
INHERITANCE, POLYMORPHISM,
AND INTERFACES

CODE EXAMPLES FROM JAVA: AN INTRODUCTION TO
PROGRAMMING AND PROBLEM SOLVING (6TH EDITION), BY

WALTER SAVITCH

IQS2: Spring 2013

Objectives

¨ Describe polymorphism and inheritance in
general

¨ Define interfaces to specify methods
¨ Describe dynamic binding
¨ Define and use derived classes in Java
¨ Understand how inheritance is used in the
JFrame class

2

Inheritance Basics: Outline

¨ Derived Classes
¨ Overriding Method Definitions
¨ Overriding Versus Overloading
¨ The final Modifier
¨ Private Instance Variables and Private Methods

of a Base Class
¨ UML Inheritance Diagrams

3

Inheritance Basics

¨ Inheritance allows programmer to define a
general class

¨ Later you define a more specific class
¤ Adds new details to general definition

¨ New class inherits all properties of initial,
general class

¨ Example: the Person class

4

5

Derived Classes

¨ An example class hierarchy
6

Derived Classes

¨ Person class used as a base class
¤ Also called superclass

¨ Student is a derived class
¤ Also called subclass
¤ Inherits methods and members from the superclass

7

8

9

10

Don’t Recode What Is Already Coded!

¨ When you implement a subclass, you get:
¤ All of the data members of the base class…

n …though you may not be able to access them the way you’d like.
More on that later.

¤ All of the methods of the base class…
n …with same caveat as above

¨ So don’t add or recode them in the subclass!
¨ BUT, it may be that you don’t like the way some methods

are coded/used in the base class. In that case…

11

Overriding Method Definitions

¨ Note method writeOutput in class Student
¤ Class Person also has method with that name

¨ Method in subclass with same signature
overrides method from base class
¤ When an instance of the Student class calls the
writeOutput() method, the version of the
method that is run is the one shown in the
Student class

¨ Overriding method must return same type of
value

12

Overriding Versus Overloading

¨ Do not confuse overriding with overloading
¤ Overriding takes place in subclass – new method

with same signature
¨ Overloading

¤ New method in same class with different signature
n Example: In String class:

13

The final Modifier

¨ Possible to specify that a method cannot be
overridden in subclass

¨ Add modifier final to the heading
public final void specialMethod()

¨ An entire class may be declared final
¤ Thus cannot be used as a base class to derive any

other class
¨ Included here for completeness: I’ve never

used the final modifier for an entire class.

14

Private Instance Variables, Methods

¨ private instance variable in a base class
¤ Are inherited in subclass (despite what your text

may say), but can’t be directly manipulated by you)
¤ Can only be manipulated by public accessor,

modifier methods
¨ Similarly, private methods in a superclass

cannot be called in your subclass code
¤ Which at times, is not pleasant. But it’s almost

always OK. Why?

15

Protected Instance Variables, Methods

¨ protected instance variables and methods in a
base class
¤ Can be used any way you want in any descendent

class of the base class
¤ Can be used any way you want inside any method

in any class in the same package
n See Appendix 5 in your text

16

Constructors in Derived Classes

¨ A derived class does not inherit constructors
from base class
¤ Constructor in a subclass must invoke constructor

from base class
¨ Use the reserve word super

¤ Must be first action in the constructor

17

The this Method – Again

¨ Also possible to use the this keyword
§ Use to call any constructor in the class

¨ When used in a constructor, this calls constructor in
same class
§ Contrast use of super which invokes constructor of

base class
§ Again, here for completeness

18

Calling an Overridden Method

¨ Reserved word super can also be used to call
method in overridden method

¨ Calls method by same name in base class

19

Programming Example

¨ A derived class of a derived class:
Undergraduate class

¨ Has all public members of both
§ Person
§ Student

¨ This reuses the code in superclasses

20

21

22

Type Compatibility

¨ In the class hierarchy
¤ Each Undergraduate is also a Student
¤ Each Student is also a Person

¨ An object of a derived class can serve as an object of the
base class (that is, used wherever the base class is required)
¤ Ex: as input parameters to methods
¤ Note this is not typecasting

¨ An object of a class can be referenced by a variable of an
ancestor type
¤ So, for example, a Person variable can point to (reference)

an Undergraduate object (but not vice versa)

23

Type Compatibility

¨ Be aware of the "is-a" relationship
¤ An Undergraduate is a Person
¤But a Person is not necessarily an
Undergraduate

¨ Another relationship is the "has-a"
¤ A class can contain (as an instance variable) an

object of another type
¤ If we specify a date of birth variable for Person

– it "has-a" Date object

24

The Class Object

¨ Java has a class that is the ultimate ancestor of
every class
§ The class Object

¨ Thus possible to write a method with parameter of
type Object
§ Actual parameter in the call can be object of any type

¨ Example: method
println(Object theObject)

25

The Class Object

¨ Class Object has some methods that every Java class
inherits

¨ Examples
§ Method equals
§ Method toString

¨ Method toString called when println
(theObject) invoked
§ Best to define your own toString to handle this

26

A Better equals Method

¨ Programmer of a class should override method
equals from Object

¨ View code of a better equals method
public boolean equals
 (Object theObject)

27

28

Polymorphism
¨ Inheritance allows you to define a base class

and derive classes from the base class
¨ Polymorphism allows you to make changes in

the method definition for the derived classes
and have those changes apply to methods
written in the base class

29

Polymorphism
¨ Consider an array of Person
Person[] people = new Person[4];

¨ Since Student and
Undergraduate are types of
Person, we can assign them to
Person variables

people[0] = new Student
("DeBanque, Robin", 8812);

people[1] = new Undergraduate
("Cotty, Manny", 8812, 1);

30

Polymorphism
¨ Given:
Person[] people = new Person[4];
people[0] = new Student("DeBanque, Robin",
8812);

¨ When invoking:
people[0].writeOutput();

¨ Which writeOutput() is invoked, the one defined
for Student or the one defined for Person?

¨ Answer: The one defined for Student

31

An Inheritance as a Type

¨ The method can substitute one object for
another
¤ Called polymorphism

¨ This is made possible by mechanism
¤ Dynamic binding
¤ Also known as late binding

32

Dynamic Binding and Inheritance

¨ When an overridden method invoked
§ Action matches method defined in class used to create

object using new
§ Not determined by type of variable naming the object

¨ Variable of any ancestor class can reference object
of descendant class
§ Object always remembers which method actions to use

for each method name

33

Polymorphism Example

¨ View sample class, listing 8.6
class PolymorphismDemo

¨ Output

34

http://
http://

35

36

An Aside: Types and Security
37

¨ Java is a “strongly typed” language
¤ This means that it is very careful about making sure

appropriate typed objects are passed to methods and
assigned as references

¨ All other factors being equal, strong typing makes a
language much more secure.
¤ Can anyone guess why this is?

¨ But, it turns out that the Java type system can be fooled
via careful (mis)use of the dynamic binding system!

n And if you manage to fool it even once, you have rendered the
type system completely ineffective!

n The method researchers discovered for doing this is considered so
dangerous that it has never been published!

Class Interfaces

¨ Consider a set of behaviors for pets
¤ Be named
¤ Eat
¤ Respond to a command

¨ We could specify method headings for these
behaviors

¨ These method headings can form a class
interface

38

Class Interfaces

¨ Now consider different classes that implement
this interface
¤ They will each have the same behaviors
¤ Nature of the behaviors will be different

¨ Each of the classes implements the behaviors/
methods differently

39

Java Interfaces

¨ A program component that contains headings
for a number of public methods
¤ Will include comments that describe the methods

¨ Interface can also define public named
constants

40

41

Java Interfaces

¨ Interface name begins with uppercase letter
¨ Stored in a file with suffix .java
¨ Interface does not include

¤ Declarations of constructors
¤ Instance variables
¤ Method bodies

42

Implementing an Interface

¨ To implement a method, a class must
§ Include the phrase

 implements Interface_name
§ Define each specified method

43

44

45

An Inheritance as a Type

¨ Possible to write a method that has an
Interface type as a parameter
¤ An interface is a reference type

¨ Program invokes the method, passing it an
object of any class which implements that
interface

46

Example: Genetic Algorithm
47

¨ A Population described by chromosomes
¨ Crossover
¨ Mutation
¨ Survival of the fittest

¤ Fitness function

Flow Diagram of the Genetic
Algorithm Process

Describe
Problem

Generate
Initial
Solutions

Test: is initial
solution good enough?

Stop

Select parents
to reproduce

Apply crossover process
and create a set of offspring

Apply random mutation

Step 1

 Step 2

 Step 3

 Step 4

 Step 5

Yes

No

49

The Comparator Interface
50

¨ Required for use in Java Arrays class
¤ Arrays.sort()

Extending an Interface

¨ Possible to define a new interface which builds
on an existing interface
¤ It is said to extend the existing interface

¨ A class that implements the new interface must
implement all the methods of both interfaces

51

(Another) Case Study

¨ Java has many predefined interfaces
¨ One of them, the Comparable interface, is used to

impose an ordering upon the objects that implement
it

¨ Requires that the method compareTo be written
 public int compareTo(Object other);

52

Sorting an Array of Fruit Objects

¨ Initial (non-working) attempt to sort an array of
Fruit objects

¨ View class definition, listing 8.16
class Fruit

¨ View test class, listing 8.17
class FruitDemo

¨ Result: Exception in thread “main”
¤ Sort tries to invoke compareTo method but it

doesn’t exist

53

http://
http://
http://
http://

Sorting an Array of Fruit Objects

¨ Working attempt to sort an array of Fruit
objects – implement Comparable, write
compareTo method

¨ Following slides show Fruit class
¨ Result: Exception in thread “main”

¤ Sort tries to invoke method but it doesn’t exist

54

compareTo Method

¨ An alternate definition that will sort by length of
the fruit name

59

Abstract Classes

¨ Class ShapeBasics is designed to be a base
class for other classes
¤ Method drawHere will be redefined for each

subclass
¤ It should be declared abstract – a method that has

no body
¨ This makes the class abstract
¨ You cannot create an object of an abstract

class – thus its role as base class

60

Abstract Classes

¨ Not all methods of an abstract class are
abstract methods

¨ Abstract class makes it easier to define a base
class
¤ Specifies the obligation of designer to override the

abstract methods for each subclass

61

Abstract Classes

¨ Cannot have an instance of an abstract class
¤ But OK to have a parameter of that type

62

Dynamic Binding and Inheritance
¨ How does Java know which version of a method is to

be run?
¨ Happens with dynamic or late binding

§ Address of correct code to be executed determined at
run time

63

Graphics Supplement: Outline

¨ The Class JApplet
¨ The Class JFrame
¨ Window Events and Window Listeners
¨ The ActionListener Interface

64

The Class JApplet

¨ Class JApplet is base class for all applets
§ Has methods init and paint

¨ When you extend JApplet you override (redefine)
these methods

¨ Parameter shown
will use your
versions due to
polymorphism

65

The Class JFrame

¨ For GUIs to run as applications (instead of from a
web page)
§ Use class JFrame as the base class

¨ View example program, listing 8.20
class ButtonDemo

¨ Note method setSize
§ Width and height given in number of pixels
§ Sets size of window

66

http://
http://

The Class JFrame

¨ View demo program, listing 8.21
class ShowButtonDemo

Sample
screen
output

67

http://
http://

Window Events and Window Listeners

¨ Close-window button
fires an event
¤ Generates a window event handled by a window

listener
¨ View class for window events,

listing 8.22, class WindowDestroyer
¨ Be careful not to confuse JButtons and the

close-window button

68

http://
http://

The ActionListener Interface

¨ Use of interface ActionListener requires only one
method
 public void actionPerformed
 (ActionEvent e)

¨ Listener that responds to button clicks
§ Must be an action listener
§ Thus must implement ActionListener interface

69

Summary

¨ An interface contains
¤ Headings of public methods
¤ Definitions of named constants
¤ No constructors, no private instance variables

¨ Class which implements an interface must
¤ Define a body for every interface method specified

¨ Interface enables designer to specify methods
for another programmer

70

Summary

¨ Interface is a reference type
¤ Can be used as variable or parameter type

¨ Interface can be extended to create another
interface

¨ Dynamic (late) binding enables objects of
different classes to substitute for one another
¤ Must have identical interfaces
¤ Called polymorphism

71

Summary

¨ Derived class obtained from base class by
adding instance variables and methods
¤ Derived class inherits all public elements of base

class
¨ Constructor of derived class must first call a

constructor of base class
¤ If not explicitly called, Java automatically calls

default constructor

72

Summary

¨ Within constructor
§ this calls constructor of same class

§ super invokes constructor of base class

¨ Method from base class can be overridden
§ Must have same signature

¨ If signature is different, method is overloaded

73

Summary

¨ Overridden method can be called with preface
of super

¨ Private elements of base class cannot be
accessed directly by name in derived class

¨ Object of derived class has type of both base
and derived classes

¨ Legal to assign object of derived class to
variable of any ancestor type

74

Summary

¨ Every class is descendant of class Object
¨ Class derived from JFrame produces applet

like window in application program
¨ Method setSize resizes JFrame window
¨ Class derived from WindowAdapter defined

to be able to respond to closeWindow button

75

