INHERITANCE, POLYMORPHISM,
AND INTERFACES

CODE EXAMPLES FROM JAVA: AN INTRODUCTION TO
PROGRAMMING AND PROBLEM SOLVING (6™ EDITION), BY
WALTER SAVITCH




Objectives

Describe polymorphism and inheritance in
general

Define interfaces to specify methods
Describe dynamic binding
Define and use derived classes in Java

Understand how inheritance is used In the
JEFrame class




Inheritance Basics: Outline

Derived Classes

Overriding Method Definitions
Overriding Versus Overloading
The £inal Modifier

Private Instance Variables and Private Methods
of a Base Class

UML Inheritance Diagrams




Inheritance Basics

Inheritance allows programmer to define a
general class

Later you define a more specific class
Adds new details to general definition

New class inherits all properties of initial,
general class

Example: the Person class




LISTING 8.1 The Class Person

public class Person

{

private String name;

_ public Person()

{
}

public Person(String initialName)

{
}

public void setName(String newName)

{

}
public String getName()

{

}
public void writeOutput()

{
}
public boolean hasSameName(Person otherPerson)

{
}

name = "No name yet";

name = initialName;

name = newName;

return name;

System.out.printin("Name: " + name);

return this.name.equalsIgnoreCase(otherPerson.name);




Derived Classes

= An example class hierarchy

/\

Student Employee

NN

Undergraduate Graduate

Masters Doctoral Nondegree




Derived Classes

Person class used as a base class
Also called superclass

Student IS a derived class

Also called subclass
Inherits methods and members from the superclass




LISTING 8.2 A Derived Class (part I of 2)

public class Student extends Person
{
private int studentNumber;
public Student()
{
super();
studentNumber = 0;//Indicating no number yet
}
public Student(String initialName, int initialStudentNumber)
{
super(initialName);
studentNumber = initialNumber;
}

public void reset(String newName, int newStudentNumber)

{

setName (newName) ;
studentNumber = newStudentNumber;

}
public int getStudentNumber()

{

}
public void setStudentNumber(int newStudentNumber)

{

}
public void writeOutput()

{

return studentNumber;

studentNumber = newStudentNumber;

System.out.printIn("Name: + getName());
System.out.printin("Student Number: " + studentNumber);




public boolean equals(Student otherStudent)
{

return this.hasSameName (otherStudent) &&
(this.studentNumber == otherStudent.studentNumber);




LISTING 8.2 A Demonstration of Inheritance
Using Student

public class InheritanceDemo

{
public static void main(String[] args)
{
Student s = new Student();
— setName /s Inherited from

s.setName("Warren Peace") the class Person.

s.setStudentNumber(1234);
s.writeOQutput();

Screen Output

Name: Warren Peace
Student Number: 1234




Don’t Recode What Is Already Coded!

When you implement a subclass, you get:

All of the data members of the base class...

...though you may not be able to access them the way you'd like.
More on that later.

All of the methods of the base class...
...with same caveat as above

So don’t add or recode them in the subclass!

BUT, it may be that you don’t like the way some methods
are coded /used in the base class. In that case...




Overriding Method Definitions

Note method writeOutput in class Student
Class Person also has method with that name

Method in subclass with same signature
overrides method from base class
When an instance of the Student class calls the
writeOutput () method, the version of the

method that is run is the one shown In the
Student class

Overriding method must return same type of
value




Overriding Versus Overloading

Do not confuse overriding with overloading

Overriding takes place in subclass — new method
with same signature

Overloading

New method in same class with different signature
Example: In String class:

int

indexOf(String str)

Returns the index within this string of the first occurrence of the specified substring.

int

indexOf(String str, int fromIndex)

Returns the index within this string of the first occurrence of the specified substring, starting at the specified index.




The £inal Modifier

Possible to specify that a method cannot be
overridden in subclass

Add modifier final to the heading
public final void specialMethod()

An entire class may be declared £inal

Thus cannot be used as a base class to derive any
other class

Included here for completeness: I've never
used the £inal modifier for an entire class.




Private Instance Variables, Methods

private instance variable in a base class

Are inherited in subclass (despite what your text
may say), but can’t be directly manipulated by you)

Can only be manipulated by public accessor,
modifier methods
Similarly, private methods in a superclass
cannot be called in your subclass code

Which at times, is not pleasant. But it's almost
always OK. Why?




Protected Instance Variables, Methods

protected instance variables and methods in a
base class

Can be used any way you want in any descendent
class of the base class

Can be used any way you want inside any method
In any class in the same package

See Appendix 5 in your text




Constructors in Derived Classes

A derived class does not inherit constructors
from base class

Constructor in a subclass must invoke constructor
from base class

Use the reserve word super

public Student(String initialName, 1int initialStudentNumber)

{

rCinitialName)r
(:::g???entNumber = initiaJlStudentNumber;
}

Must be first action in the constructor




The this Method — Again

Also possible to use the this keyword

Use to call any constructor in the class

public Person()

{

}
When used in a construcror, this calls constructor in

same class

this("No name yet");

Contrast use of SUpPEX which invokes constructor of
base class

Again, here for completeness




Calling an Overridden Method

Reserved word super can also be used to call
method in overridden method

public void writeOQutput()

super.writeOQutput(); //PDisplay the name
i “Student Number: " + studentNumber);

}

Calls method by same name in base class




Programming Example

A derived class of a derived class:
Undergraduate class

Has all public members of both
Person

Student

This reuses the code in superclasses




LISTING 8.4 A Derived Class of a Derived Class

public class Undergradute extends Student

{

private int level; //1 for freshman, 2 for sophomore
//3 for junior, or 4 for senior.
public Undergraduate()
{
super();
Tevel = 1

}

public Undergraduate(String initialName,
int initialStudentNumber, int initialLevel)

{

super(initialName, initialStudentNumber);
setLevel(initialLevel); //checks 1 <= initiallLevel <= 4
}
public void reset(String newName, int newStudentNumber,
int newlLevel)
{
reset(newName, newStudentNumber); //Student's reset
setLevel (newLevel); //Checks 1 <= newlLevel <= 4




public int getLevel(Q)
{

}

public void setLevel(int newlLevel)

{

return level;

1t ((1 <= newLevel) && (newLevel <= 4))
Tevel = newlLevel;
else
{
System.out.printin("ITlegal Tevel!");
System.exit(0);
}
}
public void writeOutput()

{

super.writeOutput();
System.out.println("StudentLevel:

+ level);

}

public boolean equals(Undergraduate otherUndergraduate)

{
return equals(Student)otherUndergraduate) &&

(this.level == otherUndergraduate.level);




Type Compatibility

In the class hierarchy
Each Undergraduate is also a Student

Each Student is also a Person

An object of a derived class can serve as an object of the
base class (that is, used wherever the base class is required)
Ex: as input parameters to methods
Note this is not typecasting
An object of a class can be referenced by a variable of an
ancestor type
So, for example, a P@xrson variable can point to (reference)
an Undergraduate object (but not vice versa)




Type Compatibility

Be aware of the "is-a" relationship
An Undergraduate js a Person

Buta Person is not necessarily an
Undergraduate

Another relationship is the "has-a"

A class can contain (as an instance variable) an
object of another type

If we specify a date of birth variable for Person
— it "has-a" Date object




The Class Object

Java has a class that is the ultimate ancestor of
every class
The class Object

Thus possible to write a method with parameter of
type Object

Actual parameter in the call can be object of any type

Example: method
println (Object theObject)




The Class Object

Class Object has some methods that every Java class
inherits

Examples
Method equals

Method toString

Method toString called when println
(theObject) invoked

Best to define your own toString to handle this




A Better equals Method

Programmer of a class should override method
equals from Object

View code of a better equals method

public boolean equals
(Object theObject)




LISTING 8.5 A Better equals Method for the Class Student

public boolean equals(Object otherObject)
{
boolean isEqual = false;
it ((otherObject != null) &&
(otherObject instanceof Student))
{
Student otherStudent = (Student)otherObject;
isEqual = this.sameName(otherStudent) &&
(this.studentNumber ==
otherStudent.studentNumber);
}

return isEqual;




Polymorphism

Inheritance allows you to define a base class
and derive classes from the base class

Polymorphism allows you to make changes in
the method definition for the derived classes

and have those changes apply to methods
written in the base class




Polymorphism

1 Consider an array of Person

Person[] people = new Person[4];

© Since Student and
Undergraduate are types of

Person, we can assign them to
Person variables

people[0] = new Student
("DeBanque, Robin", 8812);

people[l] = new Undergraduate
("Cotty, Manny", 8812, 1);

Person

name: String

setName(String newName): void

getName( ): String

writeOQutput( ): void

hasSameName (Person otherPerson)): boolean

|

Student

studentNumber: int

reset(String newName,int newStudentNumber): void
getStudentNumber( ): int

setStudentNumber(int newStudentNumber): void
writeOQutput( ): void

equals(Student otherStudent): boolean

|

Undergraduate

level: int

+

+
+
+
+

reset(String newName, int newStudentNumber,
int newlevel): void
getLevel( ): int
setlevel(int newlLevel): void
writeQutput( ): void
equals(Undergraduate otherUndergraduate): boolean




Polymorphism

o Given:
Person|[] people = new Person[4];

people[0] = new Student ("DeBanque, Robin",
8812) ;

"7 When invoking:

people[0] .writeOutput() ;

" Which writeOutput () is invoked, the one defined
for student or the one defined for Person?

1 Answer: The one defined for Student




An Inheritance as a Type

The method can substitute one object for
another

Called polymorphism

This is made possible by mechanism
Dynamic binding
Also known as late binding




Dynamic Binding and Inheritance

When an overridden method invoked

Action matches method defined in class used to create

object using New

Not determined by type of variable naming the object
Variable of any ancestor class can reference object
of descendant class

Obiject always remembers which method actions to use
for each method name




Polymorphism Example

2 View

, listing 8.6

class PolymorphismDemo

= Output

Name: Cotty, Manny
Student Number: 4910
Student Level: 1

Name: Kick, Anita
Student Number: 9931
Student Level: 2

Name: DeBanque, Robin
Student Number: 8812

Name: Bugg, June
Student Number: 9901
Student Level: 4



http://
http://

LISTING 8.6 A Demo of Polymorphism (part 1 of 2)

public class PolymorphismDemo

{

public static void main(String[] args)

{
Person[] people = new Person[4];
people[0] = new Undergraduate("Cotty, Manny", 4910, 1);
people[1] = new Undergraduate("Kick, Anita", 9931, 2);
people[2] = new Student("DeBanque, Robin", 8812);
people[3] new Undergraduate("Bugg, June", 9901, 4);

for (Person p : people)
{ Even thoughp Is of typePerson, the

p.writeOutput(); <« — WriteOutput method assoclated

System.out.println(); withUndergraduate orStudent /s
Invoked depending upon which class was
usedto createthe object.

Screen Output

Name: Cotty, Manny
Student Number: 4910
Student Level: 1

Name: Kick, Anita
Student Number: 9931
Student Level: 2




LISTING 8.6 A Demo of Polymorphism (part 2 of 2)

Name: DeBanque, Robin
Student Number: 8812

Name: Bugg, June
Student Number: 9901
Student Level: 4




An Aside: Types and Security

Java is a “strongly typed” language
This means that it is very careful about making sure

appropriate typed objects are passed to methods and
assigned as references

All other factors being equal, strong typing makes a
language much more secure.

Can anyone guess why this is¢

But, it turns out that the Java type system can be fooled
via careful (mis)use of the dynamic binding system!

And if you manage to fool it even once, you have rendered the
type system completely ineffective!

The method researchers discovered for doing this is considered so
dangerous that it has never been published!




Class Interfaces

Consider a set of behaviors for pets
Be named
Eat

Respond to a command

We could specify method headings for these
behaviors

These method headings can form a class
interface




Class Interfaces

Now consider different classes that implement
this interface

They will each have the same behaviors
Nature of the behaviors will be different

Each of the classes implements the behaviors/
methods differently




Java Interfaces

A program component that contains headings
for a number of public methods

Will include comments that describe the methods

Interface can also define public named
constants




LISTING 8.7 A Java Interface
/**

An interface for methods that return
the perimeter and area of an object.
*/

public interface Measurable

{

/** Returns the perimeter. */
public double getPerimeter();
/** Returns the area. */ Do not forget the semicolons at
public double getArea(); the end of the method headings.




Java Interfaces

Interface name begins with uppercase letter
Stored in a file with suffix . java
Interface does not include

Declarations of constructors

Instance variables
Method bodies




Implementing an Interface

To implement a method, a class must

Include the phrase
implements Interface name

Define each specified method




LISTING 8.8 An Implementation of the Interface Measurable

/**

A class of rectangles.

*/

public class Rectangle implements Measurable

{
private double myWidth;

private double myHeight;

public Rectangle(double width, double height)

{
myWidth = width;
myHeight = height;

}

public double getPerimeter()

{
}
public double getArea()
{

}

return 2 * (myWidth + myHeight);

return myWidth * myHeight;




LISTING 8.9 Another Implementation of the Interface
Measurable

/**

A class of circles.

*/

public class Circle implements Measurable

{

private double myRadius;
public Circle(double radius)

{

}
public double getPerimeter()

{

myRadius = radius;

return 2 * Math.PI * myRadius;

}
. . This method Is not declared
public double getCircumference() in the Interface.

{

return getPerimeter(); -
} T~ Calls another method Instead
public double getArea() ~ ofrepeating Ite body

{

return Math.PI * myRadius * myRadius;

}




An Inheritance as a Type

Possible to write a method that has an
Interface type as a parameter

An interface is a reference type
Program invokes the method, passing it an

object of any class which implements that
iInterface




Example: Genetic Algorithm

A Population described by chromosomes
Crossover
Mutation

Survival of the fittest

Fithess function




Flow Diagram of the Genetic
Algorithm Process

Describe
Problem

Generate
Initial
Solutions

Test: is initial
solution good enough?

No

Select parents
to reproduce

Apply crossover process
and create a set of offspring

Apply random mutation




49

(b)

Figure 2. Photographs of prototype evolved antennas: (a) the best evolved antenna for the initial gain pattern
requirement, ST5-3-10; (b) the best evolved antenna for the revised specifications, ST5-33-142-7.




The Comparator Interface

Required for use in Java Arrays class
Arrays.sort()




Extending an Interface

Possible to define a new interface which builds
on an existing interface

It is said to extend the existing interface

A class that implements the new interface must
implement all the methods of both interfaces




(Another) Case Study

Java has many predefined interfaces

One of them, the Comparable interface, is used to

impose an ordering upon the objects that implement
it

Requires that the method compareTo be written

public int compareTo (Object other);




Sorting an Array of Fruit Objects

Initial (non-working) attempt to sort an array of
Fruit objects

View , listing 8.16
class Fruit
View , listing 8.17

class FruitDemo

Result: Exception in thread "main”

Sort tries to invoke compareTo method but it
doesn’t exist



http://
http://
http://
http://

Sorting an Array of Fruit Objects

Working attempt to sort an array of Fruit
objects — implement Comparable, write
compareTo method

Following slides show Fruit class

Result: Exception in thread “main”
Sort tries to invoke method but it doesn’t exist




LISTING 8.16 First Attempt to Define a Fruit Class

public class Fruit

{

private String fruitName;
public Fruit(Q

{ fruitName = "";

éub11c Fruit(String name)

{ fruitName = name;

;ub1ic void setName(String name)
{ fruitName = name;

éub11c String getName()

' return fruitName;

}




LISTING 8.17 Program to Sort an Array of Fruit Objects

import java.util.Arrays;
public class FruitDemo
{
public static void main(String[] args)
{
Fruit[] fruits = new Fruit[4];
fruits[0] = new Fruit("Orange");
fruits[1l] = new Fruit("Apple");
fruits[2] = new Fruit("Kiwi");
fruits[3] = new Fruit("Durian");
Arrays.sort(fruits);
// Output the sorted array of fruits
for (Fruit f : fruits)

{
}

System.out.printin(f.getName());




LISTING 8.18 A Fruit Class implementing Comparable
(part 1 of 2)

public class Fruit implements Comparable

{

private String fruitName;
public Fruit(Q

{
fruitName = "";
}
public Fruit(String name)
{

fruitName = name;

}




public void setName(String name)

{ fruitName = name;

gub1ic String getName()

{ return fruitName;

;ub1ic int compareTo(Object o)
{

if ((o !'= null) &&
(o instanceof Fruit))

{
Fruit otherFruit = (Fruit) o;

return (fruitName.compareTo(otherFruit.fruitName));

}
return -1; // Default if other object is not a Fruit




compareTo Method

An alternate definition that will sort by length of
the fruit name

public int compareTo(Object o)

{
if ((o !'= null) &&
(o instanceof Fruit))

{
Fruit otherFruit = (Fruit) o;
if (fruitName.length() >
otherFruit.fruitName.length())
return 1;
else if (fruitName.length() <
otherFruit.fruitName.length())
return -1;
else
return 0;
}

return -1; // Default if other object is not a Fruit




Abstract Classes

Class ShapeBasics is designed to be a base
class for other classes

Method drawHere will be redefined for each
subclass

It should be declared abstract — a method that has
no body

This makes the class abstract

You cannot create an object of an abstract
class — thus its role as base class




Abstract Classes

Not all methods of an abstract class are
abstract methods

Abstract class makes it easier to define a base
class

Specifies the obligation of designer to override the
abstract methods for each subclass




Abstract Classes

Cannot have an instance of an abstract class
But OK to have a parameter of that type




Dynamic Binding and Inheritance

How does Java know which version of a method is to
be run¢
Happens with dynamic or late binding

Address of correct code to be executed determined at
run time




Graphics Supplement: Outline

The Class JApplet

The Class JEFrame
Window Events and Window Listeners
The ActionListener Interface




The Class JApplet

Class JApplet is base class for all applets
Has methods 1nit and paint

When you extend JApplet you override (redefine)
these methods

Parameter shown
will use your
versions due to o
. public void showApplet(JApplet anApplet)
polymorphism " anApplet. initO:

anApplet.paint();
}




The Class JFrame

For GUIs to run as applications (instead of from a
web page)
Use class JErame as the base class
View , listing 8.20
class ButtonDemo
Note method setSize

Width and height given in number of pixels
Sets size of window



http://
http://

The Class JFrame

View , listing 8.21
class ShowButtonDemo

Sample
screen
output



http://
http://

Window Events and Window Listeners

Close-window button

fires an event | \
Generates a window event handled by a window
listener

View for window events,
listing 8.22, class WindowDestroyer

Be careful not to confuse JButtons and the
close-window button



http://
http://

The ActionlListener Interface

Use of interface ActionlListener requires only one
method
public void actionPerformed

(ActionEvent e)

Listener that responds to button clicks
Must be an action listener
Thus must implement ActionListener interface




Summary

An interface contains
Headings of public methods
Definitions of named constants
No constructors, no private instance variables

Class which implements an interface must
Define a body for every interface method specified

Interface enables designer to specify methods
for another programmer




Summary

Interface is a reference type
Can be used as variable or parameter type

Interface can be extended to create another
Interface

Dynamic (late) binding enables objects of
different classes to substitute for one another
Must have identical interfaces

Called polymorphism




Summary

Derived class obtained from base class by
adding instance variables and methods

Derived class inherits all public elements of base
class
Constructor of derived class must first call a
constructor of base class

If not explicitly called, Java automatically calls
default constructor




Summary

Within constructor

this calls constructor of same class
Super invokes constructor of base class

Method from base class can be overridden

Must have same signature

If signature is different, method is overloaded




Summary

Overridden method can be called with preface
of super

Private elements of base class cannot be
accessed directly by name in derived class

Obiject of derived class has type of both base
and derived classes

Legal to assign object of derived class to
variable of any ancestor type




Summary

Every class is descendant of class Object
Class derived from JFrame produces applet
like window in application program

Method setSize resizes JFrame window

Class derived from WwindowAdapter defined
to be able to respond to closeWindow button




