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Background: In histological preparations containing de-
bris and synthetic materials, it is difficult to automate cell
counting using standard image analysis tools, i.e., systems
that rely on boundary contours, histogram thresholding,
etc. In an attempt to mimic manual cell recognition, an
automated cell counter was constructed using a combina-
tion of artificial intelligence and standard image analysis
methods.
Methods: Artificial neural network (ANN) methods were
applied on digitized microscopy fields without pre-ANN
feature extraction. A three-layer feed-forward network
with extensive weight sharing in the first hidden layer was
employed and trained on 1,830 examples using the error
back-propagation algorithm on a Power Macintosh 7300/
180 desktop computer. The optimal number of hidden
neurons was determined and the trained system was
validated by comparison with blinded human counts.

System performance at 50x and 100x magnification was
evaluated.
Results: The correlation index at 100x magnification
neared person-to-person variability, while 50x magnifica-
tion was not useful. The system was approximately six
times faster than an experienced human.
Conclusions: ANN-based automated cell counting in
noisy histological preparations is feasible. Consistent histol-
ogy and computer power are crucial for system perfor-
mance. The system provides several benefits, such as speed of
analysis and consistency, and frees up personnel for other
tasks. Cytometry 36:18–26, 1999. r 1999 Wiley-Liss, Inc.
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Cell counting is often a tedious task, for which error-
prone and impatient humans are not particularly well
suited. It is sometimes possible to automate this process
using traditional ‘‘off-the-shelf’’ image analysis tools (sys-
tems that rely on textures, boundary contours, histogram
thresholding, gray-scale intensity peak search, etc.). How-
ever, for our purposes, we found it did not work well. Our
aim was to automate cell counting in encapsulated devices
that are used for central nervous system drug delivery
(1–3). Problems arose due to the variable physiognomy of
cells, background noise in the form of cellular and bioma-
terial debris, histological variations, and the presence of
other cell types. Manual cell counting was, therefore,
needed but was time-consuming and often gave inconsis-
tent results—cell numbers varied between times of obser-
vations and between observers. In order to automate the
process, some of the intelligence of the human being
should ideally be combined with the consistency and
speed of the computer. This may be accomplished with
artificial neural networks (ANN) that can mimic human
expertise through learning by example.

An ANN is a parallel, computer-based data processing
system inspired by the brain, and consists of simple

artificial neurons. These can be organized in a sequence of
layers without any recurrent connections in a structure
called a feed-forward ANN. This type of ANN is suitable for
classification tasks and was used in this study. The neural
interconnections are represented by synaptic weights.
The data is fed to the input layer by weighted summation
and is transferred to the succeeding layer through a
limiting activation function. The process is repeated for
the subsequent layers, eventually producing an output
answer. The result of a neuron in the output layer can be
chosen to signify the class to which the input data belongs
and the ANN can learn to provide a desired output for a
given input sample. The training of an ANN involves
gradually adjusting the synaptic weights according to a
back-propagated output error for each sample, until the
desired responses are on average obtained on the entire
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set of samples. When applied, the ANN uses the input-
output mapping learned from the set of training samples to
generalize to data not ‘‘seen’’ before. The capacity for
generalization predominantely depends on network struc-
ture (4–7).

In this study, we have constructed an ANN automated
cell counting system based on a modified NIH Image
software running on a Power Macintosh desktop com-
puter. The system is inexpensive, fast, and reasonably easy
to use, but requires some basic knowledge about Pascal
programming and ANNs. The ANN functions as an intelli-
gent filter that is used to scan regions of interest in the
input image to produce an output image in which debris
and other objects classified as ‘‘non-cells’’ have been
rejected. The output image is then processed using stan-
dard image analysis tools available in NIH Image and an
object count for the image is thus obtained. The optimal
number of hidden neurons of the ANN was evaluated. The
system was validated by comparison with blinded human
counts, and the performance of the ANN was estimated.

MATERIALS AND METHODS
Histology Preparation, System Setup,

and Image Acquisition

Cells were encapsulated in a semipermeable and immu-
noprotective polymer for the purpose of central nervous
system drug delivery (1–3). Encapsulated devices, measur-
ing 5 mm in length and 1 mm in diameter, were retrieved
from animals (sheep) and in vitro cohorts. Devices were
submitted to histology, fixed with 4% paraformaldehyde
(Fisher Scientific, catalog no. T353, Pittsburgh, PA), and
embedded in glycomethacrylate (GMA, Historesin embed-
ding kit, catalog no. 702218500, Leica, Deerfield, IL), or in
paraffin. GMA-embedded devices were sectioned at 4 µm
on a Jung supercut 2065 microtome, and paraffin blocks
were sectioned at 5 µm on a Reichert-Jung 2030 micro-
tome. Sections were stained with Hematoxylin (Gill’s
formula, catalog no. CS 402-ID, Fisher Scientific) and Eosin
(Eosin Y, catalog no. 17269, Polysciences, Warrington,
PA). Slides were then dehydrated and coverslipped using
mounting medium (Micromount, catalog no. EM-400,
Surgipath, Grayslake, IL).

Microscopy fields were digitized at 50x or 100x magnifi-
cation (20x or 40x objective, 2.5x video magnification)
using an Olympus IMT-2 inverted microscope (Olympus
America, Inc., Melville, NY) and a Power Macintosh
7300/180 (Apple Computer, Inc., Cupertino, CA) equipped
with the Scion LG-3 frame grabber (Scion Corporation,
Frederick, MD). A microscopy stage motor controller,
H128AV3 (Prior Scientific, Inc., Rockland, MA), was also
included in the system. The H128AV3 controller could
move the stage of the microscope in three dimensions,
was equipped with an autofocus function, and could be
controlled by the computer through an RS232 serial
interface.

Sample images used for training of the ANN were
manually selected from the digitized microscopy fields and
a text file containing the desired outputs was created (see
Fig.1A; Fig.2 illustrates a few typical training examples).

To this end, a macro was written for the public domain
NIH Image program (v. 1.61, developed at the US National
Institutes of Health and available on the Internet at
http://rsb.info.nih.gov/nih-image/). Only those samples
with cells centered in the image were manually tagged
with the desired output ‘‘cell-positive.’’ Positive and nega-
tive samples were denoted 10.9 and -0.9, respectively,
because the desired response must be in the output range
of the activation function tanh(x) (see section below). The
sample sets, consisting of 1,830 images for both magnifica-
tions, were compiled into single binary files using a short
Pascal program to speed up the subsequent training
procedure (Fig. 1B).

Artificial Neural Network Structure

The network structure was designed to obtain maximal
flexibility by allowing the size of the network to be
adjusted by changing only a couple of parameters. Three
layers were used: two hidden layers, and one output layer
(Fig. 3). Furthermore, some a priori knowledge about the
samples in the training set was taken into consideration
when choosing the structure. The quadrants of the input
shared the same weights, and therefore the quadrants
were rotated and mirrored so that a cell centered in the
input image would give rise to similar input in each
quadrant (illustrated by the arcs in Fig. 3). The dimension-
ality of the input window (the ‘‘retina’’) could also be
adjusted. Typically, two sizes were employed: 48 by 48
pixels at 100x magnification, and 24 by 24 pixels at 50x
magnification; the size of the retina was adjusted accord-
ing to the size of a cell at these magnifications. The
hyperbolical tangent function, tanh(x), was used as the
activation function throughout the net. All neurons had a
bias weight (negative threshold or ‘‘u’’) in addition to the
inputs illustrated in Figure 3; without bias weights some
representations cannot be established (4, 10, 11).

ANN Training

The ANN software consisted of two programs written in
Pascal. One was a stand-alone, text-based ANN training
program (Fig. 1C) and the other was an ANN-based cell
counting system built on the NIH Image software (Fig.
1D). All Pascal code was written and compiled using the
Metrowerks CodeWarrior Pro1 Integrated Development
Environment (Metrowerks Corporation, Austin, TX).
Hence, the parallel ANN was simulated on a serial com-
puter.

The ANN training program (Fig. 1C) contained routines
to handle training data, to train the ANN, to store the
weights, and to analyze the network performance on the
test set (see end of section). The training was initiated by
setting the weights to small, normally-distributed, random
values with zero mean. The sample set was divided into a
training and a test set, the latter of which was used to test
the generalization properties of the ANN. The samples
were rescaled without normalization so that the pixel
intensities fit on the interval [-1,1] because the input data
points should not be too close to the flat regions of the
tanh(x) function. A sample was automatically picked at
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random from the training set and was mirrored, flipped
upside-down and/or rotated 90° randomly to provide
some rotational invariance and also to generate more
samples from the available training set. The weights were
adjusted using the error back-propagation algorithm and
shared weights were updated as described for recurrent
nets by Rumelhart et al. (5). This meant that the changes
calculated for each ‘‘weight position’’ were summed up
and used to change the common, shared weight. At least
200,000 iterations were run per training session, which
took 1 to 2 h on the Power Macintosh 7300/180, depend-
ing on the network structure. This number of iterations
was more than sufficient to reach the error minimum for
the test set (see end of section). The learning rate
parameter was typically initially set to 0.01, but was
adjusted periodically so that the learning rate was de-
creased if the error diminished and vice versa, so-called
adaptive learning rate (4, 7). No moment term was used,
but batch-learning was used in some cases. The percent-
age of incorrect classifications and the error variance with
respect to the desired output was calculated both for the
training and test sets at fixed intervals (typically every 800
iteration) and the weights were stored at the same time.
The errors vs. the iteration number were subsequently
plotted and analyzed. The weights stored at the error
minimum for the test set were selected as the optimal

weights, since these give the best generalization proper-
ties (4, 7, 11). It was verified that the size of the training set
was large enough by examining the generalization proper-
ties as the number of samples of the training set was
varied. Furthermore, due to the stochastic nature of the
learning algorithm and to avoid the ANN getting trapped in
a local error minimum (e.g., 4), every training session was
repeated five times and the best weights of the five
sessions were used.

Estimating the Optimal Number of Hidden Neurons

The optimal number of neurons in the two hidden layers
was estimated as previously described (6). This was
performed by changing the number of hidden neurons in
the first layer between 2 and 14 and in the second layer
between 1 and 8, and evaluating the generalization proper-
ties of the ANN on the test set (described above). The
procedure was repeated five times for each number of
hidden neurons.

Cell Counting Using the Trained ANN

The modified NIH Image software included a small
number of added macro instructions, based on the User-
Code call. For example, the actual ANN analysis code was
contained in such a macro instruction. The input image of
the ANN was analyzed—‘‘scanned’’—with the retina of

FIG. 1. A schematic illustration of different programs used to select samples and to train, test, validate, and apply the system, as described in Materials and
Methods. The data flow is illustrated at the right in the figure. A: Sample images were simultaneously user-selected from digitized microscopy fields and
manually tagged using an NIH Image macro. B: The image samples were compiled into a single binary file using a simple Pascal program to speed up the
learning procedure. C: The ANN was trained in a stand-alone Pascal program using the samples and the desired outputs generated in A and B. The ANN was
subsequently tested for its generalization properties. When necessary, the network stucture and parameters such as the learning rate were adjusted at this
point, and the step was repeated. D: The optimal weights and the network structure obtained in the previous step were validated using independent
microscopy fields. A macro routine running under the modified NIH Image was employed at this step. The software was modified by the addition of
ANN-specific UserCode macro instructions (see Materials and Methods). At this point, the system was ready to use for automated cell counting.
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the ANN. The feed-forward calculations were performed
at each position and an output answer was generated. To
speed up the processing, only positions with pixel intensi-
ties above a user-defined value were analyzed. The output,
ranging from -1 to 11, was rescaled on the interval [0,255]
to generate a pixel at the corresponding pixel coordinates
in the 8-bit output image. The resulting image was then
analyzed with the built-in functions of NIH Image. The
output image was converted to a binary image by threshold-
ing at the gray-scale value 128, which corresponded to
zero output of the ANN. Connected objects in the binary
image were separated using the ultimate eroded points
algorithm or watershed segmentation (12, 13). Using the
particle analysis function of the NIH Image software, the
number of cells, as well as their coordinates, could be
ascertained. Usually, a lower object area threshold of not
more than 5 pixels was employed to eliminate noise in the
image caused by spurious positives.

An NIH Image macro program was written that included
the above-mentioned user-defined macro instructions along
with code to communicate with the H128AV3 controller
(Fig. 1D). This system can automatically digitize micros-
copy fields, analyze them using the ANN, label the counted
cells in the digitized images with crosses, store the labeled

images for the ensuing human inspection, and create a text
file with the cell numbers obtained for each digitized field.

Validation Studies

Microscopy fields of undamaged sections (i.e., contain-
ing no folds or large artifactual stains) were digitized. The
fields were of devices containing the same type of cells and
the same type of embedding (paraffin or GMA) as used
when training the ANN. The fields were taken from
independent sections, i.e., from sections not used for
training. Counts were performed both manually and auto-
matically on 20 fields. The manual counting was blinded
and performed twice, to account for any bias and to obtain
an estimate of person-to-person variability. Validation was
performed at both 50x and at 100x magnification.

RESULTS
ANN Generalization

Figure 4 illustrates the generalization properties of the
ANN for different numbers of neurons in the first layer
when trained on 48-by-48-pixel images obtained at 100x
magnification, while keeping the size of the second hidden

FIG. 2. A few typical examples are illustrated. These are sized 64 by 64 pixels, 8 bits, have 256 gray-scale intensities, and were obtained at a total
magnification of 1003 (see Materials and Methods). A–D contain centered cells and were manually tagged ‘‘cell-positive.’’ This means that the
corresponding desired output is 10.9. E–H do not contain centered cells. Image E is blank, F contains debris, G shows a cell that is not centered, and in
image H, the center of the image is located in between the two cells. They are ‘‘cell-negative’’ and were manually tagged 20.9. The actual image samples
used for training were usually smaller than 64 by 64 pixels: typically 48 by 48 pixels at 100 times magnification and 24 by 24 pixels at 50 times magnification.
These pixel areas corresponded to the size of the cells at the two magnifications. Bar 5 approximately 6 µm and was not present during the ANN training.
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layer constant at four neurons. The error variance (the
variance of the difference between the actual output and
the desired output for the samples in the test set) is plotted
vs. the number of neurons. Both the average of five runs
and the smallest value of the five runs are graphed. The
generalization improved as the number of hidden neurons
was increased, but leveled out at around the value of 32
hidden neurons. Therefore, for the first hidden layer, a
pick of 32 neurons gave optimal ANN generalization
properties. Training became prohibitively slow after 64
hidden neurons and further examination of the generaliza-
tion properties beyond this number of hidden neurons
was not performed. For the second hidden layer, the
generalization properties were optimal when 4 neurons
were used (not shown).

Similar results were obtained when training the ANN on
24-by-24-pixel images. A choice of 28 and 5 neurons in the
first and the second hidden layers was optimal (data not
shown).

Microscopy Field Analysis

The trained ANN is applied on a digitized microscopy
field to generate an ‘‘intelligently filtered,’’ gray-scale
output image, as described in Materials and Methods. A
typical digitized field is found in Figure 5A. The results of
ANN filtering are shown in Figure 5B. This image is
converted to a binary image through thresholding, which
is segmented using the watershed algorithm of NIH Image
(not shown). The separated objects are counted using the
built-in particle analysis function of NIH Image and their

FIG. 3. ANN structure for a 24-by-24-pixel input image (the ‘‘retina’’), with 28 neurons in the first and 5 neurons in the second hidden layer. For the sake of
clarity, only a few connections are shown. The weighted connection from neuron (or input) i to neuron j is denoted wji. Labels q1 to q4 denote the
quadrants of the input image, which are reoriented so that the input view is as similar as possible. Due to the weight sharing, the reorientation enables the
ANN to learn a representation easier. The reorientation is illustrated by the arcs, which depict an idealized cell centered in the original input image. A
quadrant is fed to seven neurons in the first hidden layer, H1. Weights w1i to w71 are used for neurons 1 through 7, where i goes from 1 to 144, (There are 12
by 12 pixels in a quadrant). This is repeated for the three remaining quadrants using the same weights (weight sharing), thus producing outputs for neurons
8 through 14, 15 through 21, and 22 through 28. The five neurons in the second hidden layer (H2) take the output from all neurons in layer one (H1) as input.
For example, neuron 29 receives data from neurons 1 through 28 weighted by w(29)i; i 5 1 . . . 28. The two output neurons (Output) are fed from the five
neurons in the second layer (H2). One output per class is needed (9), hence the two output neurons. These correspond to the ‘‘cell’’ and ‘‘non-cell’’ classes.
Only one output neuron is used during image analysis. All neurons throughout the network have a bias weight in addition to the ilustrated inputs.
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coordinates are stored. Figure 5C illustrates a superposi-
tion of the counts obtained manually (filled circles, by
B.R.F.) and using the ANN (crosses). Forty-eight cells were
counted manually, while 49 cells were found by the
computer. Even when optimizing, direct application of the
built-in image analysis methods of NIH Image on the image
in Figure 5A gave more than 100 objects (data not shown).
Note that even though the numbers of cells counted
manually and automatically were very close, the same cells
were not always counted (Fig. 5C).

Validation Studies

To substantiate the ANN counts, these were compared
to manual counts by two people. Figure 6 illustrates the
results of the validation studies. The blinded counts of
P.J.S. and of B.R.F. are plotted vs. the counts of the ANN in
20 digitized microscopy fields. P.J.S. trained the ANN and
B.R.F. has expertise in histology, which makes both
comparisons important. The correlation indices, the slopes
and the intercepts from the validation studies are com-
piled in Table 1.

Time Budget

Depending on the size of the ANN and on the amount of
information in the image, the analysis of one digitized
microscopy field (640 by 480 pixels, 8 bits, 48-by-48-pixel
retina) takes between 10 and 40 s on the Power Macintosh
7300/180; 25 s on average is needed for the complete
analysis of one digitized field. The ANN with a 24-by-24-
pixel retina was faster, requiring approximately a quarter
of the multiplications of its larger counterpart and hence a

quarter of the processing time. (Note that the area covered
at the lower magnification is four times as big as well,
making the difference in actual performance 16 times in
total.) The manual counting of all the cells in an image
takes approximately 3 min, depending on the magnifica-
tion and on the number of cells present.

DISCUSSION
NIH Image has been used for cell counting before but, to

the authors’ knowledge, only in a semi-automated fashion
(14–16). With the noisy histological data that the authors
are working on, it seems likely that completely automated,
practicable cell counting will not be achieved using
traditional image analysis software such as NIH Image. A
particular cell type may assume different appearances
depending on the growth conditions, variability of the
staining procedure, illumination during microscopy, etc.
Also, the background (cellular debris, polymer matrix,
etc.) influences the performance of an automated counter.
Simple histogram thresholding and/or gray-scale intensity
peak search did not work well with hematoxylin-eosin
histology, because the cells in digitized microcopy fields
may have more than one intensity peak each, or they may
appear as disconnected objects when thresholding (not
shown). The aim of this study was to apply artificial
intelligence in the form of an ANN to create an automated
cell counter with augmented accuracy as compared to
traditional image analysis tools, and increased speed in
comparison with manual counts.

There were two basic reasons why an ANN technique
was employed. First, ANNs learn by example (12, 4, 6, 7).
Hence, no rules need to be defined to program an ANN.
This was ideal for our study, since it is difficult to describe
explicitly the appearance of a cell in a digitized micros-
copy field in terms of parameters based on gray-scale
intensities, shape after thresholding, etc. Furthermore,
learning by example implies that human expertise may be
mimicked. Second, as opposed to statistical methods,
ANNs are non-linear and may perform better than their
statistical, linear counterparts (10). This means that they
may identify relationships between variables not previ-
ously appreciated (8). However, statistical methods and
ANNs are essentially identical in many respects (6).

In this study, the image data was fed directly to the ANN.
Others have approached the problem differently. One
method has been reported that entails the extraction of a
number of features from the image or a region of interest
of the image. These features are subsequently used to train
the ANN (9, 17). The subsequent ANN analysis involves
extracting the same features from images to be analyzed
and thus letting the ANN classify the image data indirectly.
Another method is to use pixel samples in the region of
interest (18). Both methods are aimed at reducing the
number of inputs to the ANN, which, in turn, reduces the
size of the ANN and the amount of computation involved.
In addition, large nets have more degrees of freedom,
which requires larger training sets (4). In our study, the
degrees of freedom were minimized by estimating the
number of hidden neurons required for optimal generaliza-

FIG. 4. The effect on the generalization properties of the ANN when
changing the number of neurons in the first hidden layer in the case of a
48-by-48-pixel retina. The size of the second hidden layer was kept
constant at four neurons, while the number of neurons in the first hidden
layer was varied. The ANN variance was averaged over five training
sessions. Both the average variance and the minimum variance of the five
sessions are plotted. The minimum of the graph indicates the optimal size
of the first hidden layer as chosen by the authors.
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tion properties. Also, the extensive weight sharing in the
first hidden layer reduced the degrees of freedom by one
fourth. In addition, the weights at the error minimum on
the test set—the optimal weights—were selected to avoid

overfitting due to possible excess in degrees of freedom
and thus to ensure a practical level of generalization (6,
11). In either case, whether a large ANN is used directly on
the image data, or image features are extracted prior to the
analysis with a smaller ANN, a fast computer is needed for
the computations. It is worth noting that in the latter case,
the fewer degrees of freedom of a smaller ANN leads to a
smaller number of required examples for learning. This is a

FIG. 5. Example of the application of the ANN, A: A typical microscopy
field, digitized at 100 times magnification. To the left is the exterior of the
divice (†), to the right is the lumen (‡), and in between the arrows is the
permselective membrane (see refs, 1, 2). B: The output of the ANN (see
Materials and Methods). A dark spot in the image indicates that the ANN has
encountered an object that resembles a cell. The darkness of the spot
corresponds to the certainty of the classification. This image was converted
to a binary image, and was processed using the watershed algorithm, to
separate connected objects (not shown). The objects were counted using the
NIH Image particle analysis function, with a lower particle area threshold of 3
pixels. The object coordinates thus obtained were used to plot crosses in the
original image. C: ANN output (crosses) together with the manual counts of
B.F.R. (filled circles) are superposed on the original image, to provide a
comparison. Forty-eight cells were counted manually, while 49 cells were
found by the ANN. Note that the manual counts were blinded, so the crosses
were not actually present when the manual counts were performed. The
white rectangular border represents the ‘‘field of vision’’ of the ANN—the
48-by-48 retina renders it impossible for the ANN to analyze the image all the
way to the edge, thus producing a 24-pixel-wide ‘‘blind margin.’’ This margin
can be corrected for by adjusting the step size of the microscopical stage
when the adjacent field is digitized. Bar 5 approximately 32 µm.

FIG. 6. Results of the validation studies. Twenty microscopy fields
digitized at 100 times magnification were counted using the ANN (see
Materials and Methods) and twice manually by two people (P.J.S. and
B.F.R.). The lines were obtained using linear regression (see Table 1).

Table 1
Regression Data Obtained From Validation Studies*

Magnification
Regression
variables

Correlation
index (R2) Slope Intercept

1003 P.J.S. vs. ANN 0.8829 0.8673 1.2214
B.R.F. vs. ANN 0.8487 0.7193 0.2866
B.R.F. vs. P.J.S. 0.9402 0.8202 20.4095

503 P.J.S. vs. ANN 0.6927 0.8145 4.0931
B.R.F. vs. ANN 0.6214 0.9313 1.7512
B.R.F. vs. P.J.S. 0.9772 1.1934 27.0205

*Twenty microscopy fields digitized at 100 and 50 times
magnification were counted using the ANN (see Materials and
Methods) and twice manually by two people (P.J.S. and B.F.R.).
The slope and the intercept refer to the linear regression curve
(also see Fig. 6).
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possible solution to the above-mentioned problem of
prohibitively large data sets needed for training large
ANNs.

Even though the ANN was good at distinguishing cells
from debris in the images, it was more difficult to train the
network to classify different types of cells based on their
morphology (data not shown). It appears that a more
fruitful approach for cell classification would be to have
several ANNs, each trained for a different task. Cells could
be identified using one network, while the subsequent
classification of the cells could be performed by another
neural net. Similar approaches have been described else-
where in the literature (e.g., 18, 19).

When compared to a human, it is apparent that the ANN
program makes mistakes (Fig. 5C). However, unlike the
method employing only the standard NIH Image algo-
rithms, the ANN produces considerably fewer and more
consistent errors. The error rate is comparable to the
person-to-person variability (Table 1). Thus, this ANN
program has practical use. No systematic errors or non-
linearities in the ANN performance were found (Fig. 6).
The validation data indicates that the ANN performance
was more similar to P.J.S. than to B.R.F. This may be due to
mimicking; P.J.S. selected the samples for the ANN train-
ing set.

A few problems remain to be resolved:

● Many of the pitfalls of the system are related to
inadequate histology. The importance of good histological
preparation for computer-assisted analysis has been re-
ported previously (e.g., 20). Sections fold easily and it may
be difficult to achieve consistent staining. The ANN used in
this study produced erratic outputs when folds or large
dark spots were encountered (outliers in Fig. 6). The ANN
can be triggered by the edges of or irregularities in these
dark areas, and the counts may thus be increased. To avoid
these problems, it should be possible to train an additional
ANN to recognize folds and other imperfections in digi-
tized fields, so that either the image may be discarded or
the area containing the imperfection may be avoided. The
removal of the worst outlier in Figure 6 augments the
correlation index to R2 5 0.92, which is close to person-to-
person variability (Table 1). Most problems due to artifac-
tual histology may also be avoided by visual inspection
prior to or following the ANN analysis.

● In our hands, a final magnification of 100x worked
well and yielded better data than at 50x (Table 1). Higher
magnifications could most likely further improve perfor-
mance. However, this would require a larger ANN and
more digitized fields to be analyzed for the same area,
which in turn would significantly slow down the overall
operation of the system.

● A large amount of training examples is needed for
good generalization properties. A method to rapidly gener-
ate several examples from a few available ones would
benefit the ANN approach to automated cell counting.

● Standard desktop computers are today powerful
enough to be used with ANNs, but the lack of computing

power makes the software less flexible and user-friendly
than desired. With even faster and more sophisticated
computers (faster processors, parallel processors, ANN
hardware, etc.), these problems should be alleviated and
features such as window handling and ANN flexibility may
be integrated.

It should be pointed out that there are other approaches
to achieve high-performance automated object counting
in noisy images. Principal component analysis is frequently
employed (e.g., 1), which is a linear and statistical method.
In the case of histological data, the staining method should
ideally be selected for the sole purpose of cell counting
(e.g., a nuclear stain). Unfortunately, the histological
method is often chosen with several purposes in mind, not
only cell counting.

In conclusion, this study has shown that the construc-
tion of an automated cell counter based on ANN technol-
ogy is feasible. There are several benefits to this system,
such as speed of analysis, consistency, and the automation
in itself. The ANN-based counter is considerably faster
than a human (approximately six times faster), and is likely
to get faster as computer technology improves. The
automated counter is consistent—it invariably produces
the same counts for a given digitized microscopy field,
something that is not true for its human counterpart.
Finally, manual counting is tedious, inexact, time-consum-
ing, and expensive. Freeing personnel for other, more
demanding tasks is an important technological advance-
ment in the histological laboratory.
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