ITRC Breach ID	Company or Agency	State	Published Date	Breach Type	Breach Category	Records Exposed?	Records Reporte
TRC20160809-09	Santander	NY	8/1/2016	Electronic	Banking/Credit/Financial	Yes - Unknown #	Unknown
	On July 17, 2016, the Santander Bank Fraud Card Detection group discovered suspicious ATM withdrawals that occurred that day.						
Attribution 1	Publication:NH AG'sArticle Title:SantandeArticle URL:						

Why Can't We Stop These?

- Have we figured out yet how to stop home break-ins?
 - Not by a long shot. And houses have been around for thousands of years. Computers have only been widespread for perhaps 30 or so years
- What you can do: manage risk
 - The amount of security applied to a physical building is usually directly related to the value of the items being protected
 - E.g., Fort Knox versus my house
 - Of course, with my house I am not trying to protect against theft of my wife and children different issue altogether

- Almost all "hacks" are the result of some kind of programming or system design error
- An example: phone phreaking "stealing" long distance calls (basically making such calls for free)

A Digression into Breakfast Cereals

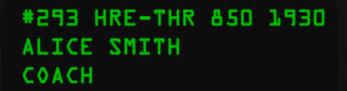
- 2600 Hz tone a form of inband signaling
- Beware allowing control information to come from data
- (also illustrates security-by-obscurity)

- Computer systems are controlled by computer programs
 - Lists of instructions that describe what should happen under various conditions
 - Thousands of languages to do this (but that's another story)
 - These instructions can sometimes leave "vulnerabilities" that hackers exploit
 - Think of a building design that is generally solid, but such that if just the wrong thing happens, you've got a problem

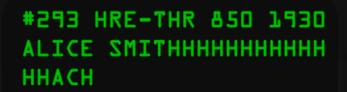
- Hacker Goal: find a way to get their instructions ("code") onto the target computer and then executed
 - Typically, these are instructions that tell the computer to let the attacker do whatever they want

□ This is called "code injection"

- So, how does one get instructions onto a computer system?
 - □ Often, by invitation

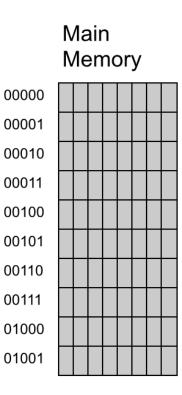

With an unexpected and unchecked reply

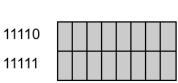
- So, how does one get instructions onto a computer system?
 - Often, by invitation
 - With an unexpected and unchecked reply
 - Physical world analogy: A person is invited to a posh event but shows up drunk and covered in mud
 - This is unexpected (did invite specifically prohibit this? Why would it?)
 - If unchecked (no security to keep person out?), a problem


- These code vulnerabilities exist in application code (e.g., Word, Keynote, etc) as well as the code used by web sites
- Let's look at a small example

SPECIAL INSTRUX: NONE

SPECIAL INSTRUX: NONE

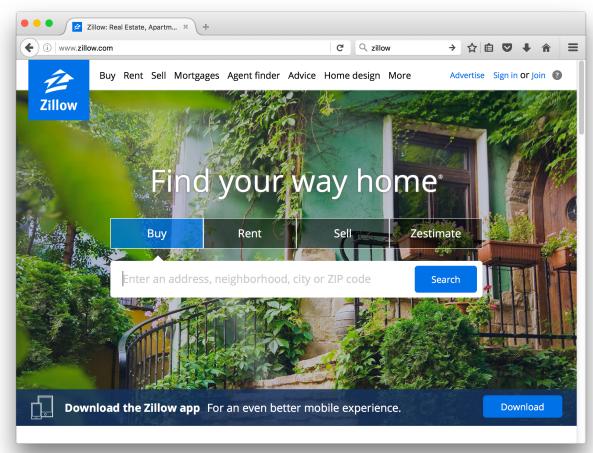

#293 HRE-THR 850 1930 ALICE SMITH FIRST


SPECIAL INSTRUX: GIVE PAX EXTRA CHAMPAGNE.

```
char name[20];
char instrux[80] = "none";
void vulnerable() {
  gets(name);
}
```

So What's Going On Here?

- Recall what memory looks like
 - Suppose name is stored at addresses 0 - 19 and instrux is stored at addresses 20 - 99
 - What happens if the user enters a name that is more than 20 characters long?



. . .

SQL: Structured Query Language

- A widely used language used to facilitate the searching of databases
- Fetch a set of records
 - SELECT * FROM Person WHERE Username='smith'
- Add data to the database
 - INSERT INTO Person(username, balance) VALUES ('smith', 10)
- Modify data
 - UPDATE Person SET Balance=42 WHERE Username='smith'
- Query syntax (mostly) independent of vendor

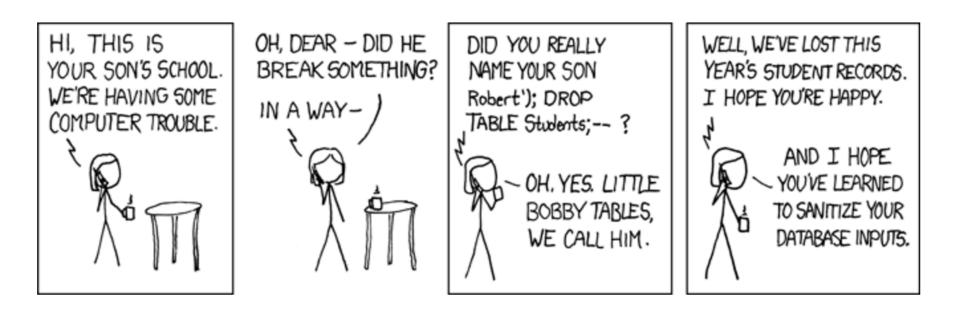
I'm coding a web page, and I want you to be able to search a related database

- So I'm going to write a line of code that looks something like this:
- SELECT PersonID FROM Person WHERE Balance < 100 AND Username='\$recipient';
- In English: Whatever the user enters, call that \$recipient. So please find me the ID numbers of all people in the database whose balance is less than 100, and whose username is what the user supplied in the web form.
 - □ Works fine if the user actually enters a username

- So I'm going to write a line of code that looks something like this:
- SELECT PersonID FROM Person WHERE Balance < 100 AND Username='\$recipient';
- Doesn't work so well if the user enters this:

foo' OR 1=1 —

- in which case the command becomes
- SELECT PersonID FROM Person WHERE Balance < 100 AND Username='foo' OR 1-1 —';
- Which says give me the ID of every entry in the database


SELECT PersonID FROM Person WHERE Balance < 100 AND Username='\$recipient';

Doesn't work so well if the user enters this:

foo'; DROP TABLE Person; --

- in which case the command becomes
- SELECT PersonID FROM Person WHERE Balance < 100 AND Username='foo'; DROP TABLE Person; —';
- Which says give me the ID of the entry with username foo, then delete the entire database

- This is difficult to prevent, though there are various means of doing so
 - Input sanitization: make sure certain control characters are not contained in what the user entered
 - Difficult to do well
 - Structure code better so that the commands that are issued (e.g., DROP TABLE is a command) are not influenced in any way by what the user enters
 - Think of relation between this and Captain Crunch whistle!

Other Types of Web Attacks

Cross-site scripting (XSS) attacks

- Roughly, I trick your browser into thinking it's receiving information from a safe site, when in fact it's not
- Cross-site request forgery
 - A method by which I fool your browser into doing something for me (or allowing me to do it)
 - For example, transfer money from your bank account to mine

Other Types of Web Attacks

Drive-by download

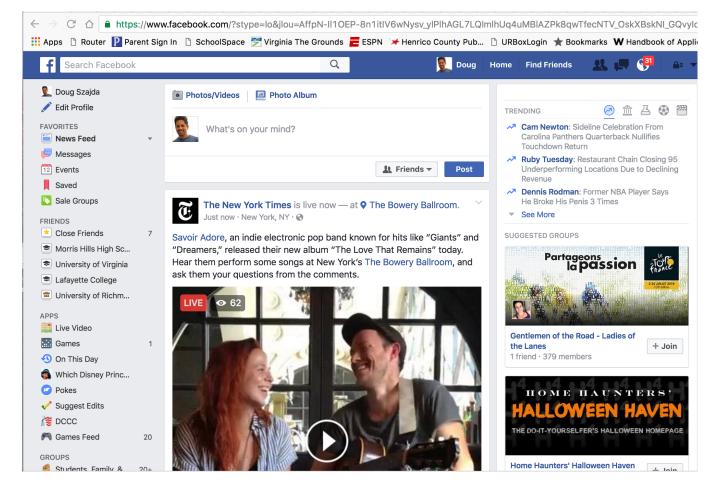
- You visit my site, which uploads malware to your browser
 - □ And allows me to take over your machine

Usually without you knowing it

You very likely already have malware on your laptop

- Security folks used to say "practice safe computing"
 - Meaning: don't visit sites likely to be distributing malware
 - □ These days, no such thing as "safe site"

What a Web Hacker Wants


- You to visit their site because your browser will upload whatever the site tells it to
- How do I do this?
 - Advertise a site that shows something you would want(?) to see
 - E.g., pics of Michael Jackson in the morgue
 - □ Free games

□ Free adult pics

- But basically, I just need you to visit a site where I can place carefully crafted links
 - □ Can you think of such a site?

What a Web Hacker Wants

Let's see: lots of viewers, and user generated content...

Web Security is a Bit Off Topic

- But it should be something of which you are aware. It suffers from mission creep
 - Lots of things are done on the web now, none of which were intended when it was originally designed
 - Banking
 - Controlling appliances/home security/home heating systems
 - □ All sorts of commerce
 - Registering for classes

Web Security is a Bit Off Topic

Some even want us to vote via the Internet

□ This is a very bad idea

Electronic voting systems of any kind, unless they are carefully designed and integrated with mechanisms for a paper audit trail, are in general not a good idea

Check it out: <u>https://www.youtube.com/watch?</u>
<u>v=aZws98jw67g</u>