
Potentiometry Example

conc 15 35 89 150 230 400 500 650( )TEmeas 338.5 329.8 316.5 312.2 303.7 296.4 295.5 292.5( )T

Let's look at a plot of the calibration data.
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280 Doesn't look too linear! What's wrong? I forgot that potentiometric 
measurements are proportional to the logarithm of the analyte 
concentration.
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280 That's a little better. Let's calculate the least-squares estimates of the 
slope and intercept of a best-fit line for this data.
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29.0525= (slope is close to theoretical 
value of 29.6 mV/decade)

We need to calculate a few things first
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Now we can use our calibration curve to obtain a point estimate of the analyte concentration

y u 300.8 signal for "unknown", in mV
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x u 2.5038= conc u 10
x u conc u 318.9887= point estimate of concentration, in ppm

Now we can determine the standard error of our point estimate
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. se u 0.0486= this is the std error of the value calc'd for xu

In order to determine the standard error of our estimate of the analyte concentration, we must perform propagation of 
error. [Remember that we took the antilog of xu to calculate the concentration]

RSD conc 2.303 se u
. se conc RSD conc conc u

. se conc 35.7270= std error of point estimate, in ppm



So we have a point estimate of the concentration - 319.0 ppm - and the standard error of that point estimate - 35.7 
ppm. It would appear that we can calculate a confidence interval using these two numbers, as follows.

t qt .975 6,( ) t 2.4469= t se conc
. 87.4207= 95% CI is 319 ± 87 ppm.

There is a problem with this confidence interval, though. It assumes that out point estimate of analyte concentration is 
normally distributed. However, if the calibration measurements are normally distributed, then it is xu - the log of the 
sample concentration - that will be normally distributed. The antilog is nonlinear transformation, and so the distribution 
of the point estimate of the concentration will be skewed relative to the normal distribution. Thus, strictly speaking, we 
should not use the confidence interval calculated above.

What to do? We can calculate a confidence interval for xu and then take the antilog of the upper and lower values of 
the interval, as follows.

x u 2.5038= se u 0.0486= t se u
. 0.1190= 95% CI is 2.50 ± 0.12

lower x u t se u
. lower 2.3848= 10lower 242.5358= lower boundary of 95% CI

upper x u t se u
. upper 2.6228= 10upper 419.5414= upper boundary of 95% CI

Thus, a 95% confidence interval for the analyte concentration is 243 - 420 ppm. The point estimate for the 
analyte concentration is 319 ppm.

Note that the point estimate is not exactly in the middle of the confidence interval, reflecting the skewed nature of the 
probability distribution. It is interesting to compare the boundary values of the actual confidence interval with the one 
calculated previously using the propagation of errors approach.

319 87 232= 319 87 406= Propagation of error approach gives a 95% CI of 232-406 ppm, which is 
slightly different than the "true" CI.

Some people would use the error propagation approach and not worry too much about the non-normal distribution of 
the point estimate. They would argue that the assumptions of homogeneous and normal distribution of measurement 
error in the calibration measurements is often violated anyway, so that the propagation of error approach is just as 
valid as the other. There is some merit to this argument.


